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Fic. 5. Effects of spironolactone on the expression of neuroprotective
and angi ic factors in the ischemic brain on d 2 and 7 after 20-min
MCAo. A, Quantitative real-time RT-PCR analysis of BDNF, NGF,
GDNF, bFGF, and VEGF levels in the ipsilateral hemisphere in
sham-operated (n = 8) and vehicle- (n = 12) and spironolactone-
treated (n = 12) mice on d 2 and 7 after MCAo. *, P < 0.05; **, P <
0.01 spironolactone vs. vehicle. B-D, Representative photomicro-
graphs showing immunostaining of bFGF (red), Neu-N (blue), and
GFAP (green) on d 7 after MCAo in the nonischemic striatum (B) and
the ischemic striatum of vehicle- (C) and spironolactone-treated (D)
mice. E-G, Representative photomicrographs showing immunostain-
ing of VEGF (red), Neu-N (blue), and GFAP (green) on d 7 after MCAo
in the nonischemic striatum (E) and the ischemic striatum of the
vehicle- (F) and spironolactone-treated (G) mice. H, Measurement of
the area (square millimeters) of bFGF and VEGF positivity in the

ischemic (n = 3) and ischemic striatum of the vehicle- and spi-
ronolactone-treated mice (n = 8-11). **, P < 0.01. Scale bar, 100 um
(B-G); magnification, x20.
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0.0039 mm? (n = 8) vs. 0.1335 * 0.0098 mm? (n = 10), P <0.01;
VEGF: 0.0516 = 0.0045 mm? (n = 10) vs. 0.1186 * 0.0067 mm?
(n = 11), P < 0.01] (Fig. 6L).

Vascular density and blood flow in the infarct area after
stroke

Because treatment with spironolactone appeared to in-
crease the expression of angiogenic factors, we next exam-
ined the extent to which spironolactone could induce an
increase in vascular density within the ischemic striatum. We
found that by d 7 after MCAo, the PECAM-1-positive vas-
cular density was clearly higher in the ischemic core of both
vehicle- (Fig. 6B) and spironolactone-treated (Fig. 6C) mice
than in the nonischemic striatum (Fig. 6A). At that point there
was no significant difference in the vascular density (percent
area) between the vehicle- and spironolactone—treated mice,
however (vehicle: 7.4 = 0.4%, n = 10; spironolactone: 8.3 *
0.5%, n = 10) (Fig. 6F). By contrast, on d 14 after MCAo, the
vascular density in the spironolactone-treated mice (n = 10)
was significantly greater than in the vehicle-treated mice (n =
9) (11.2 = 0.4 vs. 10.1 = 0.4%, P < 0.05) (Fig. 6, D, E, and F).
As shown in the representative photomicrographs (Fig. 6,
G-I), the number of microspheres (red) in the ischemic core
in vehicle- and spironolactone-treated mice was markedly
higher than in the nonischemic striatum. Moreover, the rel-
ative blood flow in the spironolactone-treated mice (n = 11)
was significantly higher than in the vehicle-treated mice (n =
11) (262.2 + 36.8 vs. 215.1 * 24.3%, P < 0.05) (Fig. 6]). Evans
Blue leakage was clearly seen within the ischemic lesion in
the striatum (n = 4) 24 h after MCAo but was not seen in any
of the vehicle- (n = 7) or spironolactone-treated mice (n=9)
on d 14 after MCAo (data not shown). This suggests that the
maturity of newly formed vessels in the ischemic striatum in
both vehicle- and spironolactone-treated mice had been fully
constructed at least on postoperative d 14 after cerebral isch-
emia, and spironolactone might have a potential to promote
endogenous angiogenesis without attenuating the integrity
of the vasculature.

Effect of MR blockade on neurogenesis

To examine the effect of MR antagonism on neurogenesis
under ischemic conditions, we quantified the number of
Dex-positive neuroblasts migrating from the SVZ to the isch-
emic area on d 7 after MCAo. We detected no neuroblasts
in the nonischemic striatum. On the other hand, we de-
tected numerous migrating neuroblasts in the ischemic
striatum, and there were significantly greater numbers in
spironolactone-treated than vehicle-treated mice (237.9 =
19.3 5. 191.1 * 8.4 counts/mm? (n = 6 in each group), P <
0.05) (Fig. 7, A-C).

Effect of MR blockade on infarct size after MCAo

Finally, we examined the effect of spironolactone treat-
ment on infarct size on d 14 after MCAo. We found that,
compared with vehicle, spironolactone reduced infarct area,
especially at the level of bregma (section 3) and + 0.5 mm
from bregma (section 4), which were seriously affected by
ischemic damage in our stroke model (Fig. 8, A-C). As a

Downloaded from endo.endojournals.org at KYOTO UNIVERSITY on March 31, 2009

— 58 —



Oyamada et al. ® Role of Mineralocorticoid Receptor in Brain

Endocrinology, August 2008, 149(8):3764-3777 3771

H O non-ischemic striatum
B ischemic striatum (vehicle)

M ischemic striatum (spironolactone)

0.16

0.14

0.12

0.1

€
£ 008

0.06
0.04
002

0

Fia. 5. Cont.

result, the infarct volume in spironolactone-treated mice was
significantly (~10%) smaller than in vehicle-treated mice
(spironolactone: 1.673 = 0.032 mm®, n = 8; vehicle: 1.87 *
0.050 mm? n = 7; P < 0.01) (Fig. 8D).

Effect of MR blockade on recovery of motor function after
MCAo

The exercise times of the sham-operated mice did not
change during the 2-wk period of the experiment. By con-
trast, the exercise times of the vehicle- and spironolactone-
treated mice were markedly reduced on d 2 after MCAo, after
which time-dependent recovery of motor function was ob-
served. Spironolactone-treated mice tended to have longer
exercise times than vehicle-treated mice, but the difference
was not significant (data not shown).

Effect of drug treatment on blood pressure and heart rate

The data summarized in Table 1 show that there were no
differences between blood pressure and heart rate in vehicle-
(n = 8) and spironolactone-treated (n = 8) mice and no
change in blood pressure over the course of the 14-d fol-
low-up after MCAo. Thus, the dose of spironolactone used
had no effect on blood pressure. A significant increase of
heart rate was observed in both groups on d 14. We assume
that this is an effect of invasion itself.

Discussion

In the present study, we examined the time course of MR
expression after transient cerebral ischemia, using a mouse
nonfatal stroke model (20 min MCAOo). In the brain, MR is

generally expressed in the hippocampus and cerebral cortex
but not in the striatum under normal conditions. In this
study, however, we found that MR expression in the striatum
was markedly increased under ischemic condition during
the acute and, especially, subacute phases after MCAo. The
majority of the cells expressing MR in the ischemic striatum
were astrocytes, although a slight increase of the number of
MR-positive neurons was detected during the acute phase.
In addition, vascular endothelial cells in large vessels ex-
pressed MR, but only a small number of such vessels were
detected in the nonischemic striatum, and that number was
not increased under ischemic conditions. We therefore sug-
gest that astrocytes are the key cell type involved in MR-
mediated brain remodeling after cerebral ischemia.
Astrocytes, which are known to migrate to ischemic areas
in the brain, are activated by chemokines and cytokines se-
creted from necrotic tissues and/or leukocytes infiltrating
the infarct area. Once activated, astrocytes support tissue
repair processes by removing debris (33) and secreting a
number neurotrophic factors, including BDNF, GDNF, NGF,
bFGF, ciliary neurotrophic factor and neutrotrophins 3, 4,
and 5. On the other hand, they also produce various cytotoxic
mediators and inflammatory cytokines, including nitric ox-
ide (NO), TNF-« and IL-1, -6, and -8 (34). Consequently,
whereas it is well recognized that astrocytes play an impor-
tant role in brain remodeling after ischemia, it is less clear
whether their activities are ultimately beneficial or harmful.
Our present findings indicate that blockade of the up-regu-
lated MRs on astrocytes during the acute and subacute
phases after transient cerebral ischemia effectively reduces
infarct size. We suggest that the neuroprotection provided
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F1G. 6. Effects of spironolactone on vas-
cular regeneration and blood flow in the
ischemic striatum after 20-min MCAo.
A-E, Histological examination of the vas-
culature in the ischemic core stained with
mouse PECAM-1 (red) and Neu-N (blue).
Shown are representative photomicro-
graphs in the nonischemic striatum (A)
and the ischemic striatum of vehicle- (B
and D) and spironolactone-treated (C and
E) mice ond 7 (B and C) and 14 (D and E)
after MCAo. F, Quantitative analysis of
the relative area of PECAM-1 positivity
(percent area) in the nonischemic stria-
tum (n = 5) and ischemic striatum of ve-
hicle- and spironolactone-treated mice
(n =9-10)ond 7 and 14 after MCAo. G-I,
Representative photomicrographs of sec-
tions of the nonischemic striatum of a
sham-operated mouse (G) and the isch-
emic core of the striatum in vehicle- (H)
and spironolactone-treated (I) mice on d
14 after MCAo. J, Quantitative analysis of
the relative blood flow in the nonischemic
striatum of sham-operated mice (n = 5) F
and ischemic core of the striatum in vehi-

cle- (n = 11) and spironolactone-treated 14

A- B. C.
D- E.
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by the MR antagonist spironolactone was meditated via four
mechanisms: 1) reduction of ROS production; 2) induction
of bFGF and VEGF expression by astrocytes; 3) prevention
of the apoptosis of neurons; and 4) enhancement of
angiogenesis.

MR activation promotes oxidative stress by stimulating
nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase to increase ROS generation (35). In the heart, MR
activation also stimulates activation of a number of down-
stream signaling pathways, leading to expression of inflam-
matory mediators (e.g. TNF-a, monocyte chemotactic pro-
tein-1, vascular cell adhesion molecule-1), fibrosis, and
vascular endothelial and myocardial dysfunction. In addi-
tion, Edarabone, a potent scavenger of hydroxyl radicals,
reportedly exerts an early neuroprotective effect and sup-
presses oxidative DNA damage in the ischemic brain (36). In
the present study, ROS generation was markedly increased
in the ischemic striatum after MCAo, and MR blockade by
spironolactone effectively attenuated that generation. This
suppression of oxidative stress led to a significant reduction
in the incidence of apoptosis in the ischemic striatum of
spironolactone-treated mice.

It is well known that aldosterone and cortisol (corticoste-
rone in mice) bind to MRs with equal affinity and that MRs
have a 10-fold higher affinity for corticosterone than glu-
cocorticoid receptors (GRs) (37). It is also accepted that 115-
hydroxysteroid dehydrogenase type II (118-HSD2) metabo-

ipsilateral day7

ipsilateral day7 ipsilateral day14 ipsilateral day14

(vehicle) (spironolactone) (vehicle) (spironolactone)

lizes cortisol to cortisone (11-dehydroxycorticosterone in
mice), preventing it from binding to and activating MRs. In
the brain, however, 113-HSD2 activity is limited to the sub-
commissural organ, nucleus tractus solitarius, and amygdala
(38). Because cells of the blood-brain barrier (BBB) have the
ability to pump aldosterone back across the barrier, levels of
aldosterone are normally low in brain tissue (39). Due to
transient destruction of the BBB caused by the cerebral isch-
emia, however, aldosterone may enter the ischemic striatum
and bind to MR. Spironolactone may thus provide neuro-
protection in the damaged ischemic striatum, in part by
suppressing MR activation by aldosterone until the BBB can
be restored. On the other hand, adrenalectomy promotes
neurogenesis in the hippocampus (40), which suggests glu-
cocorticoid released from the adrenal glands readily enters
the brain and exerts effects in the hippocampus via MRs
and/or GRs. It therefore seems plausible to us that because
11B8-HSD?2 is not present in the striatum, and because MR
expression is markedly up-regulated in the ischemic stri-
atum, cortisol is able to exert effects in the ischemic stri-
atum via formation of glucocorticoid-MR complexes. Fur-
thermore, elevation of ROS levels reportedly leads to
activation of the glucocorticoid-MR complex (41). Thus, by
reducing ROS levels, spironolactone may also contribute
to neuroprotection after cerebral ischemia by suppressing
both oxidative DNA damage and activation of the corti-
sol-MR complex.
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It is well known that cerebral ischemia up-regulates the
expression of bFGF (42, 43). Recent studies suggest that bFGF
supports the survival of brain neurons in culture and protects
them from anoxia, hypoglycemia, and ROS (44-46). In ad-
dition, one report suggests bFGF is expressed by activated
astrocytes in brain (47), whereas another suggests bFGF re-
duces DNA fragmentation and prevents down-regulation of
the antiapoptotic protein Bcl-2 in the ischemic hemisphere
after permanent MCA occlusion (48). In the present study,
we detected numerous bFGF-positive astrocytes in the isch-
emic striatum on postoperative d 7 and found that bFGF
antigenicity was up-regulated by spironolactone. This sug-
gests spironolactone may act to protect damaged neurons
from apoptosis, at least in part, by increasing of bFGF-ex-
pression in the ischemic core.

It also has been shown that that the angiogenic factor
VEGF (49) is increased in the ischemic striatum (43). Con-
sistent with those findings, we observed that after induction
of MCAo in mice, expression of VEGF was clearly increased
in the ischemic striatum, mainly in migrating astrocytes, and
that spironolactone further enhanced VEGF expression in
astrocytes on postoperative d 7. The up-regulated expression
of both bFGF and VEGF would be expected to promote
angiogenesis in the ischemic striatum, as was observed in
spironolactone-treated mice on postoperative d 14. Increased

vascularity is reportedly associated with improved neuro-
logical recovery in human stroke patients (50). Given that
neovascularization provides trophic support to and removes
toxic products from damaged cells, including neurons, we
suggest that astrocytes also exert a neuroprotective effect in
the ischemic brain by expressing VEGF and bFGF and that
spironolactone enhances that effect, in part by promoting
neovascularization via up-regulated expression of these an-
giogenic/neuroprotective factors. Moreover, the relative
blood flow in the ischemic striatum was significantly in-
creased in spironolactone-treated mice on d 14 after MCAo,
which suggests spironolactone effectively increases the size
of the vascular bed formed after cerebral ischemia.
Throughout the life of adult animals, neurogenesis occurs
primarily in the SVZ of the lateral ventricle and in the dentate
gyrus of the hippocampus (51, 52). In addition, one recent
study demonstrated that after induction of transient isch-
emia, Dcx-positive neuroblasts migrate into damaged stria-
tum and differentiate into mature neurons to replace the
dead ones (53). However, it was further shown that more
than 80% of these newly formed neurons ultimately die, most
likely because of unfavorable environmental conditions, in-
cluding a lack of trophic support and exposure to toxic prod-
ucts from damaged tissues. It was also shown that bFGF can
increase the number of neuroblasts migrating from the SVZ
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Fic. 7. Effects of spironolactone on migration of neuroblasts toward
the ischemic striatum after 20-min MCAo. A and B, Immunostaining
of Neu-N (blue) and Dex (red) in the ischemic striatum of vehicle- (A)
and spironolactone-treated (B) mice on d 7 after MCAo. C, Quanti-
tative analysis of the numbers (counts per field) of Dcx-positive neu-
roblasts in the ischemic striatum of vehicle- and spironolactone-
treated mice (n = 6/each group). *, P < 0.05. Scale bar, 100 um (A and
B); magnification, X20.

(54). Perhaps the notable increase of the expression of bFGF
and the promotion of neovascularization induced by MR
suppression might contribute to protect Dex-positive neu-
roblasts from ischemic damage until they are able to differ-
entiate into new neurons.

Although the neuroprotective effects provided by spirono-
lactone may contribute to a reduction in infarct volume after
MCALo, significantly better recovery of motor function was
not seen in spironolactone-treated mice after MCAo. We
think that because the infarct area was confined to the stri-
atum in our stroke model and the volume of the infarct
induced by 20-min MCAo was not large, the significant re-
duction in infarct volume seen in spironolactone-treated
mice was not sufficient to enable evaluation of neurological
changes during the acute and subacute phases after MCAo.

It has been reported that aldosterone receptor blockade
prevents up-regulation of vascular endothelin-1 and restores
endothelial function after disruption by NO in the 11p-
HSD2-deficient hypertensive rat (55). A more recent study
using spontaneously hypertensive rats also suggests that
treatment with eplerenone normalizes the aortic media to
lumen ratio and acetylcholine-induced relaxation by enhanc-
ing expression of endothelial nitric oxide synthase and re-
duces oxidative stress. In addition, aldosterone reportedly
contributes to alterations in vessel structure and function by
reducing NO availability (56). Because in the present study
MR expression in the ischemic striatum was already up-
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regulated during the acute phase after transient cerebral
ischemia, we treated mice with spironolactone 48 h before
induction of MCAo to fully examine its effects on brain
remodeling during the that phase. However, large vessels, a
small number of which are present in the striatum, express
MR under normal conditions. Consequently, there is the
possibility that spironolactone administered before MCAo
might increase cerebral blood flow after transient cerebral
ischemia, in part by enhancing production of endothelial
nitric oxide synthase in blood vessels, thereby influencing
brain remodeling.

It is noteworthy that despite the observed beneficial effects
of spironolactone, some evidence suggests that MR activa-
tion is necessary for neuroprotection. For instance, MR block-
ade beginning 1 h before induction of transient global isch-
emia resulted in increased cell death (57). Moreover,
overexpression of human MR in PC12 cells prevented stau-
rosporine- and oxygen/glucose deprivation-induced cell
death, and spironolactone attenuated that effect (58). Lai et
al. (59) also demonstrated that, compared with wild-type
mice, transgenic mice overexpressing MR specifically in their
forebrain show significantly reduced neuronal death in the
hippocampus, improved spatial memory retention, reduced
anxiety, and altered behavioral responses to novelty after
transient global cerebral ischemia. Our observation that
some neurons in the ischemic striatum were expressing
MR 1 d after MCAo suggests MR blockade may have some
direct negative effect on ischemic neurons during the hy-
peracute phase. On postoperative d 2-28, however, the
number of MR-expressing neurons declined, and the ma-
jority of the cells expressing MR in the ischemic striatum
were astrocytes. In addition, our findings indicate that
blockade of MR in astrocytes migrating to the ischemic
core after MCAo appear to protect damaged neurons via
indirect effects. Consequently, although our finding might
seem to be inconsistent with that of Lai et al., we think the
significance of MR activation to brain remodeling differs
in neurons and astrocytes.

There is an interesting report that suggests synaptic
function and cellular integrity in the hippocampus can be
preserved after unilateral cerebral hypoxia/ischemia (HI)
by preventing an ischemia-induced rise in plasma corti-
costeroid levels (60). HI-induced impairment of synaptic
transmission in the CA1 area of the hippocampus is ex-
acerbated by concomitant corticosteroid treatment and al-
leviated by treatment with the steroid synthesis inhibitor
metyrapone. Similarly, degenerative changes in the hip-
pocampus seen after HI are exacerbated by corticosterone
but reduced by metyrapone. Kloet and Derijk (61) sug-
gested that although MRs maintain neuronal homeostasis
and limit stress-induced disruption, GRs promote recov-
ery after a challenge and storage of the experience, which
aids in coping with future encounters. Imbalance in MR/
GR-mediated actions compromises homeostatic processes
in these neurons, which is thought to lead to maladaptive
behavior and hypothalamic-pituitary-adrenal dysregula-
tion that may, in turn, lead to aberrant metabolism, im-
paired immune function, and altered cardiovascular con-
trol. Our experiments are focused on the effects of MR
suppression, mainly in the damaged ischemic striatum.
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Because GR is more widely expressed in the brain, even
under normal conditions, there is a possibility that ad-
ministration of spironolactone might promote formation
of a glucocorticoid-GR complex, which could lead to an
imbalance in MR/GR-mediated actions in neurons within
nonischemic lesions in areas such as hippocampus. In
future experiments, it would be useful to clarify the effects

TABLE 1. Blood pressures (mm Hg) and heart rates (counts per
minute) in vehicle- and spironolactone-treated mice before (d 0)
and 14 d after MCAo

Vehicle
111.7 = 3.6/75.1 = 1.9

Spironolactone

109.4 = 4.1/74.1 = 3.3

Blood pressure
(d 0)

Blood pressure
(d 14)

Heart rate
(d 0)

Heart rate
(d 14)

Values are means * SE; n = 8 in each group.

110.1 = 2.3/67.9 = 3.1  107.9 + 3.3/68.3 * 2.6

563.9 = 17.1 587.5 £ 15.2

643.4 = 11.7 658.3 = 12.2

of spironolactone in nonischemic lesions in areas other
than the striatum in this animal stroke model.

In conclusion, our findings provide evidence that expression
of MR is enhanced during the acute and subacute phases after
transient cerebral ischemia, especially in the astrocytes that
migrate into the ischemic core. Suppression of MR-mediated
signaling by spironolactone induces several beneficial effects on
brain remodeling, which appears to significantly reduce infarct
size. Spironolactone thus appears to exert potentially therapeu-
tic neuroprotective effects in the ischemic brain.
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Abstract Since the 1980s, a number of bioactive mole-
cules, now known as cardiovascular hormones, have been
isolated from the heart and blood vessels, particularly from
the subset of vascular endothelial cells. The natriuretic
peptide family is the prototype of the cardiovascular
hormones. Over the following decade, a variety of
hormones and cytokines, now known as adipokines or
adipocytokines, have also been isolated from adipose
tissue. Leptin is the only adipokine demonstrated to cause
an obese phenotype in both animals and humans upon
deletion. Thus, the past two decades have seen the
identification of two important classes of bioactive mole-
cules secreted by newly recognized endocrine cells, both of
which differentiate from mesenchymal stem cells. To assess
the physiological and clinical implications of these novel
hormones, we have investigated their functions using
animal models. We have also developed and analyzed mice
overexpressing transgenic forms of these proteins and
Kknockout mice deficient in these and related genes. Here,
we demonstrate the current state of the translational
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research of these novel hormones, the natriuretic peptide
family and leptin, and discuss how lessons learned from
excellent animal models and rare human diseases can
provide a better understanding of common human diseases.

Keywords Natriuretic peptide family (ANP, BNP,CNP) -
Leptin - Translational research - Animal models -
Genetically engineered mice

Although a multitude of animal models have been
developed to emulate various diseases, there are a few
excellent animal models that mimic human disease remark-
ably well, such as spontaneously hypertensive rats (SHR)
[1] and hereditary obese mice, ob/ob mice [2]. These
models are very useful for translational research into the
common human diseases, hypertension and obesity. Les-
sons from research on SHR, an excellent animal model for
hypertension research, developed at Kyoto University led
us to investigate the clinical importance of cardiovascular
hormones and adipokines using appropriate animal models
that mimic human diseases beyond species differences. In
this review, we discuss the current state of translational
research of the natriuretic peptide family and leptin and
discuss the ways in which animal models and rare human
diseases can educate about common human diseases.

Translational research of natriuretic peptide family

The natriuretic peptide family consists of three structurally
related peptides, atrial natriuretic peptide (ANP), brain
natriuretic peptide (BNP), and C-type natriuretic peptide
(CNP) [3]. The biological actions of natriuretic peptides are
mediated by activation of two subtypes of membranous
guanylyl cyclase (GC), GC-A and GC-B, leading to
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intracellular accumulation of cyclic guanine monophos-
phate (¢<GMP) [4]. The rank order of potency to induce
¢GMP production via GC-A is ANP = BNP >> CNP, while
that via GC-B is CNP > ANP > BNP [5]. Thus, ANP and
BNP serve as endogenous ligands for GC-A, while CNP is
specific for GC-B. A third natriuretic peptide receptor with
no intracellular GC domain, dubbed the clearance receptor
(C-receptor), is thought to be engaged in the receptor-
mediated degradation of natriuretic peptides [4]. The ANP,
BNP/GC-A system plays a pivotal role in the regulation of
cardiovascular homeostasis, as demonstrated by their
augmentation in various pathophysiological states such as
heart failure [6-10], myocardial infarction [11, 12], cardiac
hypertrophy [13, 14], and hypertension [15-17]. ANP and
BNP are cardiac hormones secreted primarily by the atrium
and ventricle of the heart, respectively [10, 17], with strong
diuretic, natriuretic, and vasodilatory activities [6, 7, 10].
ANP and BNP are used in the treatment of heart failure [18,
19] and serve as sensitive biochemical markers for heart
failure and cardiac hypertrophy [8-10]. ANP infusion
therapy has currently reached a greater than 30% share
among drugs given for acute congestive heart failure in
Japan.

CNP, the third member of natriuretic peptide family, was
first purified from porcine brain [20]. While CNP is the
primary natriuretic peptide in the human brain [21], it is
also produced by vascular endothelial cells [22-24] and
macrophages [25]. This hormone functions in the regulation
of vascular endothelial function and arteriosclerosis via
local effects, not by acting as a circulating hormone [26—
28]. These observations indicate that CNP acts as an
autocrine/paracrine regulator and as a neuropeptide [21].

The distribution of the natriuretic peptide system over-
laps with the distribution of the renin—angiotensin system
[21, 29-33], prompting us to examine the functional
relationship of the natriuretic peptide system and the
renin-angiotensin system. We demonstrated an antagonistic
relationship between these two systems, both in their
peripheral functions as well as their central actions [34—
39]. Furthermore, the natriuretic peptide system has
therapeutic implication in vascular regeneration in patients
with arteriosclerosis obliterans [40].

Mice with genetic alterations in the ANP, BNP/GC-A
system

Genetically engineered mice are useful tools to study the
complex phenotypic effects of an altered gene in living
animals. Overexpression or deficiency of each member of
the natriuretic peptide family or its receptors has been
generated through transgenic (Tg) or knockout (KO)
technologies [41-45]. We generated Tg mice expressing
BNP under the control of the serum amyloid P (SAP)
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component promoter, which targets hormone expression to
the liver [43]. BNP-Tg mice exhibited a 100-fold increase
in plasma BNP concentrations with concomitant elevations
in plasma ¢cGMP concentrations. These mice displayed
significantly lower blood pressures and smaller hearts than
non-Tg littermates. These results indicate that BNP func-
tions in the long-term cardiovascular regulation and may be
useful as a long-term therapeutic agent. In addition, the
proteinuria and renal dysfunction observed in anti-GBM
nephritis [46], the nephrosclerosis induced by subtotal
nephrectomy [47], and the manifestations of diabetic
nephropathy [48] were ameliorated in BNP-Tg mice
compared to those in wild-type mice, indicating a possible
application for the natriuretic peptide family in the
treatment of renal disorders.

We also generated mice bearing a targeted disruption of
the BNP gene [44]. At baseline, BNP-KO mice did not
show any signs of systemic hypertension or ventricular
hypertrophy; however, these animals developed multifocal
fibrotic lesions within the cardiac ventricle even in the
absence of additional stresses; these lesions increased in
size and number in response to ventricular pressure
overload, demonstrating that BNP is an antifibrotic factor
acting within the ventricle of the heart as an autocrine/
paracrine regulator for ventricular remodeling [44]. In
addition to these cardiovascular manifestations, BNP-Tg
mice exhibited marked skeletal overgrowth via endochon-
dral bone formation [49]. Nevertheless, BNP-KO mice did
not possess any skeletal abnormalities [44]. The skeletal
overgrowth seen in BNP-Tg mice that express elevated
plasma concentrations of BNP was similar to that seen in
cartilage-specific CNP-Tg mice [49]. As the BNP/GC-A
system does not have an abnormal skeletal phenotype [41,
42, 45], we postulated that the markedly increased
circulating levels of BNP (100-fold greater than wild-type
mice) may cross-react with GC-B to stimulate endochon-
dral bone growth, even though the affinity of BNP for GC-
B is lower than that for GC-A. This interpretation is
supported by the finding that the skeletal overgrowth
observed in BNP-Tg mice was not abrogated by a genetic
deficiency of GC-A in BNP-Tg mice [50].

ANP transgenic mice expressing elevated levels of
circulating ANP under the control of mouse transthyretin
promoter [41] exhibited decreased arterial blood pressure
without the induction of diuresis or natriuresis. ANP-KO
mice and GC-A-KO mice displayed salt-sensitive and salt-
resistant hypertension, respectively [42, 45]. Studies using
GC-A-KO mice implicated the involvement of GC-A in
antihypertrophic actions in the heart [51-53]. A more
detailed analysis of GC-A was performed using mice
bearing a conditional knockout of GC-A and indicated the
importance of GC-A in vascular endothelial-cell-mediated
blood pressure control [54-56].
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As for the regulation of ANP and BNP gene expression,
neuron-restrictive silencer elements (NRSEs) are located in
the S'-flanking region of the BNP gene and the 3'-
untranslated region of the ANP gene [57]. The neuron-
restrictive silencer factor (NRSF) can thus repress ANP
promoter activity through binding to NRSE [58]. Studies
examining dominant-negative NRSF Tg mice expressed
under the control of the o-myosin heavy-chain promoter
have demonstrated that NRSF plays an important role in the
gene expression of both ANP and BNP and in the
progression of cardiac dysfunction and lethal arrhythmia
associated with heart failure [59].

Genetically engineered mice of the CNP/GC-B system

We generated mice with a targeted disruption of the CNP
gene; the resultant CNP-KO mice exhibited markedly short
stature due to impaired bone growth [60]. Mammalian
bones are formed through two different mechanisms,
endochondral ossification and membranous ossification.
Most mammalian bones are formed through endochondral
ossification, a process during which chondrocytes in the
growth plate undergo proliferation, hypertrophy, cell death,
and osteoblastic replacement [61]. The short-stature pheno-
type of CNP-KO mice resulted from impaired bone growth
through endochondral ossification [60]. CNP-Tg mice with
targeted overexpression of CNP at the growth plate
cartilage exhibited prominent overgrowth of those bones
formed through endochondral ossification [62]. GC-B-KO
mice exhibit the same short-stature phenotype as observed
in CNP-KO mice [63], demonstrating that the CNP/GC-B
system is a physiologically important stimulator of endo-
chondral bone growth. Dominant-negative GC-B transgenic
rats displayed blood-pressure-independent cardiac hyper-
trophy, suggesting evidence linking GC-B signaling to the
control of cardiac growth [64].

cGMP-dependent protein kinase (cGK) has been identified
as a molecule activated downstream of the natriuretic peptide
family and GC system [65]. Mice depleted with the gene of

Fig. 1 Rescue of achondroplastic
mice (Ach mouse) by targeted
overexpression of CNP in growth Wt
plate cartilage. From top to
bottom are shown the gross
appearance (lefi panel) and
skeletal phenotype (right panel,
soft X-ray picture) of female
wild-type mice (W7), Ach mice
(Ach), and Ach mice overex-
pressing CNP in the growth plate
cartilage (Ach/CNP-Tg) at an

age of 3 months Ach/

CNP-Tg

one subtype of cGK, c¢GKII (¢cGKII-KO mice), exhibit a
short-stature phenotype secondary to impaired endochondral
bone growth [66], similar to that observed in CNP-KO mice
[60]. We demonstrated that cGKII affected endochondral
bone growth by functioning downstream of the CNP/GC-B
system by showing that the impaired endochondral bone
growth observed in ¢cGKII-KO mice could not be rescued by
targeted overexpression of CNP in the growth plate cartilage
[67].

Multiple spontaneous animal models with impairments
in the CNP/GC-B system have been identified [68-71].
Two strains of dwarf mice, with an autosomal recessive
mutant gene, named cn/cn [68] and short-limbed dwarfism
(SLW) mice [69], possess spontaneous loss-of-function
mutations in the GC-B gene. Spontaneous mutant mice
with a loss-of-function mutation in the CNP gene, named
long bone abnormality (Lbab) mice, exhibit short-stature
owing to their impaired endochondral bone growth [70],
and this phenotype could be abrogated by targeted over-
expression of CNP in the growth plate cartilage [71].

Clinical application of CNP and its analogs for skeletal
dysplasia

To explore the potential applications of CNP and its analogs
for clinical use, we attempted to apply the strong effect of
CNP and GC-B on endochondral bone growth to skeletal
dysplasia, a group of genetic disorders characterized by
severely impaired bone growth [72]. Achondroplasia (Ach),
the most common form of skeletal dysplasia characterized by
short-limbed dwarfism, is caused by constitutive activation
of fibroblast growth factor (FGF) receptor 3 [73]. The current
therapy for Ach is limited to distraction osteogenesis [74], an
orthopedic procedure; no efficient medical therapies have
been developed as yet. We demonstrated that targeted
overexpression of a CNP transgene in the growth plate
cartilage of a mouse model of achondroplasia (Ach mice)
rescues their impaired bone growth and short-stature
phenotypes [62] (Fig. 1). To elucidate the molecular
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mechanism by which CNP ameliorates achondroplasia, we
examined the effect of CNP on extracellular signal-regulated
kinase (ERK) signaling. CNP inhibited FGF2-stimulated
phosphorylation of ERK in a dose-dependent manner
through c¢GMP activation via GC-B ligation, ultimately
increasing matrix synthesis by chondrocytes [62].

We also demonstrated that systemic and continuous
administration of synthetic CNP is safe and effective to
reverse the impaired bone growth seen in Ach mice [75]
(Fig. 2). The safety and efficacy of systemic CNP adminis-
tration in preclinical studies with the observation that CNP
has only a minimal effect of blood pressure in humans [76]
suggest that systemic administration of CNP or CNP
analogs provides a novel therapeutic strategy for the
treatment of human skeletal dysplasia, including Ach.

One form of human skeletal dysplasia, acromesomelic
dysplasia type Maroteaux, is caused by loss-of-function
mutations in the GC-B gene [77]. This implicates the CNP/
GC-B system as a physiologically important enhancer of
endochondral bone growth in humans, suggesting a clinical
application for CNP and CNP analogs to multiple types of
human skeletal dysplasia [75].

In the near future, idiopathic short stature, a common
disease of short-stature phenotype with an unknown etiology,
and bone fracture, the healing of which is made through
endochondral ossification, would be the next avenues to
explore for a therapeutic effect of CNP treatment.

Translational research of leptin

Leptin, an adipocyte-derived hormone originally identified
from hereditary obese mice (ob/ob mice) [78], plays crucial
physiologic roles in the regulation of energy expenditure
and food intake [79-83]. Mice [84] and rats [85, 86]

Fig. 2 Rescue of Ach mice by
administration of synthetic CNP.

Three-week-old female wild- Wt
type (Wr) or Ach mice were
continuously administered CNP
intravenously. The gross
appearances (a), soft X-ray
pictures of femurs (b), and
histological pictures of tibial
growth plates stained with
safranin-O and hematoxylin and
eosin (¢) are shown for wild-
type mice treated with vehicle
(left), Ach mice treated with
vehicle (middle), and Ach mice
treated with 1 pg/kg per minute
CNP (right) after a 4-week
administration period. Scale bar
in ¢, 50 um

@ Springer

bearing mutations in leptin receptors demonstrate identical
phenotypes as ob/ob mice. The Koletsky rat, an obese
substrain of SHR serving as a model of metabolic
syndrome exhibiting both hypertension and morbid obesity,
was discovered to carry an additional nonsense mutation of
the leptin receptor [86].

In obese animals and subjects, plasma leptin concen-
trations are increased in proportion to the degree of
adiposity [87-89], indicating that leptin is a satiety signal
communicating the size of adipose stores to the brain [90-
92] and that leptin resistance is related to obesity [87, 93—
95]. Leptin deficiency in human subjects is associated with
morbid obesity with insulin resistance, indicating the
physiological role of leptin in both animal models and
humans [96, 97]. Leptin is implicated in a number of
manifestations seen in obese animal models [91, 98-101],
especially obesity-related hypertension [99], abnormal
reproduction [98], bone changes [100], and Cushing
syndrome [102]. Leptin is also produced by human placenta
[103] and choriodecidual tumors [104].

Generation of Tg mice overexpressing leptin

To explore the clinical implications of leptin in vivo, we
generated leptin-Tg mice displaying elevated plasma leptin
concentrations comparable to those seen in obese subjects
[105]. A fusion gene comprised of the human SAP
promoter upstream of the mouse leptin cDNA coding
sequences was designed to target hormone expression to
the liver [43, 106]. Overexpression of leptin in the liver
resulted in the complete disappearance of both white and
brown adipose tissues in mice [105]. Such a phenotype did
not occur when transgene expression was targeted to
adipose tissue, the endogenous site of leptin production,
using adipocyte-specific promoters [107]. The hyperlepti-

Ach +
CNP

Ach +
CNP Wi

Ach
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nemia seen in these transgenic “skinny” mice provides a
unique experimental system in which the long-term effects
of leptin are investigated in vivo [98-101, 105, 108, 109].
Skinny mice exhibit augmented glucose metabolism and
increased insulin sensitivity of both skeletal muscle and
liver [105], supporting the concept that leptin acts as an
antidiabetic hormone in vivo [110-112]. These studies
suggest the potential usefulness for leptin treatment of
diabetes and obesity.

Crossbreeding of transgenic skinny mice with A-ZIP/F-1
mice, a mouse model of severe lipoatrophic diabetes

Generalized lipodystrophy, caused by a systemic deficiency
of adipose tissue, is characterized by severe insulin
resistance and hypertriglyceridemia [113]. A form of
diabetes, called lipoatrophic diabetes, eventually develops,
although the precise mechanism by which this paucity of fat
results in diabetes has remained to be elucidated. Plasma
leptin concentrations are markedly reduced or absent in
patients with lipoatrophic diabetes and in rodent models of
this disease [114-117]. Given leptin’s antidiabetic action,
leptin deficiency may play a role in the pathogenesis of
lipoatrophic diabetes; thus, leptin may be a drug for
lipoatrophic diabetes.

A mouse model of severe lipoatrophic diabetes (A-ZIP/
F-1) was generated by expressing in adipose tissue a
protein that inactivates basic-zipper transcription factors
[116]. To assess the pathophysiological role and therapeutic
potential of leptin in lipoatrophic diabetes, we crossed
transgenic skinny (LepTg/+) and A-ZIP/F-1 (A-ZIPTg/+)
mice to produce double transgenic mice (LepTg/+:A-
ZIPTg/+) virtually lacking adipose tissue and expressing
approximately tenfold higher levels of leptin than normal
controls [118]. LepTg/+:A-ZIPTg/+ mice were hypophagic
in comparison to A-ZIPTg/+ mice and exhibited decreased
hepatic steatosis. Glucose and insulin tolerance tests
displayed increased insulin sensitivity and normal glucose
tolerance in LepTg/+:A-ZIPTg/+ mice, which was compa-
rable to LepTg/+ mice. Pair-feeding experiments demon-

Fig. 3 a Daily insulin doses and
fasting plasma glucose levels
and b HbA ¢ levels during the
first 2 months of leptin therapy
in a 19-year-old male patient
with congenital generalized lip-
odystrophy (Seipin gene mutant)

>

Glucose (mg/dl)
Insulin dose (U/day)

20

Leptin treatment (day)

strated that the effects of leptin were not solely due to
decreased food intake. Leptin also helped to prevent
diabetic nephropathy in generalized lipoatrophic diabetes
mice [101]. These results demonstrate that leptin can
improve insulin resistance and diabetic manifestations in a
mouse model of severe systemic lipodystrophy, indicating
that leptin is therapeutically useful in the treatment of
lipoatrophic diabetes [118].

Leptin replacement therapy in Japanese patients
with generalized lipodystrophy

We previously reported a novel homozygous mutation of
MC4R in a Japanese woman with severe obesity (body
mass index (BMI) 62 kg/m?) [119]. MC4R mutations have
been identified at a relatively high frequency (3-4%) in
morbidly obese patients in Europe; all of the mutations
reported to date occur in an autosomal-dominant fashion,
with the exception of a single unique pedigree in the UK.
[120, 121]. Although both parents were heterozygous for
the mutation, neither exhibited such a severe obese
phenotype (BMI 27 and 26 kg/m?, respectively, which are
preobese according to WHO criteria). As genetic back-
grounds and lifestyles vary significantly between European
and Asian countries, it is necessary to examine the effect of
lifestyle on the phenotypes resulting from genetic mutations
and on treatment efficacy in each country.

Four-month leptin replacement therapy has been
reported to improve glucose and lipid metabolism in
lipodystrophy patients in the USA [122]. To elucidate the
efficacy, safety, and mechanisms underlying leptin replace-
ment therapy in Asian patients with generalized lipodys-
trophy, we treated seven Japanese patients, two acquired
and five congenital types, with physiological replacement
dose of leptin [123, 124]. Leptin replacement therapy
dramatically improved fasting glucose (mean=SE, 172+
20 t0120=12 mg/dl, P<0.05) and triglyceride (mean = SE,
7004272 to 260498 mg/dl, P<0.05) levels within 1 week.
Leptin replacement reduced insulin resistance, as demon-
strated by the euglycemic clamp method. Improvement of

B o

 Fasting plasma glucose

HbAlc (%)

30

(month)

4) Springer

— 70 —



1034

J Mol Med (2009) 87:1029-1039

Urinary albumin (mg/day)
-o- HbA1c (%)

bepin oy w1 2 34
CCr(mUmin) 205 138 170 62 70

Fig. 4 Time course of daily urinary albumin secretion, creatinine
clearance, and HbA ¢ levels during leptin treatment of a 16-year-old
female patient with acquired generalized lipodystrophy

fatty liver was also confirmed by changes in computed
tomography (CT) attenuation, and liver volume was
calculated by CT imaging. By 4 months, six of seven
patients were able to discontinue all antidiabetic drugs,
including insulin (Fig. 3). The decreased fasting plasma
glucose levels, triglyceride levels, and liver volumes in all
seven patients were well maintained throughout the therapy
period with no adverse effects. The longest period of leptin
replacement therapy has now extended beyond 7 years.

Leptin treatment was also effective at combating diabetic
complications. The macroalbuminuria seen in two patients
regressed to microalbuminuria, while microalbuminuria in
two additional patients normalized. The creatinine clear-
ance of patients with glomerular hyperfiltration decreased
with improved glucose tolerance (Fig. 4), which was
consistent with previous findings in the lipoatrophic
diabetes model mice [101].

We also examined the effect of leptin therapy on a 16-
year-old girl with severe hypertriglyceridemia who suffered
from repeated episodes of acute pancreatitis (Fig. 5). After
the initiation of leptin therapy, her triglyceride levels
normalized; she did not have any additional episodes of
acute pancreatitis (Fig. 5). These results clearly demonstrate

Fig. 5 Fasting serum triglycer-
ide levels, doses of lipid-

lowering drugs, and episodes of
acute pancreatitis (red inverted 8000 -
triangle) before and after leptin

therapy in a 16-year-old girl % 6000 -
with acquired generalized E i
P
lipodystrophy -%) .
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=
S 2000 -
O~ v
-40
@ Springer

Acute pancreatitis ¥
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the safety and efficacy of the long-term leptin replacement
therapy in patients with generalized lipodystrophy. While
these results are impressive, it is important to remember
that the efficacy of leptin replacement therapy in patients
from Japan, a country in which the prevalence of obesity is
relatively low, is excellent.

Leptin therapy for more prevalent forms of diabetes

To assess the therapeutic potential for leptin treatment in
insulin-deficient diabetes, we generated diabetic animals by
treating wild-type and LepTg/+ mice with a relatively low
dose of streptozotocin (STZ 180 g/g body weight) [125].
Plasma insulin concentrations were reduced (<0.10 ng/ml),
resulting in severe hyperglycemia in both wild-type and
LepTg/+ mice 2 weeks after STZ treatment. LepTg/+ mice
were more sensitive to exogenously administered insulin
than wild-type mice; STZ-treated LepTg/+ mice became
normoglycemic at doses of insulin that did not improve the
hyperglycemia in STZ-treated wild-type mice. To clarify if
combination therapy with leptin and insulin is beneficial for
insulin-deficient diabetes, we also examined the effect of
chronic coadministration of leptin and insulin in STZ-
treated wild-type mice. We demonstrated that subthreshold
doses of insulin, which do not affect glucose homeostasis,
are effective at improving diabetes in STZ-treated wild-type
mice in combination with leptin. These results indicate that
leptin therapy may be used as an adjunct for insulin therapy
in insulin-deficient diabetes.

We also investigated the therapeutic usefulness of leptin
in a mouse model of type 2 diabetes mellitus with increased
adiposity [126], generated using a combination of a low-
dose STZ (120-g/g body weight) and a high-fat diet (HFD,
45% of energy as fat; STZ/HFD). In STZ/HFD mice,
continuous infusion of leptin (20-ng/g body weight per
hour) reduced food intake and body weight gain and
improved glucose and lipid metabolism with enhanced
insulin sensitivity. Leptin therapy also decreased the
triglyceride content of both the liver and skeletal muscle.

Pravastatin
Bezafibrate

Q2 8 4 0 4

32 28 24 -20 -16

Leptin treatment (month)
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These results indicate a beneficial effect of leptin therapy
for type 2 diabetes mellitus with increased adiposity, which
corresponds to a BMI in the range of 25-30 kg/m” [126].

Our previous and ongoing studies utilizing transgenic
skinny mice and other animal models have demonstrated
the pleiotropic actions of leptin in the regulation of energy
homeostasis and food intake [98-101, 105, 108, 109] and
its clinical usefulness as a therapy for multiple conditions,
particularly diabetes mellitus [108, 118, 124, 125]. Tg
skinny mouse may be a useful model to study the long-term
effects of leptin therapy in vivo and to evaluate the clinical
implications of leptin therapy.

Conclusions

Currently, the primary targets of our ongoing translational
rescarch of CNP and leptin are achondroplasia and lip-
oatrophic diabetes, respectively. Demonstration of the
efficacy of CNP therapy for achondroplasia and leptin
replacement therapy for lipoatrophic diabetes has relied
heavily on basic and preclinical studies using excellent
animal models. Although lipoatrophic diabetes is a rare
disease in humans, the safety and efficacy of leptin
replacement therapy for patients with lipoatrophic diabetes
have been well established. Achondroplasia, while also a
rare disease in humans, may be effectively managed with
CNP therapy.

It has been possible to establish the safety and efficacy
of these hormones in rare human diseases through studies
that began with excellent animal models. These studies
provided us with novel treatments for common human
diseases, which were explored as adjacent to or in extension
of these rare human diseases, as seen in the study of
hypertension. Research on the SHR animal model and
study of a relatively rare cause of hypertension, renovascular
hypertension, led to more detailed studies on the blockade of
renin-angiotensin system, bringing research forward to the
current widespread field of cardiovascular disorders in
translational research. These lessons teach us the importance
of the breakthroughs using animal models and rare human
diseases.
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Abstract

This report describes a 46-year-old Japanese diabetic woman with an unusual type of familial partial lipodystrophy. She has marked loss
of subcutaneous fat in her lower limbs and buttocks, with sparing of the face, neck, upper limbs, and trunk. This distribution of fat atrophy
appears to be rare in comparison with previous reports. Sequencing of candidate genes LMNA, PPARG, AKT2, caveolin-1, as well as the
PPARG4 promoter gene, which are known to be associated with familial partial lipodystrophy, revealed no genetic abnormalities,
suggesting that this case may involve a novel gene. Pioglitazone was markedly effective in glycemic control in this case. Her diabetes
remained uncontrolled despite a total daily dose of insulin of 30 U and combined treatment with 10 mg of glibenclamide and 0.6 mg of
voglibose. We therefore attempted combined treatment with 30 mg of pioglitazone and 30 U/d insulin injection. The hemoglobin A, level
was reduced from 11.2% to 6.1% after 6 months of treatment and has since remained stable. Her body weight increased from 62.0 to 71.0 kg
after 12 months of treatment, suggesting that weight gain may result from synergism between thiazolidinediones and insulin-promoting
adipogenesis. Pioglitazone increased the fat mass in the upper limbs and trunk, while inducing less increase in the lower limbs, where fat
atrophy exists in this patient. Pioglitazone may thus have improved the glycemic control in this case through adipocyte differentiation from
progenitor cells mainly in the upper limbs and trunk.
© 2009 Published by Elsevier Inc.

1. Introduction

Understanding of the pathophysiology in lipodystrophy
has recently improved [1-4]. Lipodystrophy is a rare
disorder characterized by partial or generalized loss of
adipose tissue deposits. It is commonly associated with
dyslipidemia, hepatic steatosis, and insulin-resistant dia-
betes. Familial partial lipodystrophy (FPLD) is named
after Dunnigan et al [S], who provided a detailed
description of the syndrome. In some cases, the lipody-
strophy is confined to the limbs, with sparing of the face
and trunk, whereas the trunk is also affected with sparing
of the face and vulva in other cases. Many cases of FPLD
of European origin have been reported to be of the
Dunningan et al type, whereas Asian cases of FPLD have

* Corresponding author. Tel.: +1 075 595 0258; fax: +1 075 595 0258.
E-mail address: yuka-1@mx.biwa.nejp (M. [wanishi).
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only rarely been reported [2,3]. It is thus unclear whether
differences in phenotype or genotype of FPLD exist
between cases of European origin and of Asian origin. We
present here an instructive case of a Japanese diabetic
patient with an unusual type of FPLD, with the results of
mutational analysis for the LMNA, PPARG, AKT2, and
caveolin-1 gene and PPARG4 promoter gene. We also
describe the effectiveness of pioglitazone on glycemic
control and the changes of fat and lean mass as measured
by dual-energy x-ray absorptiometry (DEXA) scan during
pioglitazone treatment.

2. Subject and methods
2.1. Blood samples

Blood was collected after a 12-hour overnight fast for
analysis of glucose, insulin, leptin, and adiponectin.
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