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Abstract

Recent progress in cell biology has provided new insight into the claudin (CL) family of integral membrane proteins, which
contains more than 20 members, as a target for pharmaceutical therapy. Few ligands for CL have been identified because it
is difficult to prepare CL in an intact form. In the present study, we developed a method to screen for CL binders by using
the budded baculovirus (BV) display system. CL4-displaying BV interacted with a CL4 binder, the C-terminal fragment of
Clostridium perfringens enterotoxin (C-CPE), but it did not interact with C-CPE that was mutated in its CL4-binding region. C-
CPE did not interact with BV and CL1-displaying BV. We used CL4-displaying BV to select CL4-binding phage in a mixture of
a scFv-phage and C-CPE-phage. The percentage of C-CPE-phage in the phage mixture increased from 16.7% before
selection to 92% after selection, indicating that CL-displaying BV may be useful for the selection of CL binders. We prepared
a C-CPE phage library by mutating the functional amino acids. We screened the library for CL4 binders by affinity to CL4-
displaying BV, and we found that the novel CL4 binders modulated the tight-junction barrier. These findings indicate that
the CL-displaying BV system may be a promising method to produce a novel CL binder and modulator.
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Introduction

Tight junctions (IJ) are intercellular adhesion complexes in
epithelial and endothelial cells; TJs are located in the most apical
part of the complexes [1]. TJs have a barrier function and a fence
function [2—4]. TJs contribute to epithelial and endothelial barrier
functions by restricting the diffusion of solutes through the
paracellular pathway. T]Js maintain cellular polarity by preventing
the free movement of membrane proteins between the apical and
basal membranes [5]. Loss of cell-cell adhesion and cellular
polarity commonly occurs in the early stages of cancer [6].
Modulation of the TJ barrier function can be a method to enhance
drug absorption, and TJ components exposed on the surface of
cancer cells can be a target for cancer therapy.

Biochemical analyses of TJs have identified T] components,
such as occludin, claudins (CLs) and junction adhesion molecule
[7]. The CL family contains more than 20 integral tetra-
transmembrane proteins that play pivotal roles in the TJ barrier
and fence functions. CLIl-deficient mice lack the epidermal
barrier, while CL5-deficient mice lack the blood-brain barrier
[8,9], indicating that the regulation of the TJ barrier by
modulation of CLs may be a promising method for drug delivery.
Clostridium perfringens enterotoxin (CPE) causes food poisoning in
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humans [10]. An interaction between the C-terminal domain of
CPE (C-CPE) with CL4 deregulates the TJ barrier [11,12]. We
previously found that C-CPE enhances jejunal absorption through
its interaction with CL4, indicating that a CL binder is a potent
drug-delivery system [13].

The majority of lethal cancers are derived from epithelial tissues
[14]. Malignant tumor cells frequently exhibit abnormal TJ
function, followed by the deregulation of cellular polarity and
intercellular contact, which is commonly observed in both
advanced tumors and the early stages of carcinogenesis [6]. Some
CLs are overexpressed in various types of cancers. For example,
CL3 and CL4 are overexpressed in breast, prostate, ovarian,
pancreatic and gastric cancers. CL1, CL7, CL10 and CL16 are
overexpressed in colon, gastric, thyroid and ovarian cancers,
respectively [15,16]. These findings indicate that the CLs may be a
target molecule for cancer therapy. A receptor for CPE is CL4
[11,12]. CPE has anti-tumor activity against human pancreatic
and ovarian cancers without side effects [17,18]. The CLs binders
will be useful for cancer-targeting therapy.

As above, recent investigations of CLs provide new insight into
their use as pharmaceutical agents; for example, a CL binder may
be used in drug delivery and anti-tumor therapy. Selection of a CL
binder by using a recombinant CL protein is a putative method to
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prepare a CL binder. However, CLs are four-transmembrane
proteins with high hydrophobicity; there has been little success in
the preparation of intact CL protein. Recently, a novel type of
protein expression system that uses baculovirus has been
developed. Membrane proteins are displayed on the budded
baculovirus (BV) in their active form [19-21], indicating that the
BV system may be useful for the preparation of a CL binder. In
the present study, we investigated whether a CL binder was
screened by using a CL-displaying BV.

Results

Preparation of CL4-displaying BV

C-CPE is the only known CL binder and modulator [12,13,22].
C-CPE has affinity to CL4 in a nanomolar range [23]. We chose
C-CPE and CL4 as models of the CL binder and CL, respectively.
Several reports indicate that membrane proteins expressed on the
surface of BV are in an intact form [19-21]. To check the
expression of CL4 on the BV, we performed immunoblot analysis
of the lysate of CL4-BV against CL4. As shown in Fig. 1A, CL4
was detected in the virus lysates. To determine if the CL4
expressed on the virus has an intact form, we performed enzyme-
linked immunosorbent assay (ELISA) with CL4-BV-coated
immunoplates. C-CPE binds to the extracellular loop domain of
CL4 [23]. After the addition of C-CPE to the CL4-BV-coated
plate, the C-CPE bound to the CL4-BV-coated plate was detected
by anti-his-tag antibody, followed by incubation with horseradish
peroxidase-labeled antibody. C-CPE was dose-dependently bound
to CL4-BV, whereas C-CPE did not interact with wild-BV
(Fig. 1B). Deletion of the CL4-binding region (C-CPE303)
attenuated the interaction of C-CPE with CL4-BV (Fig. 1C).
Together, these results indicate that the CL4 displayed on BV may
have an intact extracellular loop region.

Selection of C-CPE-phage by using CL4-BV

We next examined the interaction between C-CPE-phage and
CL4-BV. As shown in Fig. 2A, C-CPE-phage bound to CL4-BV
but not to wild-BV, and a scFv-phage did not bind to CL4-BV. To
determine if CL-BV can be used to select CL binders, we prepared
a mixture of C-CPE-phage and scFv-phage at a ratio of 2:10 and
used CL4-BV to select CL4-binding phage in the mixtures. The
amount of C-CPE-phage was increased to 11 of 12 clones in the
mixture (Fig. 2B), indicating that CL-BV may be useful in the
preparation of CL binders.

‘We previously found that each substitution of $304, $305, $307,
N309, S313 and K318 with alanine increased the binding of C-
CPE to CL4 [24]. Here, we prepared a phage library for C-CPE
by randomly changing the functional 6 amino acids to any of the
20 amino acids. To confirm the diversity of the library, we checked
the sequences of 17 randomly isolated clones. Each of the 17
clones had a different sequence, indicating that the library has a
diverse population of C-CPE mutants (Table 1).

Then, we screened the CL4-binding phage by their affinity to
CL4-BV. After addition of the C-CPE library to CL4-BV-
adsorbed tubes, the CL4-BV-bound phages were recovered (1
screening). We repeated this screening process two more times (2
screening and 3 screening). If the number of CL4-bound phage is
increased during the screening, the ratio of the incubated phage
titers to the recovered phage titers will increase. As shown in
Fig. 3A, the ratio was increased during screening from 4.5x107"
t0 5.5%107, indicating that the screening system for CL4 binders
may work. Indeed, the number of monoclonal phage clones with
high affinity to CL4-BV was increased after the 3" 4 screening
compared with that after the 2" screening (Fig. 3B).
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Figure 1. P ion of CLa-displaying BV. A) Immunobl

analysis. Wild-BV and CL4-BV (0.1 pg/lane) were subjected to SDS-PAGE,
followed by immunoblot analysis with anti-CL4 antibody. The lysate of
Cl4-expressing L (CL4/L) cells was used as a positive control. B, C)
Interaction of a CL4 binder with CL4-BV. Immunotubes were coated
with the wild-BV or CL4-BV, and C-CPE (B) or mutated C-CPE (C) was
added to the BV-coated immunotubes at the indicated concentration.
C-CPE bound to the BV-coated tubes was detected by ELISA with an
anti-his-tag antibody.

doi:10.1371/journal.pone.0016611.g001

‘We analyzed the sequences of the CL4-BV-bound phages and
got novel CL4-binder candidates with amino acid sequences that
differed from the wild-type sequence (Table 2). To investigate their
CL4-binding, we prepared the recombinant proteins of the
binders and investigated their interaction with CL4 by ELISA
with CL-BVs. As shown in Fig. 4A, the novel C-CPE derivatives
had affinity to CL4 but not CL1. Next, we investigated whether
the novel CL4 binders modulate TJ barrier in Caco-2 monolayer
cell sheets, a popular model for the evaluation of TJ barriers [25].
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Figure 2. g phage by using the
CL4-BV system. A) Interaction of C-CPE-displaying phage with CL4-BV.
Wild-BV or CL4-BV was coated on an immunoplate, and then scFv-
displaying phage or C-CPE-displaying phage was added to the BV-
coated immunoplate at the indicated concentrations. The BV-bound
phages were detected by ELISA with anti-M13 antibody as described in
Materials and methods. Data are representative of two independent
experiments. Data are means = SD (n=3). B) Enrichment of C-CPE-
displaying phage by the BV system. A mixture of scFv-phage and C-CPE-
phage (mixing ratio of scFv-phage to C-CPE-phage=2:10) was
incubated with a CL4-BV-coated immunotube, and the bound phages
were recovered. Each phage clone was identified by PCR amplification,
followed by agarose gel electrophoresis. Upper and lower pictures are
before and after the selection, respectively. The putative sizes of the
PCR products are 856 and 523 bp in scFv and C-CPE, respectively. The
data are representative of two independent experiments.
doi:10.1371/journal.pone.0016611.9002

of C-CPE-display

Treatment of the cells with C-CPE resulted in decreased
transepithelial electrical resistance (TEER) values, a marker of
TJ integrity, and the TEER values increased after removal of C-
CPE. The C-CPE derivatives (clones 1-5) had TJ-modulating
activity similar to that of C-CPE (Fig. 4B).

Discussion

CL is a promising target for pharmaceutical therapy. However,
CL has low antigenicity, and there has been little success in the
preparation of monoclonal antibody against the extracellular loop
region of CL. The three-dimensional structure of CL has never
been determined, so it is impossible to perform a theoretical design
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Table 1. C-CPE phage library.
304 305 307 309 313 318
c-cPe SRR o e T
Clone 1 v T C v N K
2 C P A H ¥ i
3 A G G \ P P
4 R G H L E H
5 A A P S R Q
6 P A P D 5 A
7 C T T T N K
8 H P 5 P G H
9 R G G R N R
10 A P S T Q 7
n \ L G N M R
12 p. P: A 25 F R
13 G D C S N L
14 £ R v F R N
15 S Q Q w T T
16 S R L E w Q
17 K R E R Q S
Phage clones were randomly picked up from the C-CPE phage library, and the
amino acids sequences of C-CPE mutant were analyzed.
doi:10.1371/journal.pone.0016611.t001

of a CL binder based on the structural information. In the present
study, we developed a novel screening system for CL binders by
using a BV system and a C-CPE phage display library, and we
used this system to identify novel CL4 binders.

In ligand screening, the preparation of a receptor for the ligand
is very critical. Membrane proteins are especially difficult to
prepare as recombinant protein with an intact structure.
Functional membrane proteins such as cell-surface proteins are
heterologously expressed on BV in their native forms [19-21].
Interactions between membrane proteins can be detected by using
receptor-displaying and ligand-displaying BV [21]. In the present
report, we found that CL4-BV interacts with a CL4 binder, C-
CPE, but it does not interact with C-CPE303 that lacks the CL4-
binding residues of C-CPE. The CL4-binding site of C-CPE
corresponds to that of CPE; so, the second extracellular loop of CL
appears to be the C-CPE-binding site [23,26]. These findings
indicate that CL4 displayed on BV may have native form. We
anticipate that CL-BV will be useful for the preparation of CL
binders, such as peptides and antibodies.

To the best of our knowledge, the preparation of CL binder has
been performed by only four groups. Offner et al. prepared
polyclonal antibodies against extracellular domains of CL3 and
CL4 [27], Ling et al. screened peptide types of CL4 binder by
using a 12-mer peptide phage display library and CL4-expressing
cells [28], Suzuki et al. generated a monoclonal antibody against
the second extracellular loop of CL4 from mice immunized with a
human pancreatic cancer cell line [29] and Romani et al. screened
scFv against CL3 by using a human antibody phage display library
[30]. However, the CL modulators have never been developed;
thus, C-CPE is the only known CL4 modulator [12]. In the
present study, we prepared a C-CPE phage library containing C-
CPE mutants in which each of the 6 functional amino acids was
randomly replaced with an amino acid, and we isolated CL4
binders by using CL4-BV as a screening ligand. Interestingly, all of
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Figure 3. Screening of a novel CL4 binder. A) Enrichment of
phages with affinity to CL4-BV. CL4-BVs coated on immunotubes were
incubated with the C-CPE-derivative phage library at 1.6x10'2 CFU titer
(1* input phage). The phages bound to CL4-BV were recovered (1%
output phage). The CL4-BV-binding phages were subjected to two
additional cycles of the incubation and wash step, resulting in 2™, 3
output phage. The ratio of output phage to input phage titers was
calculated. B) Monoclonal analysis of C-CPE-derivative phage. CL4-BV-
bound phage clones were isolated from the 2" and 3" output phages,
and the interaction of the monoclonal phage with CL4-BV was
examined by ELISA with anti-M13 antibody as described in Materials
and methods. Data are expressed as relative binding to that of C-CPE-
phage indicated by the most right column.
doi:10.1371/journal.pone.0016611.9003

the CL4 binders modulated TJ barriers. We are investigating why
the substitution of the amino acids with the other amino acids
modulated CL4. These findings indicate that a BV screening
system with a C-CPE library may be a powerful method to
develop CL modulators.

The CL family forms various types of TJ barriers through
combinations of its more than 20 members in homophilic/
heterophilic CL strands [31,32]. Intercellular proteins ZO-1 and
Z0-2 determine the localization of CL strands [33]. If a screening
system to reconstitute heterogeneous CL strands with ZO-1 and/
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Table 2. CL4-binding phages.

C-CPE s S S N S K
Clone 1 R v S A R R
2 R S v A R K
3 G D G R T R
4 > A P R S A
5 R S L K S K

The sequences of C-CPE mutant in the CL4-binding phages were analyzed.
doi:10.1371/journal.pone.0016611.t002

or Z0-2 is developed, then useful and effective CL modulators can
be identified. In this point, the BV system has extremely superior
features. G protein and G protein-coupled receptors have been

A

1.0
B C-CPE
08 Clone 1
e B¢
3
: 0.6 M
ki - 5
o 04
o
0.2
0.0+ - e
Wwild-BV CL1-BV CL4-BV
B
14
Removal of C-CPEs
w 12 l &
g . 4
] ’ - PBS
['4 -e- C-CPE
u & Clone 1
Lt - 2
[ =~ 3
K 4
K] - 5
0.0
0 6 12 18 24 30 36 42
Time (h)

Figure 4. Isolation of a novel CL4 modulator. A) Interaction of the
C-CPE derivatives with CL4. C-CPE derivatives were prepared as his-
tagged recombinant proteins. The C-CPE derivatives (0.02 ug) were
added to CL-BV-coated immunoplates, followed by detection of the C-
CPE derivatives bound to CL-BV. Data are means = SD (n=4). B)
Modulation of tight junction-barriers. Caco-2 cells were cultured on
Transwell™ chambers. When TEER values reach a plateau, the cells were
treated with C-CPE or C-CPE derivatives at the indicated concentrations.
After 18 h of exposure to the C-CPEs, the cells were washed with
medium to remove C-CPEs, and then the cells were cultured for an
additional 24 h. Changes in TEER values were monitored during the C-
CPEs treatment. Relative TEER values were calculated as the ratio of
TEER values at O h. Data are representative of two independent
experiments. The data are means * SD (n=4).
doi:10.1371/journal.pone.0016611.9004
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functionally reconstituted in BV [20,34], and functional y-
secretase complexes have also been reconstituted on BV [35]. In
the near future, the reconstituted CL system on BV will be
developed and used for the screening of CL binders and
modulators, hopefully leading to breakthroughs in pharmaceutical
therapies that target CLs.

Materials and Methods

Recombinant BV construction and Sf9 cell culture

Recombinant BV was prepared by using the Bac-to-Bac
expression system, according to the manufacturer’s instructions
(Invitrogen, Gaithersburg, MD). Briefly, mouse CL1 and CL4
cDNA (kind gifts from Dr. M Furuse, Kobe University, Japan)
were inserted into pFastBacl, and the resulting plasmids were
transduced into DH10Bac E. Coli cells. Recombinant bacmid
DNA was extracted from the cells. Sf9 cells were transduced with
the bacmid coding CL, and the recombinant BV was recovered by
centrifugation of the conditioned medium [36].

Preparation of the BV fractions

Sf9 cells (2x10° cells) were infected with recombinant BV at a
multiplicity of infection of 5. Seventy-two hours after infection, the
BV fraction was recovered from the culture supernatant of
infected Sf9 cells by centrifugation. The pellets of the BV fraction
were resuspended in Tris-buffered saline (TBS) containing 1%
protease inhibitor cocktail (Sigma-Aldrich, St. Louis, MO) and
then stored at 4°C until use. The expression of CL1 and CL4 in
the BV was confirmed by sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE) and immunoblot analysis with
anti-CL antibodies (Zymed Laboratory, South San Francisco,
CA).

Preparation of mutant C-CPE library

C-CPE fragments in which the functional amino acids (S304, S305,
$307, N309, S313 and K318) [24] were randomly mutated were
prepared by polymerase chain reaction (PCR) with pET-H;oPER as a
template, a forward primer (5'-catgccatggecgatatagaaaaagaaatcctigatt-
tagetgetg-3', Neo I site is underlined) and a reverse primer (5'-
tettecttttgeggeege: snnataagggtasnntcs t-
tagettt-3’, Not I site is underlined, and the randomly mutated amino
acids are in italics). The PCR fragments were inserted into a pY03
phagemid at the Ncol/Notl sites [22]. The resultant phagemid
containing the C-CPE mutant library was transduced into E. coli TG1
cells, and then the cells were stored at —80°C.

Preparation of phage

TG cells containing phagemid coding a scFv, C-CPE, C-CPE
mutant or C-CPE mutant library were culture in 2YT medium
containing 2% glucose and ampicillin. When the cells grew to a
growing phage, M13K07 helper phages (Invitrogen) were added,
and the medium was changed into 2YT medium containing
ampicillin and kanamycin. After an additional 6 h of culture, the
phages in the conditioned medium were precipitated with
polyethylene glycol. The phages were suspended in phosphate-
buffered saline (PBS) and stored at 4°C until use.

ELISA

Wild-BVs or CL-BVs (0.5 pug/well) were adsorbed onto an
immunoplate (Greiner Bio-One, Frickenhausen, Germany). The
wells were washed with PBS and blocked with TBS containing
1.6% BlockAce (Dainippon Sumitomo Pharma, Osaka, Japan). C-
CPEs or phages were incubated in the immunoplate, and the BV-
bound C-CPEs or phages were detected by using anti-his-tag
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antibody (Novagen, Darmstadt, Germany) or anti-M13 antibody
(Amersham-Pharmacia Biotech, Uppsala, Sweden), respectively,
horseradish peroxidase-labelled secondary antibody and TMB
peroxidase substrate (Nacalai Tesque, Kyoto, Japan). The
immunoreactive C-CPEs or phages were quantified by the
measurement of absorbance at 450 nm. In the screening of
phages, the data were normalized by the amounts of phages,
which were quantified by ELISA for the FLAG-tag contained in
the coat protein.

Selection of phage by using BV

A total of 0.5 ug of BV was adsorbed onto an immunotube
(Nunc, Roskilde, Denmark). The tube was washed with PBS and
blocked with TBS containing 4.0% BlockAce. The BV-coated
tubes were incubated with mixture of phages, and then the tubes
were washed 15 times with PBS and 15 times with PBS containing
0.05% Tween 20. The phages bound to the tube were eluted with
100 mM HCL TG cells were infected with the eluted phages, and
phages were prepared as described above. The resulting phages
were subjected to repeated selection by using the BV-coated
immunotubes.

Identification of a phage clone

To identify an isolated phage clone, we performed PCR or
sequencing analysis. We amplified the inserted fragment into the
phagemid by PCR using forward primer 5'-caggaaacagctatgac-3"
and reverse primer 5'-gtaaatgaattttctgtatgagg-3'. The resultant
PCR products were subjected to agarose gel electrophoresis
followed by staining with ethidium bromide. We performed a
sequence analysis with primer 5'-gtaaatgaattttctgtatgagg-3'.

Measurement of phage titer

To quantify the concentration of phages, we measured the titer
(colony formation unit (CFU)/ml) of the phagc solution. Briefly,
the phage solution was diluted to 10~ °-107'° with PBS. The
diluted solution was seeded onto Petrifilm™ (Tech-Jam, Osaka,
Japan). After 24 h of incubation, the colonies were counted, and
the titer was calculated.

Purification of C-CPE mutants

C-CPE and C-CPE303, in which the CL-4 binding region of
C-CPE was deleted, were prepared as described previously [13].
To prepare plasmid containing C-CPE mutants, the C-CPE
mutant fragment was PCR-amplified by using phagemids coding
C-CPE mutants as a template. The resulting PCR fragment was
inserted into pET16b, and the sequence was confirmed. The
plasmids were transduced into E. coli strain BL21 (DE3), and
production of mutant C-CPEs was induced by the addition of
isopropyl-D-thiogalactopyranoside. The harvested cells were
lysed in buffer A (10 mM Tris-HCI, pH 8.0, 400 mM NaCl,
5 mM MgCl,, 0.1 mM phenylmethanesulfonyl fluoride, 1 mM
2-mercaptoethanol, and 10% glycerol) that was supplemented
with 8 M urea when necessary. The lysates were applied to
HiTrap™ Chelating HP (GE Healthcare, Buckinghamshire,
UK), and mutant C-CPEs were eluted with buffer A containing
100400 mM imidazole. The buffer was exchanged with PBS by
using a PD-10 column (GE Healthcare), and the purified protein
was stored at —80°C until use. Purification of the mutant C-
CPEs was confirmed by SDS-PAGE, followed by staining with
Coomassie Brilliant Blue and by immunoblotting with anti-his-
tag antibody (Novagen). Protein was quantified by using a BCA
protein assay kit with bovine serum albumin as a standard (Pierce
Chemical, Rockford, IL).
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TEER assay

Caco-2 cells were seeded in Transwel chambers (Corning,
NY) at a subconfluent density. The TEER of the Caco-2
monolayer cell sheets on the chamber was monitored by using a
Millicell-ERS epithelial volt-ohmmeter (Millipore, Billerica, MA).
‘When TEER values reached a plateau, indicating that TJs were
well-developed in the cell sheets, the Caco-2 monolayers were
treated with C-CPE or C-CPE mutants on the basal side of the
chamber. Changes in TEER values were monitored. The TEER
values were normalized by the area of the Caco-2 monolayer, and
the TEER value of a blank Transwell™ chamber (background)
was subtracted.

HTM
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Abstract: Tight junctions (TJs) play pivotal roles in the fence and barrier ions of

ithelial and endothelial cell sheets. Since the

1980s, the modulation of the TJ barrier has been utilized as a method for drug absorption. Over the last decade, the structural and func-
tional biochemical components of TJs, such as occludin and claudin, have been determined, providing new insights into TJ-based phar-
maceutical therapy. For example, the modulation of the claudin barrier enhances the jejunal absorption of drugs, and claudin expression

is deregulated in cancer cells. Claudin is a co-receptor for the hepatitis C virus. M

dul

d during infl

, claudin is

conditions. These findings indicate that claudins are promising drug targets. In this review, we discuss the seeds of claudin-based drug
development, which may provide potential pharmaceutical breakthroughs in the future.

Keywords: Tight junction, claudin, cancer, inflammation, infection.

INTRODUCTION

Tight junctions (TJs) limit the movement of molecules through
the intercellular space in epithelial and endothelial sheets, and they
are located on the most apical part of cells [1, 2]. Electron micros-
copy has revealed that TJs appear as a series of continuous, anas-
tomotic and intramembranous particle strands. Tsukita’s group
performed a series of blochemlcal analyses that clearly showed that
the tetra- ludin and claudin are compo-
nents of the TJ [3-5]. The claudin family contains more than 20
members. Interestingly, the expression profiles and the Tl-barrier
function of the claudin family members are tissue-specific. For
example, claudin-1 is involved in the epidermal barrier, and
claudin-5 is involved in the blood-brain barrier [2, 6, 7]. It appears
that claudin forms heteromeric and/or homomeric strands in Tls
and that the combination and mixing ratios of different claudins
determines the tissue-specific barrier properties of TJs [S, 8].
Epithelial cell sheets have bicellular TJs between adjacent cells and
tricellular TJs at which three adjacent cells join together. Occludin
and claudins are components of bicellular TJs. The occludin-related
protein tricellulin has been recently identified to be a component of
tricellular TJs [9]. Tricellulin is ubiquitously expressed in epithelial
junctions of tissues and organs throughout the body. Down regula-
tion of tricelluin mRNA by RNA interference resulted in disruption
of epithelial barrier in an epithelial cell line [9]. However, human
tricellulin mutations had no effect on epidermal, respiratory, renal
or intestinal barrier [10]. Whether tricellulin can be a target for drug
development is unclear.

Functions of TJs are classified as fence- and barrier- functions.
Modulation of the TJ barrier has been a popular strategy used to
promote drug absorption since the 1980s (See reviews [11, 12]).
Sodium caprate is clinically used as an absorption enhancer of drug.
Disturbance of either the TJ-fence function or the TJ-barrier func-
tion causes human diseases. Disturbance of the TJ-fence function
followed by a loss of cellular polarity often occurs in tumorigenesis
(See reviews [13-16]). TJs regulate the paracellular passage of ions,
molecules, pathogens and inflammatory cells in epithelial and endo-
thelial cell sheets [17-19]. The TJ-barrier becomes deregulated in
various human diseases, including infections, inflammation and
hereditary diseases (See reviews [20, 21]). Based on these findings,
novel therapeutic strategies for TJ-related diseases have been pro-
posed. In the present review, we discuss the seeds of claudin-based
pharmaceutical therapies for human diseases relevant to TJs.

*Address correspondence to these authors at the Graduate School of Pharmaceutical
Sciences, Osaka University, Suita, Osaka 565-0871, Japan; Tel: +81-6-6879-8196;
Fax: +81-6-6879-8199; E-mail: masuo@phs.osaka-u.ac.jp

Tel: +81-6-6879-8195; Fax: +81-6-6879-8195; E-mail: yagi@phs.osaka-u.ac.jp

0929-8673/11 $58.00+.00

CANCER AND CLAUDIN

Malignant tumors are a major cause of death. Approximately
7.6 million people worldwide died from cancer in 2007, and 90% of
tumors are derived from epithelial tissue [22]. Normal epithelial
tissues develop cellular polarity, whereas the epithelial polarity is
often deregulated during tumorig is [23]. TJs are localized be-
tween adjacent epithelial cells and separate the apical and baso-
lateral membrane domains, which vary in protein and lipid content,
resulting in the maintenance of the cell polarity. Claudins are de-
regulated in various cancers [13-16]. Claudin may regulate cancer
metastasis by modulating activation of matrix metalloproteinases
[11]. In this section, we discuss recent breakthroughs in claudin-
targeted cancer therapy.

Claudin as a Diagnostic Marker

Claudin proteins are frequently overexpressed in ovarian can-
cers. In ovarian cancer cells with a high level of claudin-4, the criti-
cal claudin-4 promoter region exhibits a low level of DNA methyla-
tion and a high level of histone H3 acetylation [24]. Claudin-4 was
detected in the 32 of 63 plasma samples of patients with ovarian
cancers. Among 50 patients without ovarian cancer, only one had
claudin-4—positive plasma. Thus, claudin-4 has a high specificity
for the detection of ovarian cancers via a blood test, indicating that
claudin-4 may be a diagnostic marker for ovarian cancer [25]. Be-
cause of the high specificity of claudin exp patterns in can-
cers, claudin might be a novel non-invasive diagnostic marker for
cancer therapy.

Anti-Claudin Antibody

One of the most popular strategies for claudin-targeted cancer
therapy is the preparation of antibody against the extracellular re-
gion of claudin. However, attempts to prepare anti-claudin antibod-
ies have had little success because claudin has low antigenicity and
is highly conserved in various species. A strain of autoimmune
mice, BXSB, was immunized with a human pancreatic cancer cell
line, resulting in the successﬁ;l preparation of anti-claudin-4 mono-
clonal antibody that r the extracellular region of claudin-4
[26, 27). Moreover, the antibody mediated antibody-dependent cell
cytotoxicity (ADCC) and in vivo anti-tumor activity. ScFv against
the ex 1lular region of claudin-3 was isolated by using the ETH-
2 Gold phage display library, which is a synthetic human recombi-
nant antibody library that contains >10° possible antibody combina-
tions in an scFv format [28, 29]. Immunization with DNA encoding
the first extracellular loop of claudin-18 made success on prepara-
tion of anti-claudin-18 monoclonal antibody [30]. These successes
in the preparation of anti-claudin antibody are likely to lead to a
breakthrough in the development of claudin-targeted cancer ther-
apy.

©2011 Bentham Science Publishers Ltd.
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Clostridium Perfringens Enterotoxin

Another approach to targeting claudin in cancer therapy is the
use of Clostridium perfringens enterotoxin (CPE) . CPE is a sin-
gle-chain polypeptide of 35 kDa that causes food poisoning in hu-
mans. The functional domains of CPE consist of the N-terminal
cytotoxic region and the C-terminal receptor-binding region [31].
Claudin-3 and -4 serve as the receptors for CPE. CPE binds to the
second extracellular loop of claudin-3 and -4 [32] (Fig. 1). We pre-
viously prepared a claudin-targeting molecule (C-CPE-PSIF) by
fusion of the C-terminal fragment of CPE (C-CPE) with the pro-
tein synthesis inhibitory factor (PSIF) derived from Pseudomonas
aeruginosa exotoxin. C-CPE-PSIF, but not PSIF, is cytotoxic to
claudin4 expressing cells. TJ-undeveloped cells are more sensitive
to C-CPE-PSIF than TJ-developed cells. Polarized epithelial cells
are sensitive to the basolaterally applied C-CPE-PSIF, but they are
less sensitive to the apically applied C-CPE-PSIF. A claudin-
targeting molecule may recognize the cellular polarity. Intratumoral
injection of C-CPE-PSIF reduced tumor growth. These findings
indicate that C-CPE may be a novel molecule for drug delivery and
cancer therapy [33]. The receptor-binding region of C-CPE fused to
TNF was cytotoxic in human ovarian cancer cells [34]. Thus, CPE
fragments might be a tool for claudin-targeting therapy. Treatment
of mice with claudin-3 siRNA suppressed ovarian tumor growth
and metastasis [35]. Claudin gene silencing with siRNA is also
Ppotent anti-tumor agents.

Extracellular

NH;

Fig. (1). ic ilh ion of i of C-CPE and claudin. Claudin
is a tetra-transmembrane protein. C-CPE interacted with the 2™ loop region
of claudin via its C-terminal domain [32, 76].

INFECTION AND CLAUDINS

Twenty million people die from infectious diseases each year.
Most pathogens enter the body through nasal, pulmonary, intestinal
and genital mucosa, and the mucosal epithelial cell sheets play a
pivotal role as the first line of defense against the pathogens. Invad-
ing pathogens are distributed throughout the organ via endothelial
cells of the blood vessels. TJs seal intercellular spaces between
adjacent cells, preventing entry of the pathogens into the body and
into the organ across the paracellular spaces. Disruption of mucosal
TJ seals allows pathogens to enter into the body and the organ. In
this section, we review the recent findings on the relationship be-
tween infections and claudins.

West Nile Virus (WNV) and Claudin

‘WNV, a neurotropic flavivirus, is a human pathogen that targets
neurons and causes potentially lethal encephalitis in 1% to 2% of
WN V-infected febrile patients [36]. No therapeutic agents or vac-
cines have been approved for use against WNV infection. Langer-
hans cells in the skin become infected with WNV by the bite of a
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carrier mosquito. WNV replicates in the regional tissues and lymph
nodes, which results in the dissemination of the virus into the
bloodstream. The following second replication proceeds at several
sites in the host, including epithelial cells in the skin, kidney, intes-
tine and testis, and then WN'V may ultimately invade the brain [37].
The infection of the nervous system is characteristic of the most
severe cases of WNV disease, and it often results in death or long-
term neurologic lae [38]. Understanding the mect of the
second infection and the viral entry into the brain is critical for the
development of therapies against WN'V. In WN V-infected epithe-
lial cells, claudin-1, -2, -3 and -4 are degraded, followed by a dis-
ruption in the TJ barrier without cell death. The capsid of the WNV
was responsible for the modulation of the TJ barrier [39]. These
findings suggest that an inducer of claudin may be a promising
candidate for pharmaceutical agents to inhibit the dissemination of
WNV. Whether or not the WNV modulates the blood-brain barrier
via the modulation of claudin-5 is an unsettled question.

Human Immunodeficiency Virus (HIV) and Claudin

HIV halitis (HIVE), including behavioral, motor, and
cognitive impairments, is a common condition in the late stage of
HIV-associated dementia [40]. Invasion of HIV into the brain and
the transmigration of HIV-infected lymphocytes into the brain are
the major causes of HIVE [41]. The blood-brain barrier (BBB),
which is responsible for the regulation of solutes and cells between
the peripheral circulation and the central nervous system, is com-
prised of the brain microvascular endothelial cells. Adjacent brain
microvascular endothelial cells are d by TJs that limit
paracellular flux and restrict permeability [42]. The BBB frequently
breaks down in patients with HIVE [41]. Claudin-5 plays a pivotal
role in the BBB [7]. Treatment of human brain microvascular endo-
thelial cells with HIV Gp120 envelope glycoprotein decreased the
claudin-5 levels, followed by a disruption of the TJ barrier [43].
Claudin-5 levels were lower in brain microvessels from HIV pa-
tients with HIVE compared with brain microvessels from HIV pa-
tients without HIVE [44]. The deregulation of the claudin-5 barrier
by HIV may be responsible for the breakdown of the BBB in HIV
patients. Cannabinoids, the active ingredients in marijuana, reduce
pain and improve the quality of life in HIV patients [45]. HIV acti-
vates signal transducers and activators of transcription-1 (STAT-1)
[46]. Cannabinoids and an inhibitor of STAT-1 prevented the
down-regulation of claudin-5 in the HIV Gp120- and HIV-treated
human brain microvascular endothelial cells, respectively [43, 44].
These findings indicate that an inducer of claudin-5 may be a phar-
maceutical agent for HIVE.

Hepatitis C Virus (HCV) and Claudin

Approximately 170 million people worldwide are infected with
HCV. More than 80% of acute infections become persistent, result-
ing in liver fibrosis, cirrhosis, and hepatocellular carcinoma [47].
HCV infects human hepatocytes but not murine hepatocytes, and
the detailed mechanism responsible for this difference has remained
obscure. There is no pharmaceutical agent that prevents HCV infec-
tion. HCV attaches to tetraspanin CD81 and scavenger receptor
class B type I (SR-BI) on host cells through its envelop glycopro-
tein [48, 49]. However, when CD81 and SR-BI were expressed in
non-primate cell lines, the cells were still resistant to HCV entry
[50, 51]. Recent studies to identify the additional factors that are
needed to render non-human cells susceptible to HCV entry re-
vealed that claudin-1 and occludin are co-receptors for HCV entry
[51, 52]. HCV envelop proteins interact with the first extracellular
loop region of claudin-1 and the second extracellular loop region of
occludin [51, 52]. Binders to CD81, SR-BI, claudin-1 or/and oc-
cludin are expected to inhibit HCV entry. The HCV genome is
frequently mutated; thus, pharmaceutical agents that recognize host
molecules, such as the receptors, may be promising candidates for
the prevention of HCV infection.
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INFLAMMATORY BOWEL DISEASE (IBD) AND CLAUDIN

Inflammatory bowel disease (IBD), including ulcerative colitis
and Crohn’s disease, is characterized by an activated mucosal im-
mune system that leads to impaired epithelial barrier function and
tissue destruction with relapsing diarrhea [53, 54]. Ulcerative colitis
is characterized by chronic inflammation and ulcers in the colon,
while Crohn’s disease causes ulcers and swelling of the mucosa on
all areas of the digestive tract from the mouth to the anus. A com-
mon feature of IBD is enhanced permeability of the intestinal epi-
thelium and disruption of the epithelial barrier. In this section, we
summarize the recent findings on the relationship between IBD and
claudins.

Changes of Claudins in IBD

The epithelial barrier function is impaired in ulcerative colitis,
and ulcerative colitis is associated with decreased numbers of TJ
strands in the epithelial barrier [55]. Biochemical analysis of TJ
components in rectal biopsy specimens from patients with active
ulcerative colitis revealed that the protein and mRNA levels of
claudin-4 and -7 were decreased, whereas the protein and mRNA
levels of claudin-2 were increased, as compared with control pa-
tients [56]. Overexpression of claudin-2 led to a decrease in the TJ
barrier in an epithelial cell line, whereas claudin-4 or -7 transfection
elevated the epithelial barrier function [57, 58]. Thus, the down-
regulation of claudin-4/7 and the up-regulation of claudin-2 can
lead to altered TJ structure, resulting in impaired epithelial function
in active ulcerative colitis. However, claudin-deficient mice or
claudin-overexpressing mice did not reproduce the pathology of
IBD. Whether change in claudins is cause of IBD or result from
IBD remains to be proved.

Although the precise etiology of IBD remains unknown, it is
well accepted that IBD results from a deregulated mucosal immune
response to environmental factors in genetically susceptible hosts.
In IBD patients, the primary defect may be due to an abnormal
intestinal epithelial barrier function [59]. The SAMPI1/YitFc
(SAMP) mouse strain is a spontaneous model of IBD that closely
resembles Crohn's disease due to its histological features and local-
ization to the terminal ileum [60]. The deregulated epithelial barrier
function in SAMP mice is accompanied by an increase in claudin-2
and a decrease in occludin [61, 62].

FoxO4 is a member of the forkhead box transcription factor O
(FoxO) subfamily, which has unique cell type—specific functions
that regulate target genes and are involved in the regulation of im-
mune responses [63, 64]. FoxO4-null mice were more susceptible
to trinitrobenzene sulfonic acid—induced colitis [65]. FoxO4 defi-
ciency increased the intestinal epithelial permeability and down-
regulated the TJ proteins ZO-1 and claudin-1. Immunohistochemi-
cal analysis revealed that epithelial expression of FoxO4 was sig-
nificantly down-regulated in patients with active ulcerative colitis
as compared to patients with inactive ulcerative colitis [66]. Thus,
FoxO4 might be a target for ulcerative colitis therapy.
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A Potent Pharmaceutical Agent for IBD

Pro-inflammatory cytokines, such as tumor necrosis factor-a
(TNF-a) and interferon-y, are key mediators for the disruption of
the epithelial barrier associated with Crohn’s disease [55, 66, 67].
Expression of claudin-2 was increased by TNF-a in epithelial cells
[68]. Experimental colitis model mice showed the down-regulation
of occludin and up-regulation of claudin-2. Deletion of TNF-a re-
ceptor attenuated these changes of occludin and claudin-2 in the
experimental colitis model. Importantly, anti-TNF treatment in-
fliximab, which is currently used in Crohn’s disease and ulcerative
colitis, suppressed the reduction of occludin and elevation of
claudin-2 in the experimental colitis model [69].

n-3 polyunsaturated fatty acids (PUFAs), which are abundant in
fish oil and include eicosap ic acid and dc hexaenoic
acid, have beneficial effects on IBD [70-72]. In an experimental
IBD model induced by treatment with trinitrobenzene sulfonic acid,
the distribution of TJ proteins, including occludin and claudin-1,
was affected; however, the administration of n-3 PUFAs prevented
this redistribution of TJ proteins [73].

Probiotics are living bacteria that, when ingested in sufficient
quantity, improve the health of the host beyond their inherent basic
nutrition [74]. Probiotics have anti-inflammatory effects in IBD.
VSL#3, a mixture of § probiotic bacterial strains, provided protec-
tion against intestinal inflammation in an experimental colitis
model. Probiotics also d the enh of epithelial
permeability and the reduction of TJ components, including oc-
cludin, claudin-1 and -4 in the experimental model [75]. Therefore,
compounds that enhance the TJ barrier function are candidates for
IBD therapy.

CONCLUSIONS

Epithelium and endothelium are located between the outer and
inner components of the body or tissues. Most malignant tumors are
derived from epithelium. Moreover, epithelium and endothelium
are also barriers that prevent invading pathogens and inflammatory
cells from entering into the body and tissues. Therefore, the epithe-
lium and endothelium are excellent targets for drug delivery sys-
tems, anti-tumor agents, anti-infection agents and anti-
inflammatory agents.

Recent studies have revealed the involvement of claudin in
some human diseases relevant to TJs (Table 1). Claudin is often
overexpressed in human cancers [13-16]. Therefore, a cancer ther-
apy approach that uses claudin ligands is sought. Suzuki et al. used
autoi mice to fully prepare an anti-claudin-3 mono-
clonal antibody that mediated ADCC [26]. We anticipate that a
novel claudin-targeted cancer therapy will be forthcoming. TJ com-
ponents are also associated with infections. Claudin-1 and occludin
are co-receptors for HCV [51, 52]. The claudin-5 level was reduced
in brain microvessels of patients with HIVE [44], and cannabinoids,
a clinically used agent for HIV patients, prevented the down-
regulation of claudin-5 [43]. These findings indicate that a

Table 1. Perspective on Claudin-Targeted Therapies
Applications Claudins References
A diagnostic marker for ovarian cancers Claudin-4 [25]
Inhibitor of WNV dissemination Claudin-1~4 [39]
Inhibitor of HIV encephalitis Claudin-5 [4345]
Inhibitor of HCV infection Claudin-1 [51]
Inhibitor of intestinal inflammation in IBD Claudin-1~4 [69,73,75]

WNV, west nile virus; HI'V, human immunodeficiency virus; HCV, hepatitis C virus; IBD, inflammatory bowel disease.
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claudin/occludin binder and an inducer of claudin-5 may be an
inhibitor of HCV infection and a therapeutic agent for HIVE pa-
tients. Disruption of the intestinal epithelial barrier is a common
feature in patients with IBD. A chemical compound that strengthens
the claudin barrier function will be a promising drug for IBD.

Biochemical and functional information regarding TJs has ac-
cumulated since the identification of occludin in 1993, and the de-
regulation of claudins has been observed in several human diseases
[16, 20, 21]. The potential of TJ-based therapies is promising. We
believe that TJ-targeted therapies might provide a breakthrough in
pharmaceutical therapy in the future.
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ABBREVIATIONS
T = Tight junction
ADCC = antibody-dependent cell cytotoxicity

CPE = Clostridium perfringens enterotoxin

C-CPE = the C-terminal fragment of CPE

PSIF = protein synthesis inhibitory factor

WNV = WestNile virus

HIV = human immunodeficiency virus

HIVE = HIV encephalitis

BBB = blood-brain barrier

STAT-1 = signal transducers and activators of transcription-1
HCV = hepatitis C virus

SR-BI = scavenger receptor class B type I

IBD = inflammatory bowel disease

FoxO = forkhead box transcription factor O

TNF = tumor necrosis factor

PUFAs = n-3 polyunsaturated fatty acids
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Recently, ultrasound-mediated gene delivery with nano- and microbubbles was developed as a novel non-
viral vector system. In this gene delivery system, microstreams and microjets, which are induced by
disruption of nano/microbubbles exposed to d, are used as the driving force to transfer genes into
cells by opening transient pores in the cell membrane. This system can directly deliver plasmid DNA and
siRNA into cytosol without endocytosis pathway. Therefore, these genes are able to escape from degradation

ﬁi‘::;ﬁd in lysosome and result in enhancing the efficiency of gene expression. In addition, it is expected that
Microbubbles ultrasound-mediated gene delivery using nano/microbubbles would be a system to establish non-invasive
Sonoporation and tissue specific gene expression because ultrasound can transdermally expose to target tissues and
Gene delivery organs. This review focuses on the current ultrasound-mediated gene delivery system using nano/
Cavitation microbubbles. We discuss about the feasibility of this gene delivery system as novel non-viral vector system.
© 2010 Elsevier B.V. All rights reserved.
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1. Introduction Ultrasound shows potential for improving the efficiency of gene

Gene therapy has a potential in the treatment of cancer and diseases
that are due to genomic causes. Viral vectors are efficient carriers of
genes for transduction, but some problems have become evident [1-3].
Delivery vectors that are highly potent in terms of gene transduction
efficiency should also be safe and easy to apply. Non-viral vectors have
recently received focus as gene carriers, but their transduction efficiency
is very low. Efforts have recently been directed towards improving this
aspect [4-6]. Towards this end, ultrasound has been investigated for
improving the efficiency of transgene delivery, and holds promise as a
non-invasive gene delivery system.

* Corresponding author. Tel.: +81 42 685 3722; fax: +81 42 685 3432.
E-mail address: mar teikyo-u.acjp (K. ).

0168-3659/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.jconrel.2010.05.009

delivery into tissues and cells, a technique known as sonophoresis/
sonoporation [7]. It is believed that ultrasound perturbs cell
membranes and causes transient pores to open in the membrane,
thus facilitating gene entry into the cell [8]. In addition, it has been
reported that microbubbles utilized as ultrasound contrast agents
play an important role in enhancing the efficiency of gene delivery,
without causing cell damage [9]. In general, cell damage is dependent
on ultrasound intensity, concentration of microbubbles and cell type.
Especially, ultrasound intensity and exposure time are key factors.
Therefore, it is important to optimize the condition of ultrasound
exposure in ultrasound-mediated gene delivery [10-13]. Some
researchers studied about the cell damage by the disruption of
microbubbles with ultrasound exposure [14-19]. These reports are
useful as informative references for ultrasound-mediated gene
delivery utilizing microbubbles.
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Microbubbles which are destroyed by ultrasound exposure generate
microstreams or microjets, resulting in shear stress to cells and the
generation of transient holes in cell membranes [20]. Since this
approach can be used to deliver extracellular molecules such as genes
into cells, microbubbles could facilitate ultrasound-mediated gene
delivery. In addition, submicron sized bubbles (nanobubbles), which
are smaller than conventional microbubbles, were recently reported
[21,22], and we have also developed novel liposomal nanobubbles
(Bubble liposomes) [11,23-32]. These nanobubbles can also be utilized
as enhancing tool of gene delivery efficiency in ultrasound-mediated
gene delivery. In this review, we introduced about ultrasound-mediated
delivery systems combined with nano/microbubbles and discussed the
feasibility as non-viral vector system.

2. Microbubbles as ultrasound contrast agents

Ultrasonography is a widely used diagnostic medical imaging
technique that is non-invasive, relatively low-cost, easy to use, provides
real-time imaging, and importantly, avoids the use of hazardous
ionizing radiation. Ultrasound wave pulses generated by an ultrasound
transducer are partially reflected or scattered by the interfaces between
different tissues. The transducer detects the ultrasound waves returned
by scattering, and these signals are converted to ultrasound images.
Since blood scatters ultrasound poorly, ultrasound contrast agents,
which increase the scattering and reflection of ultrasound waves, are
utilized for blood flow imaging, especially in cardiosonography.
Gramiak and Shah in 1968 were the first to use contrast agents in
echocardiography [33], and reported that the aortic delineation was
improved by intracardiac injection of agitated saline containing air
bubbles. However, these air microspheres disappeared within a few
seconds following intravenous injection due to the high solubility of air
in blood, and the impossibility of larger air bubbles to pass through
pulmonary capillaries. For these reasons, it is difficult to use injected
conventional air bubbles for opacifying the left cardiac chambers, unless
they are injected by the intracoronary or aortic route.

To improve the stability and decrease the size of air bubbles,
microbubbles with a thin shell such as albumin (Albunex) or galactose
palmitic acid (Levovist) have been developed (Table 1). These bubbles
are first-generation microbubbles, and are air-filled microspheres. Their
mean diameter ranges from 1 to 8 pum, and they are capable of passing
through pulmonary capillaries. However, these air-filled microbubbles
disappear from the bloodstream within seconds after administration
because of their low resistance to arterial pressure gradients, and the
high solubility of air in blood [34]. Approaches for increasing the stability
of microbubbles and decreasing the solubility of their gas in blood are
clearly required, and lead to the development of microbubbles filled
with a high molecular weight hydrophobic gas such as perfluorocarbons
or sulfur hexafluoride. These microbubbles represent second-genera-
tion contrast agents, in which surfactants, sonicated albumin and
phospholipids are used to form the bubble shell in order to improve
microbubble stability in the bloodstream. The acoustic backscatter of
these microbubbles is higher than that of blood and organs, due to

Table 1

Ultrasound contrast agents.
Name Shell Entrapping gas Size (pm)
Albunex Albumin Air 43
Levovist Galactose Air 2-4
Optison Albumin Perfluoropropane 3-32
Definity Lipids Perfluoropropane 1.1-20
Imagent Lipids Perfluoropropane 5
Sonovue Lipids Sulphur hexafluoride 25
Sonazoid Lipids Perfluorobutane 2-3

differences in acoustic impedance between gases, and blood or organs.
Therefore, microbubbles are useful contrast agents, especially in
echocardiography. In addition, Sonazoid which was a phosphatidylser-
ine-stabilized perfluorobutane microbubbles was developed as a useful
contrast agent for hepatic tumors [35-37]. This is due to uniqueness of
Sonazoid whose microbubbles are likely to be taken up by Kupffer cells
(liver macrophages) in the healthy liver and enhances contrast of the
liver parenchyma during the delayed phase, which usually occurs
within 10 min after the injection. In contrast, tumor that lacks Kupffer
cells was not enhanced resulting in clear negative contrast of the tumor
[36]. Thus, Sonazoid is a new type of microbubble which is able to target
Kupffer cells. However, Sonazoid has been commercially available
microbubble for clinical use only in Japan since 2007. In the future, it is
expected that tissue specific targeting bubbles such as Sonazoid are
developed.

d with

3. Properties of microbubbles combi

The behavior of microbubbles depends on the amplitude of
ultrasound used. At very low acoustic pressure (mechanical index
(MI)<0.05-0.1), the microbubbles cause linear oscillation, and the
reflected frequency is equal to the transmitted frequency (Fig. 1(a)). An
increase in acoustic pressure (0.1<MI<0.3), referred to as low-power
imaging, causes non-linear expansion and compression of the micro-
bubbles (Fig. 1(b)). In fact, the bubble becomes somewhat more
resistant to compression than to expansion. This phenomenon is known
as stable or non-inertial cavitation, and results in the emission of non-
linear harmonic signals at multiples of the transmitted frequency [38].
Harmonic imaging with microbubbles enhances the bubbles-to-tissue
backscatter signal ratio, due to insignificant harmonic backscatter from
tissue in this range of ML Therefore, this technique can improve the
signal-noise ratio and be useful in left ventricular pacification imaging
[39]. In addition, stable or non-inertial cavitation can enhance transient
cell membrane permeability (Fig. 2(a)) [40]. Machluf et al. reported that
ultrasound exposure (0.16 M, 1 MHz) in the presence of microbubbles
deliver plasmid DNA into cells [41,42].
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Fig. 1. Scheme showing microbubble behavior in acoustic fields (a) Very low intensity
ultrasound induces linear oscillation of the microbubble. (b) Low intensity ultrasound
induces oscillation of the microbubble with a gradual increase in microbubble diameter
until it reaches a resonant diameter, at which point stable oscillation occurs (filled black
circles). (c) High intensity ultrasound causes a rapid increase in the diameter of the
microbubble for a few cycles, which induces bubble disruption.
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Fig. 2. Scheme showing the pore formation in the cell membrane by oscillating or
disrupting microbubble (a) The pushing and pulling behavior (non-inertial cavitation)
of the microbubble and (b) the collapse of microbubbles (inertial cavitation) cause
rupture of the cell membrane creating pore allowing trans-membrane flux of fluid and
macromolecules such as plasmid DNA and oligonucleotides (c).

Higher acoustic pressure (MI>0.3-0.6) causes forced expansion and
compression of microbubbles and results in bubble disruption (collapse)
(Fig. 1(c)). This inertial cavitation involved in bubble disruption is
utilized as flash-replenishment in reperfusion study of diagnosis [43].
This inertial cavitation induces microstreams/microjets around the
bubbles. The peak velocity of the microstreams/microjets can reach
700 m/s. These microstreams/microjets can enhance the permeability of
cell membranes due to the formation of transient pores (Fig. 2(b)) [20].
In the presence of nano-/microbubbles, the threshold for cavitation
decreases, and it results in rendering their destruction feasible at lower
energies of ultrasound.

4. Gene delivery using sonoporation as a non-viral vector system

The first studies investigating the utility of ultrasound for gene
delivery used frequencies in the range 20-50 kHz [7,44]. However,
these frequencies, along with cavitation, are known to cause tissue
damage if not properly controlled [45,46]. To overcome this problem,
many gene delivery studies have used therapeutic ultrasound, which
operates at frequencies of 1-3 MHz, intensities of 0.5-2.5 W/cm? or
MI0.3-2, and in pulse-mode [47]. However, as these conditions result
in very inefficient gene delivery, therapeutic ultrasound combined
with nano/microbubble contrast agents has been investigated for
enhancing gene transfection efficiency [9,13,48,49]. This combination
method has many of the characteristics required for practical gene
therapy including low toxicity, the potential for repeated applications,
organ specificity and broad applicability to acoustically accessible
organs. Under proper conditions, the combination of ultrasound and
nano/microbubbles can create transient non-lethal perforations in cell
membranes. Taniyama et al. reported that transient pores formed in
cell membranes upon exposure to ultrasound and Optison, and that
the pores completely closed [20]. In addition, the behavior of
insonated microbubbles was observed with high-speed camera
microscopy [50]. Exposure to high intensity ultrasound induced
complete disruption of the microbubbles. The above findings suggest
that the combination of microbubbles and ultrasound could be useful
for gene delivery (Fig. 2(c)).

4.1. Applying to plasmid DNA delivery

Much research has been conducted both in vitro and in vivo into
gene delivery using ultrasound to disrupt microbubbles. In early
feasibility studies, reporter genes such as luciferase, p-galactosidase
and green fluorescent protein (GFP) were utilized to assess transfec-
tion efficiency [13,51-54]. Transfection method in in vitro study is
very simple. In general, cells suspended with microbubbles and
plasmid DNA were exposed with ultrasound for a few second-several
tens of seconds due to be completed transfection in a short period of
time [27]. Transfection efficiency is affected by ultrasound exposure
condition such as intensity, frequency, period, duty cycle, or type and
concentration of microbubble [10,11,13,14]. Normally, the efficiency
increase according to increasing ultrasound intensity and period [11].
On the other hand, it was reported that the efficiency and cell viability
by the transfection with fractionated exposure was higher than that
with continuous exposure in the same period of total exposure [19]. In
addition, it was reported that there was optimal concentration of
microbubbles [55]. Unfortunately, optimal condition is not completely
clear in the transfection using this system because of many
changeable parameters as mentioned above. Thus, some researchers
have studies the properties of this transfection technology to find out
optimal condition.

Many of in vivo early studies focused on organs and tissues that are
readily imaged by diagnostic ultrasonography, including heart
(52,56], skeletal muscle [51] and kidney [57]. Bekeredjian et al.
reported the use of ultrasound and microbubbles to deliver reporter
genes into heart [56]. Subsequently, Korpanty et al. succeeded in
delivering the gene for vascular endothelial growth factor (VEGF) into
heart using the same gene delivery system, and VEGF-mediated
angiogenesis to rat myocardium [58]. This technique has begun to be
broadly utilized as a gene delivery system to other organs, tissues and
cells such as the vascular system, pancreas, central nerve system,
tumors, and hematopoietic cells. For example, Shimamura et al.
reported transfection to the central nervous system by sonoporation
after injection of a reporter gene and Optison into cistern magna or
striatum [59]. In this study, transfection by microbubbles using
ultrasound transferred the reporter gene into cells around the
neurons, and not into the neuron cells themselves. Takahashi et al.
reported gene transfer into the spine using ultrasound and micro-
bubbles [60]. In addition, Aoi et al. developed herpes simplex virus
mediated thymidine kinase (HSV-tk)-mediated suicide gene therapy
using nanobubbles and ultrasound [61]. In this therapy, HSV-tk
corded plasmid DNA and nanobubbles were injected into tumor tissue
of mice, and ultrasound was transdermally exposed toward the tissue.
The reduction of tumor size was observed by administration of
ganciclovir in the mice transfected HSV-tk corded plasmid DNA with
nanobubbles and ultrasound. Previously, we developed novel liposo-
mal nanobubble (Bubble liposome) entrapping perfluoropropane
gas (Fig. 3(a-c)) [11,27]. The size of Bubble liposomes was about
500 nm and they were much smaller than Sonazoid (Fig. 3(b)). Bubble
liposome could also utilize as an effective plasmid DNA delivery tool
in vitro (Fig. 3(d)) and in vivo by the combination with ultrasound.
We reported the utility of Bubble liposome in cancer gene therapy
using interleukin-12 (IL-12) corded plasmid DNA [24]. The combina-
tion of Bubble liposomes and ultrasound dramatically suppressed
tumor growth (Fig. 4). As mentioned above, sonoporation combined
with nano/microbubbles could be a good system for plasmid DNA
delivery.

4.2. Applying to oligonucleotide delivery

Oligonucleotides such as antisense, decoy and small interfering
RNA (siRNA) are important molecules that can stop the expression of
specific genes [62,63]. In particular, RNA interference (RNAi) using
siRNA has potential in the development of new treatments for disease,
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scattering. (c) Transmission electron microscopy (50,000x) of Bubble liposome. (d) Luciferase expression in various types of cells transfected using Bubble liposomes and
ultrasound. Cells (1 x 10° cells/500 uL) mixed with pCMV-Luc (5 pg) and Bubble liposomes (60 pg) were exposed or not to ultrasound (frequency, 2 MHz; duty, 50%; burst rate, 2 Hz;
intensity, 2.5 W/cm?; time 10 s). The cells were washed and cultured for 2 days. Thereafter, luciferase activity was determined with luminometer. Data are shown as means + S.D.
(n=3). BL, Bubble liposome, pCMV-Luc: luciferase corded plasmid DNA, HUVEC: human umbilical vascular endothelial cell.

including malignant, infectious and autoimmune diseases. In order to
achieve efficient gene silencing, it is important that the siRNA is
introduced into the cytoplasm of the target cell [64]. Diverse
approaches have been attempted to develop efficient oligonucleotide
delivery methods [62]. However, technologies that enable the tissue-

As mentioned above, the combination of ultrasound and nano/
microbubbles can directly deliver extracellular molecules into the
cytosol [25], where antisense, decoy and siRNA function, so this
delivery system might better exhibit the functions of these oligonu-
cleotides. Azuma et al. reported that NF-«<B decoy delivery into
transpl d kidney by the combination of microbubbles and

targeted delivery of siRNA using non-viral vectors need imp|
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Fig. 4. Cancer gene therapy by IL-12 gene delivery with Bubble liposomes and
ultrasound B6C3F1 mice were intradermally inoculated with 1x 10° OV-HM cells into
the flank. On day 7 after tumor inoculation, the tumors were injected with pCMV-IL12
(10 pg) using Bubble liposomes (2.5 pg) and/or ultrasound (1 MHz, 0.7 W/cm?, 1 min),
or Lipofectamine 2000 as a conventional lipofection method. (b) Therapeutic effect was
assessed by measuring tumor growth. The volume of the growing tumors was
calculated by: (tumor volume; mm?) = (major axis; mm) x (minor axis; mm)*x0.5).
The data are represented as tumor volume relative to the tumor volume on day 7 after
tumor inoculation. Each point represents the mean = SD (n=5). BL: Bubble liposomes,
US: Ultrasound, LF2000: Lipofectamine 2000, pCMV-IL-12: IL-12 corded plasmid DNA,
pCMV-Luc: Luciferase corded plasmid DNA.

ultrasound could significantly decrease IL-1p and TNF-o (inflamma-
tory cytokines) and prolonged the survival rate of kidney-trans-
planted mice [57]. Negishi et al. reported that siRNA was directly
introduced into the cytoplasm by nanobubbles and ultrasound [30]. In
addition, transfection of siRNA into tibialis muscles with nanobubble
and ultrasound resulted in gene-silencing, which was sustained for
more than 3 weeks. It therefore appears that the combination of nano/
microbubbles and ultrasound could be a useful siRNA delivery system.
In addition, siRNA transfection with ultrasound and microbubbles was
utilized to apply to mesenchymal stem cells, indicating that this
technique could be applicable to genetically modified stem cell
therapy. Vandenbroucke et al. also developed an interesting siRNA
delivery system using sonoporation [65]. They coupled (PEG-siPlex)
of PEGylated cationic liposomes and siRNA, and introduced the
complex into gas-filled lipid microbubbles. Both the microbubbles and
PEG-siPlex, which were modified with biotin, were attached via
avidin. Although PEG-siPlex can protect siRNA from digestion by
nucleases in vivo, PEGylation makes it difficult for the siRNA to be
recognized and taken up by the target cells. The microbubble/
sonication system should be able to overcome the negative effects
of PEGylating siRNA-cationic liposomes (siPlex) and enhance the
efficiency of ultrasound-assisted siRNA delivery. Although siRNA
delivery mediated by ultrasound and nano/microbubbles must be
optimized, this system may open up new perspectives for ultrasound-
controlled in vivo siRNA delivery.
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5. Efforts to tissue- or organ-selective gene delivery

To establish ideal gene therapy, it is important to deliver
therapeutic gene into target tissue or organ. In the early study, gene
and nano/microbubbles were directly injected into target tissue and
organ [53,66]. However, in this method, there are some limitations
such as injection volume and injection technique. To improve these
problems, some researchers recently developed ultrasound-mediated
gene delivery by the supplying gene and nano/microbubbles via blood
flow [11,67]. In this delivery, gene expression was limited in the area
exposed ultrasound. Ultrasound can be easily focused to a target
tissue or organ, Therefore, it might be possible to develop an optimal
tissue- or organ-specific gene delivery system by combining nano/
microbubble targeting and focused ultrasound. Shen et al. succeeded
to developed ultrasound-mediated gene expression in liver via
intraportal injection of plasmid DNA and microbubbles [68]. Grayburn
et al. reported insulin expression following insulin gene delivery to
pancreatic islets in rat by a combination of microbubbles and
ultrasound exposure and succeeded to decrease blood glucose level
in diabetes rat [67,69]. We also developed the gene delivery into
tumor tissue by the combination of injection from tumor dominant
artery and ultrasound exposure toward tumor tissue [11]. In addition,
transdermal ultrasound exposure toward liver could induce liver
selective gene expression after systemic injection of plasmid DNA and
Bubble liposomes. In this case, luciferase expression was dominantly
observed in the parenchymal cells of liver. These results suggested
that Bubble liposomes could quickly transduce plasmid DNA into each
tissue by cavitation even under the existence of blood stream.
Moreover, we developed the combination method using mannosy-
lated lipoplexes and Bubble liposomes with ultrasound to enhance
gene transfection in mannose receptor-expressing cells in liver [29].
In this study, after systemic injection of mannosylated lipoplex,
Bubble liposomes were systemically injected and ultrasound was
transdermally exposed toward liver. Gene expression was observed
mannose receptor-expressing cells such as macrophage and dendritic
cells which were known as antigen presenting cells. It is expected that
ultrasound-mediated gene delivery with nano/microbubbles might be
useful to develop target tissue or organ-selective gene delivery in
vivo.

Previously, several groups have reported active targetable nano/
microbubbles to endothelium [70], rejected tissues [71], neovascu-
lature endothelium [72], lymph node-related vasculature [73] and
activated platelets|74] by targeting ICAM-1 [75], VCAM-1 [76] or
integrins [77]. We also developed blood clot targetable Bubble
liposomes modified with arginine-glycine-aspartic acid (RGD) pep-
tides to develop effective ultrasound contrast agents for blood clots
imaging [78]. Although these nano/microbubbles were developed as
ultrasound imaging agents, it might be possible to develop an optimal
tissue- or organ-selective gene delivery system by combining
targetable nano/microbubble associated with gene and ultrasound.

6. Conclusion

Ultrasound has long been utilized as a useful diagnostic tool.
Therapeutic ultrasound was recently developed and is being utilized
in clinical settings. The combination of therapeutic ultrasound and
nano/microbubbles is an interesting and important system for
establishing a novel and non-invasive gene delivery system. Gene
expression efficiency with this system can effectively deliver gene
compared with conventional non-viral vector system such as
lipofection method due to deliver gene into cytosol without
endocytosis pathway. Many in vivo studies has been reported about
ultrasound-mediated gene delivery with nano/microbubbles. Espe-
cially, there are some reports about feasibility studies of gene therapy
for various diseases [24,29,61,67] In addition, this system has a
potency of site specific gene delivery by the control of ultrasound

exposure site. Therefore, it is expected that this technology would be
utilized as a novel gene delivery system in clinical field.
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To investigate whether or not the combined ultrasound and antibiotic treatment is effective against
chlamydial infection, a new ultrasound exposure system was desi; to treat ci ydia-infected cells.
First, the minimum inhibitory concentrations of antibiotics against Chlamydia trachomatis were deter-
mined. Infected cultures were treated with antibiotics then sonicated at intensity of 0.15 or 0.44 W/
cm? with or without Bubble liposomes. After 48 or 72 h after infection, chlamydial inclusions were

stained and examined by fluorescence microscopy. The inter of dextran- ein ¢

Keywords: by ultrasound irradiation with Bubble liposomes was observed by fluorescence microscopy. The results
Ultrasound I fot barge

Nanobubbles showed that application of nanobubble-enhanced ultrasound caused no significant effect on cell viability
Antibiotic and chlamydial infectivity. However, Doxycycline (1/2 MIC) or CZX (1.0 pg/ml) in combination with

nanobubble-enhanced ultrasound dramatically reduced the number of inclusions compared with that
administered with antibiotics only. Bubble dose-dependent synergy was also observed. After ultrasound
irradiation at intensity of 0.44 W/cm? on the presence of Bubble liposomes, 10% of Hela cells were
observed to have internalized the dextran molecules. This study suggests the possibility of using nano-
bubble-enhanced ultrasound to deliver antibiotic molecules into cells to eradiate intracellular bacteria,

Intracellular bacteria

such as chlamydiae, without causing much damage to the cells itself.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

An obligate intracellular pathogen, Chlamydia trachomatis, is the
most prevalent sexually transmitted bacterium worldwide [1]. C.
trachomatis is a Gram-negative bacterium which has a unique bi-
phasic developmental cycle characterized by an infectious but
metabolically inactive extracellular form, called the ‘elementary
body’, which initiates infection through the uptake by the host cell.
Thereafter, elementary bodies differentiate into noninfectious but
metabolically active forms, called the ‘reticulate body’, which pro-
liferate within the inclusion. Reticulate bodies also differentiate
back to elementary bodies before release at the end of the develop-
mental cycle. At its sites of primary infection, C. trachomatis infects
the urethral or cervical epithelium, causing acute urethritis or cer-
vicitis [2]. These frequently progress into chronic inflammatory
disease, the most significant of which, is chronic salpingitis, an
inflammatory disease of fallopian tubes that can result in pelvic
inflammatory disease, ectopic pregnancy, and tubal infertility [3].

* Corresponding author. Address: 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-
0180 Japan. Tel.: +81 92 801 1011x3206; fax: +81 92 865 6032.
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The recommended antibiotic treatments for urogenital infec-
tions are a single dose of azithromycin or a 7-day course of doxy-
cycline for management of active infections [4]. These regimens
have been shown to result in satisfactory cure rates of acute infec-
tions [5,6]; however, chronic diseases (designated “persistent
infection”) have been suggested to be less responsive to antibiotic
therapy [7].

Previous work has shown that some antibiotics treatment of
Pseudomonas aeruginosa or Escherichia coli coupled with ultrasound
irradiation enhances the bactericidal activity [8]. The more recent
research has revealed that similar synergistic effects of combined
ultrasound and antibiotic treatment are seen in both Gram-posi-
tive and Gram-negative bacteria with some antibiotics, especially
the aminoglycosides [9]. It is not clear whether the combined
ultrasound and antibiotic treatment are effective on intracellular
pathogen, e.g. chlamydial infection. If an intracellular bacterial
infection could be efficiently eradicated from an infected person,
one could avoid chronic antibiotic treatments. In addition, this
strategy of treatment could be beneficial in the management of
chlamydial persistent diseases.

Here, we are studying the synergistic use of ultrasound and
antibiotics to kill the chlamydia. This report presents results of
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the first step in that research, which is investigation of the in vitro
response of C. trachomatis-infected human epithelial cells to com-
bination of ultrasound and two types of antibiotics.

2. Materials and methods

2.1. Chlamydial strain and cell lines

C. trachomatis serovar E/[UW-5/Cx was prepared in McCoy cells
and propagated according to a previously reported method [10].
The mouse fibroblast cell line McCoy cell (CRL 1696) and human
epithelial cell line HeLa 229 cell (CLL 2.1) were maintained in Dul-
becco's modified Eagle medium (DMEM, Invitrogen, Grand Island,
NY, USA) supplemented with 10% heat-inactivated fetal calf serum
(FCS, Invitrogen) and 100 pig/ml streptomycin.

2.2. Infection of HeLa cells

The Hela cells were seeded into a 24-well plate with lJumox™
fluorocarbon film base (optically clear, 50 um-thin, gas permeable
film, Greiner bio-one, Gottingen, Germany). Stocks of chlamydial
strain were diluted with sucrose-phosphate-glutamate (SPG)
medium [10]. Chlamydial suspensions of 0.5 x 10* inclusion-form-
ing units (IFUs) in 0.25 ml SPG medium were inoculated onto the
monolayer cultures of HeLa cells (1 x 10* cells/well). This is equiv-
alent to a multiplicity of infection of 0.5. After incubation at 37 °C
for 90 min, the inoculum was decanted, and the cells were washed
in medium to remove the nonadsorbed chlamydiae and were then
further incubated in 1 ml DMEM containing 1 pg/ml cyclohexi-
mide (Sigma Chemicals, St. Louis, MO, USA) and 2% FCS (mainte-
nance medium).

2.3. Preparation of bubble liposome

Bubble liposomes were prepared according to a method previ-
ously described [11]. Liposomes composed of 1,2-distearoyl-sn-
glycero-phosphatidylcholine (DSPC) (NOF Corp., Tokyo, Japan)
and 1,2-distearoyl-snglycero-3-phosphatidyl-ethanolamine-meth-
oxypolyethyleneglycol(DSPE-PEG(2k)-OMe, (PEG Mw = ca. 2000),
NOF) (94: 6 (m/m)) were prepared by reverse phase evaporation.
Briefly, all reagents (totallipid: 100 pumol) were dissolved in 8 ml
of 1:1 (v/v) chloroform/diisopropyl ether, then 4 ml of phosphate
buffered saline (PBS) were added. The mixture was sonicated and
evaporated at 65 °C. The solvent was completely removed, and
the size of the liposomes was adjusted to less than 200 nm using
an extruding apparatus (Northern Lipids Inc., Vancouver, BC, Can-
ada) and sizing filters (pore sizes: 100 and 200 nm; Nuclepore
Track-Etch Membrane, Whatman plc, UK). After sizing, the lipo-
somes were sterilized by passing them through a 0.45 pm pore size
filter (MILLEX HV filter unit, Durapore PVDF membrane, Millipore
Corp., MA, USA). The size of the liposomes was measured by dy-
namic light scattering (ELS-800, Otsuka Electronics Co., Ltd., Osaka,
Japan). The average diameter of these liposomes was between 150
and 200 nm. Lipid concentration was measured using the Phospho-
lipid C test (Wako Pure Chemical Industries). BLs were prepared
from the liposomes and perfluoropropane gas (Takachiho Chemical
Industrial Co., Ltd., Tokyo, Japan). Briefly, 5 ml sterilized vials con-
taining 2ml of the liposome suspension (lipid concentration:
2 mg/ml) were filled with perfluoropropane, capped, and then
supercharged with 7.5 ml of perfluoropropane. The vial was placed
in a bath-type sonicator (42 kHz, 100 W; BRANSONIC 2510J-DTH,
Branson Ultrasonics Co., Danbury, CT, USA) for 5 min to form the
BLs. In this method, the liposomes were reconstituted by sonica-
tion under the condition of supercharge with perfluoropropane in
the 5 ml vial container. At the same time, perfluoropropane would

be entrapped within lipids like micelles, which were made by DSPC
and DSPE-PEG(2k)-OMe from liposome composition, to form nano-
bubbles. The lipid nanobubbles were encapsulated within the
reconstituted liposomes, which sizes were changed into around
1 pm from 150 to 200 nm of original.

2.4. Immunofluorescence staining and fluorescence microscopy

At 48 or 72 h after infection, the infected monolayers were
washed with PBS, and the cells were fixed with —20 °C chilled
methanol. After the specimens had been dried, the inclusion bodies
were stained with fluorescein isothiocyanate (FITC)-labeled mono-
clonal antibody against C. trachomatis lipopolysaccharides (Progen
Biotechnik, Heidelberg, Germany) for 30 min at room temperature.
The cells were rinsed with saline, and the films were cut off from
the plate, and mounted in a 1:1 solution of PBS-glycerol. The anti-
body staining resulted in yellow-green chlamydial proteins, and
Evans blue counterstaining yielded red eukaryotic cells. The forma-
tion of inclusions was assessed using a Zeiss Axiophot fluorescence
microscope. The cells positive for inclusions are considered in-
fected cells and infectivity was presented as the number of inclu-
sion-forming units (IFUs).

2.5. Antibiotics and measurements of MICs

Doxycycline (DOX, Sigma Chemicals) and ceftizoxime (CZX,
Fujisawa Yakuhin Kogyou, Tokyo, Japan) were obtained in powder
form. Both antibiotics were diluted with saline, and were dissolved
in maintenance medium at a concentration of 100 pg/ml and fro-
zen at —80 °C until used. The minimum inhibitory concentrations
(MICs) were determined using a method previously described
[12]. Briefly, confluent monolayer cultures of cells in a 24-well
flat-bottomed plate with 13-mm coverslips were inoculated by
centrifugation and incubated in 1 ml of maintenance medium con-
taining a serial dilution of antibiotics for 72 h. To determine the
MICs, the cover slips were stained and observed as described in
Immunofluorescence staining and fluorescence microscopy. The
lowest concentration of the antimicrobial agent that completely
inhibited the formation of visible chlamydial inclusions was deter-
mined as the MIC.

2.6. Ultrasound exposure
An acoustically transparent gel (Pharmaceutical Innovations

Inc., Newark, NJ) was applied on the ultrasound probe before posi-
tioning the plate containing the sample on top of it (Fig. 1). Thera-

@I C. trachomatis+DOX or CZX

f Bubble liposomes

Hela 229

Ultrasound transducer

Sonication
1.011 MHz; 0.15 or 0.44 W/cm?
0.5 Hz pulse rate; 25% duty factor; 20 sec.

Fig. 1. Experimental design. Schematic drawing of the ultrasound setting. C.
trachomatis-infected Hela cells were exposed to ultrasound after addition of
antibiotic and Bubble liposomes.



