A PARALLEL MULTIGRID FOR THE BIDOMAIN EQUATION 729

s

T

- Local mesh

Global mesh [

&S
I [ 1

E®

Fig. 2.4 A composite mesh (left) and decomposition of the elements into the subsets for each level
(right).

for the nodal values ¢ on the local mesh QL by

(2.18) oF = NL. ¢l = Y~ NEoF.
€Nk

Here, {N}};cqr are the shape functions on QF. We use similar notation, N¢, NZ, ¢¢,
etc., for the global mesh Q6.

Under the above definitions, we define an energy functional for a given nodal
function ¢ = {¢’, ¢} on the composite mesh by

(@) = / lszsL~av(;>Lle+ /_1V¢G~aV¢GdQ+ / Vot . o, VVEdQ
0, 2 og 2 o

1
=3 %VNL¢L-0VNL¢LdQ+ > / 3VNC4¢ aVNCpCdn
elepL Vel €GBS <
2.19 + VNLgl . o VNEVEdQ.
L m

L Je
eleEf

Here, Eﬁ’, are elements in EL that lie in Qp. Note that we assume that Qy is
composed of a subset of EX. Now, we impose the following constraint conditions on
the variational problem:

(2-20) ¢f = I5¢° on T'pc.

Here, I} is an interpolation operator from Q€ to QF and T'¢ is the set of nodes
situated at the interface boundaries of QL with Q€. Note that T’ is not necessarily
identical to the boundary of Q. As shown by the thick lines in the diagram on the
right of Figure 2.4, the intersections of 89 and 0, are not contained in I'zg. The
weights of the interpolation are determined by the shape functions NG on Q6.
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730 TAKUMI WASHIO, JUN-ICHI OKADA, AND TOSHIAKI HISADA

Let QF be the set of internal nodes in Q¢ where the nodes on I'rg are excluded.
The components of ¢ on Qf do not affect the functional in (2.19). However, these
components are set identical to ¢’ by an injection of the solution as described in
section 3.1.

The following equation is obtained by applying the Lagrange multiplier method
to the variational problem (2.19):

/ Vuwk - aVeld + /_Vwc -aVoPdQ +/ Vuwk - o VVEdQ
23 ag ak
L
(2:21) + (wh = FwC) . - A+ws- (@8 —T6¢9) . =0.
Here, w’ and w® are arbitrary test functions equal to zero on I'p. The brackets ( )r, .
denote the restriction of a vector to the nodes on I'f¢, A is the Lagrange multiplier

defined at the nodes on ', and w) is a test vector associated with the Lagrange
multiplier. Equation (2.21) can be rewritten in matrix form as follows:

wh (K'¢! + KEVE) +wC K§¢® + (wh — TEw®) A
(2.22) +wy - (¢F — 1669),, =0

Tre

Here, the matrices KL, Kil’, and Kf are obtained by superposing element matrices
as

(2.23) KY= % KHeh),
eleEL

(2.24) Kl = Y Kkeb),
eleEL

(2.25) KZ= Y KO,
eGeE_;_"

where the element matrices are given by

2.26 KE(el); = | VNE-oVNEdQ,
J 2 J
e
(2.27) Kty = / i VNF - 0VN}dQ,
€
2.28 KC%(e%),; = | VNE oVNEdQ
] - J
f

for nodes i and j of elements e’ and €. From (2.22), we finally obtain

(2.29) Kl + KEVE + X =0 0n QF\Ip,
(2.30) KG¢% — 15" X =0 on QG\I'p,

¢ = ¢y and ¢© = ¢, on I'p,

with the constraint condition in (2.20). In section 3.1, we derive a local-global multi-
grid solution algorithm for (2.29) and (2.30). From (2.29), the nodal values of the
Lagrange multiplier at Iz can be interpreted as the electric currents from the local
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mesh. In other words, the electric currents passing through the element surface from
the local mesh elements are integrated on the local nodes at the interface. In (2.30),
these nodal values of the currents from the local mesh are distributed by IéT to the
global mesh nodes at 'z, and they are balanced with the currents from the global
mesh elements in ES. In this way, the current balance is ensured at the interface.
In the next section, we will see that this results in the conservation of the electric
currents passing through the electrodes.

2.3. Conservation Properties of the Electric Currents Passing through the
Electrodes. For simplicity, at first we assume that the boundaries I'p of the electrodes
do not intersect with the interface boundary I'zg. Later, this condition is relaxed to
some extent. The above assumption implies that the nodes on I'p are exclusively
divided into local and global sections:

(2.31) I'p=TEUTE.

We define the nodal residual components at nodes i € I'; and j € I'§ by

(2.32) rf=— / UNE - (aVer + aVVE)dQ = —(KE ¢! + KEVE),, i eTE,
QL

(2.33) §=— /_VN,-G - oVgCdQ = —(KE¢C);, j € TG.
af

The conservation law through the entire domain (2 in the finite element context is
stated below.

THEOREM 2.2. Assume that {¢F,¢C} is the finite element solution to (2.21).
Then

(2.34) b+ Y =0

ierk jETE

Proof. For the local and global meshes, let us define the following test functions:

(2.35) wh=1-3" N,
i€rk

(2.36) wf=1- 3" Nf.
JErg

From the assumption on I'p, w! =1 on ¢ and w® =1 on I'fg. Thus, from the
natural requirement on the interpolation Ié, we see that

(2.37) Ikw® =w' =10nTpe.
By substituting (2.35), (2.36), and (2.37) into (2.21), we obtain

— L. L _ G\, (¢}
/QLV1 SN aV¢dQ+/WV1 > NE | aveCan

ierk Jerg

+/ V|1-> N ovVida=0.
% ier

By expanding the above equation, we obtain (2.34). u]
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Fig. 2.5 An undesired le for conservation (a) and the correction making this ezample conser-
vative (b). In (a), a hanging node (marked with a circle) is located at the corner of the

electrode.

Physically, the residual at the electrode boundaries I'p can be interpreted as the
current entering the torso through the surface of the electrodes. Here we assume that
the weak solution ¢ to (2.16) is also the strong solution around I', under a certain
regularity of o.. That is, if the strong form equation

(2.38) —V-0.V¢ =0 around I'p

holds, we obtain from the Gauss divergence theorem

(2.39) - / UNE - 0.Vod) = — / NEii-o.V¢dr, i ek,
Jar Jri

(2.40) - / UNE - 0,Vgd = — / NEii- 0, Vdr, j € TS.
06 r§

Here, 7 is the normal outward unit vector at I'p. Note that we assume that the
electrode boundaries I'p are not attached to the heart muscle Qg. Thus, Vi, and o;
do not appear in the equations. If we replace the analytical solutions on the left-hand
sides of (2.39) and (2.40) by their discrete finite element approximations, they are,
in fact, the residual components. Thus, the residual components rX,i € I'k, and
'rJG,j € I'§, are the approximations of the fluxes on the right-hand sides of (2.39)
and (2.40), respectively. If the interaction with the electric circuit connected to the
electrodes is taken into account, the summations of the residual components at the
electrode surfaces can be identified with the currents from the electrodes.

So far we have assumed that the electrode surface I'p does not intersect the
interface boundary I'r,;. However, this restriction is not essential for conservation,
which is ensured as long as the boundaries I' . follow the edges of the coarser elements
at any interface. Figure 2.5 depicts an undesired example for conservation (a) and the
correction making this example conservative (b). Note that a hanging node (marked
with a circle) is located at the corner of the electrode in the undesired example. In
general, we modify the definition of the test function w” in (2.35) to match w® in
(2.36) at the interface:

(2.41) wh=1- Y Nf- Y NE(IEY). .

i€lp\l'La je€rpNl'La

Here, 6]G is the vector on QF set to 1 at j and zero at the other nodes. From the
above definition, we see that IL;wG = w’ holds at T'1g. By substituting this test
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function into (2.21), we once again obtain (2.34) with the following definition of the
residual at the interface:

(2.42) ry = ~(KF6%); — (16" (K"¢" + KI'V) . j € Tian Ty,

Thus, in computing the residual component at the interface, the contributions from
the residual components on the neighboring fine mesh hanging nodes must be taken
into account.

3. The Local-Global Multigrid Algorithm on a Composite Mesh.

3.1. Derivation of the Algorithm. Let us define the matrices K¢ and K€ on
the global mesh by

(3.1) Kf= Y K°),
eSeES

(32) K%= %" K%
eGeRG

From the above definitions and (2.25), K is obtained by superposing K¢ and Kg.
Thus,

(3.3) KS =K + K.

Based on an idea proposed by Brandt [2], we add K'E¢C to both sides of (2.30). Then
we obtain the following equations equivalent to (2.29) and (2.30):

(3.4) KL¢t = —-KLVE on Q5\(ILgUTp),
(3.5) A=-Kr¢r — KIVEon Ty,
(3.6) KC¢C = IL" A + KS¢C on Q\T'p.

If we define the residual vector 7~ on the local mesh from (3.4), not only on Q\(TzgU
T'p) but also on I'L¢, by

3.7) rl = —KIVE - KE¢" on QN\Tp,
we see that it is identical to the Lagrange multiplier on I'z¢ from (3.5),
(3.8) A=rLonTe.

The above consideration naturally leads to the local-global solution process, shown in
Figure 3.1, where steps (1) and (2) are iterated. Here, the injection i,? is performed
by injecting the local mesh nodal values into the global mesh nodes on QF. Note
that the correction with the interpolation is also performed on the interface I'zc in
the global mesh correction phase. Thus, together with the assumption on the initial
guess, the constraint condition in (2.20) is always satisfied. As for the relaxation on
the local and global meshes, a multigrid V-cycle can be applied. In particular, for the
local mesh relaxation, one V-cycle is sufficient to smooth the error with respect to the
global mesh resolution, where the coarsest mesh of the V-cycle on the local mesh has
the same spatial resolution as the global mesh in our implementation, as depicted in
Figure 3.2.
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The local-global multigrid algorithm.

- Prepare an initial guess {¢*, ¢“} such that ¢* = I5¢% on T1¢
(1) Global mesh correction
- Compute the residual on the local mesh r’ := gt — KL¢pr on Q\I'p
- Inject the local mesh solution ¢€ := I¢ ¢ on QF
- Store ¢© in another vector ¢€ := ¢¢
- Compute the right-hand side g& := KE&G + ICL;TTL
- Compute an approximation for K¢¢% = g€
with the fixed boundary values on I'p
- Correction with the interpolation ¢ := ¢* + IL(¢% — dgc) on QF
(2) Smoothing on the local mesh
- Relax the interior components of ¢* for K*¢l = gt
with the fixed boundary values on ', UT'p

Fig. 3.1 The local-global multigrid algorithm.

o)

E
:
V-cycle on the local mesh :

@)

The local-global
on the composite mesh

V-cycle on the global}e{h

Fig. 3.2 A sketch of the local-global multigrid algorithm. In each mesh, the multigrid V-cycle is
applied as a smoother. In particular, the coarsest grid of the local mesh V-cycle has the
same resolution as the finest global mesh.

The local-global multigrid algorithm obtained above is similar to the multilevel
adaptive technique (MLAT) proposed by Brandt [2]. However, the MLAT was de-
scribed for finite difference or finite volume discretizations [22] and derived from the
full approximation scheme (FAS) [2, 22], originally proposed to solve a nonlinear prob-
lem with a multigrid. An interesting point here is that the MLAT is naturally derived
by extending the Lagrange multiplier in (3.6) at the local-global interface ' to the
inside of the fine finite element mesh, where it can be interpreted as the residual.
Also note that in the standard implementation of MLAT [22], the residual at the fine
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Fig. 3.3 Original Purkinje network (a) and the network after the elimination (b). Black nodes are
shared nodes with the vozel mesh.

grid boundary is not transferred to the coarse grid, whereas in the above algorithm
the residual components at the local mesh interface boundaries certainly affect the
right-hand side of the coarse mesh equation. As we have seen in section 2.3, this is an
essential point to ensure the conservation property at the local-global interface. Other
techniques to ensure conservation have been introduced, for example, in [1, 14, 31] for
finite volume discretizations. On the other hand, in common adaptive finite element
approaches, a special refinement strategy is adopted at the fine-coarse interface so
that hanging nodes are not present. In these approaches, conservation is automat-
ically ensured. However, a method that allows hanging nodes provides easier mesh
generation, in particular, for hexahedral elements.

3.2. Treatment of the Purkinje Fiber Network. In this section, we describe the
special treatment of the Purkinje fibers in the local-global multigrid algorithm. As
mentjoned in section 1, the Purkinje network is modeled by one-dimensional elements,
as is commonly done in the cardiovascular literature. In our simulator, only end-point
nodes of the Purkinje network are connected to the voxel mesh nodes, as shown in
Figure 3.3(a). Although a fairly fine spatial resolution is required for the Purkinje
one-dimensional elements, we can eliminate most of the unknowns before solving the
potential problem. This situation is illustrated in Figure 3.3. Nodes on the Purkinje
network with only two edges connected can be eliminated without increasing the
number of edges. Therefore, we do not apply any coarsening to the matrix on the
reduced Purkinje nodes when constructing the matrix at the coarse level. In this case,
although we have to invert the matrix completely on the reduced Purkinje nodes at
the smoothing steps at each level of the multigrid cycle, this does not result in a
crucial overhead due to the smaller size of the matrix on the reduced Purkinje nodes.

Here, we show how to construct the matrix on the global mesh for the reduced
Purkinje network. In the following, the subscript letters “s” and “r” represent shared
nodes and reduced Purkinje nodes, respectively. We assume that the shared nodes
are included in the local voxel mesh nodes. Under this notation, a vector ¢ on the
local mesh (involving the reduced Purkinje nodes) is represented as

(3.9) ot = [ ii ] .

According to the above block representation, the coefficient matrix on the local mesh

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



736 TAKUMI WASHIO, JUN-ICHI OKADA, AND TOSHIAKI HISADA
is then represented by
(3.10) KL=

K*+ D, K.
K. K. |°

Here, the matrices Dy, K, K,s, and K,, originate from the reduced stiffness matrices
on the reduced Purkinje network. In order to construct an appropriate local-global
multigrid algorithm, the reduced Purkinje network should also be connected to the
global voxel mesh. In our approach, the matrix on the reduced Purkinje network is
not coarsened, as mentioned above. Thus, the coefficient matrix on the global mesh
is given by
(3.11) KC = [ KO+ I DUIG IE K ]
KrsIG Krr

The interpolation ié from the global to the local mesh involving the reduced Purkinje
nodes is defined by

s [IE 0
(3.12) Icf[ e 1l

Here, I denotes the identity mapping on the reduced Purkinje nodes. Under these
matrices and mappings, the local-global multigrid algorithm in section 3.1 can also
be performed with the Purkinje fiber network.

3.3. Relaxation of the Local-Global Multigrid Algorithm. In this section, we
describe some details of the multigrid V-cycle that is applied “as the relaxation” in
the local-global multigrid algorithm. As for the interpolation from the coarse to the
fine mesh, we define two different operators, I, g‘ and I { , as follows. For Icf , standard
weights are chosen, whereby weights for the voxel mesh nodes that are outside Q are
set to zero. Note that the sum of the interpolation weights of I/ is not equal to one if
one of the neighboring coarse nodes is outside 2. In the definition of I/, the weights
are adjusted so that their sum is equal to one, except for the fine nodes, all of whose
neighboring coarse nodes are outside §2. In our implementation, we apply I. cf as the
interpolation operator and its transpose as the restriction operator in the multigrid
V-cycles, whereas in the determination of the coefficient matrix K¢ on the coarse
mesh from the coefficient matrix K7 on the fine mesh, we apply I[ as follows:

(3.13) Ke=(I/TK/I!.

In our experience, the above-mentioned strategy (using different interpolations in the
multigrid cycle and in the determination of the coarse mesh matrix) results in the best
convergence. For example, using 1 rf' for both stages leads to convergence stagnation
when the Purkinje fiber network is connected, while using I[ for both stages results
in slower convergence. Further study of this will be part of our future research.

The other key issue for robust convergence in the given potential problem is the
choice of smoother in the multigrid. In this application, the electric conductivity has
an anisotropy in the heart muscle along the fabric construction and also jumps in
coefficients at the interfaces between different organs. Furthermore, the torso bound-
aries given on the finest level on the global mesh do not necessarily fit with the coarser
voxel elements. These problems trigger convergence difficulties for the standard multi-
grid method. Therefore, we adopt an incomplete Cholesky (IC) smoother since it is
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more powerful than a Gauss—Seidel smoother for jumping coefficient and anisotropic
problems (see, for example, [22] or [33]). Thus, the coarse mesh correction may be
somewhat less accurate. In the case where the Purkinje fiber network is connected,
we apply the IC smoother on the voxel part and a sparse direct solution method on
the reduced Purkinje network part with the two-block representation as in (3.10). In
general, the linear equation to be solved at an arbitrary level can be represented as
follows (see (3.11)):

K+P'D,F IPTK, o1_[9
@14 { K K H«t.}‘[gr]'

Here, K is the coefficient matrix on the grid where the smoother is applied, and
I* denotes the interpolation operator of the shared nodes on the finest local mesh
QL from the grid where the smoother is applied. Under the above notation, one
smoothing step is described as follows:

(3.15) ™ =g — (K + PTD,F)¢* - F" Ko,
(3.16) Solve MA@*+Y) = 5(k),

(3.17) SEHD = ) | AGHHD)|

(3.18) 0D = g Ko ®) - K Pe®H),
(3.19) Solve K Agittl) = p(k+1/2)

(3.20) B = ) + AgH,

where M denotes the IC factorization of the matrix K + IT D, I*.

Another important technique to improve robustness is the Krylov subspace ac-
celeration technique. One iteration of the multilevel solution is applied as a precondi-
tioner for the Krylov subspace method. In the case of a composite mesh application,
the implementation of a matrix-vector product may require considerable effort. How-
ever, as shown in the literature [3, 32|, one can obtain a Krylov subspace acceleration
by recombining iterants when their residuals are available. Details of our acceleration
algorithm for this application are given in the literature [30].

4. Numerical Experiments with a Realistic Torso Model and Purkinje Fiber
Network. In this section, we evaluate the performance of the local-global multigrid
algorithm for a realistic model on which the real-life simulations described in section
1 are performed. In the model, the voxel mesh data of the organs in Figure 1.7 are
prepared based on the Visible Human dataset [28]. The mesh sizes and intervals of
the local and global voxel meshes are described in Table 4.1. The ratio of the local
and global mesh intervals is equal to 4. An illustration of the Purkinje fiber network
adopted in the simulation is depicted in Figure 4.1. The geometry of the network
is based on an anatomical observation in [20]. Its conductivity is set to 100 mS/cm,
which is much larger than the values in Table 1.1. The conductivity has been adjusted
in order to reproduce the experimental observation of excitation propagation given
in the literature [8]. The Purkinje-ventricular delay [15] is not taken into account in
the current simulation, and the radius of the cross-section of the network is set to
0.05 cm except near the interconnection points with the heart muscle, where 0.01 cm
or 0.03 cm is used. These radius values have also been adjusted in order to reproduce
proper excitation conduction from the Purkinje fiber to the ventricular muscle. The
total number of Purkinje nodes is 24509, of which 9882 nodes are shared with the
local voxel mesh. The number of nonzero components in the matrix on the Purkinje
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Table 4.1  Local and global mesh sizes and intervals.

Local mesh Global mesh
Size (z,y, 2) ] Interval length Size (z,y, z) | Interval length
(288, 288,368) | 0.4 mm (256, 256, 288) | 1.6 mm

Fig. 4.1 The Purkinje fiber network. At each terminal, the fiber is attached with 12 shared nodes.

Table 4.2 Elapsed time (in seconds) of one iteration of the local-global multigrid algorithm for the
different divisions of the meshes.

Smoother

Division Lto G GtoL Krylov Total

Voxel Purkinje

1x4x2 || 009 (35%) | 0.13 (4.9%) | 0.12 (4.4%) | 0.79 (30.1%) | 0.30 (11.5%) | 2.62
1x4x3 || 0.07 (34%) | 0.09 (4.7%) | 0.08 (4.4%) | 0.56 (20.7%) | 0.27 (14.4%) | 1.89
4x4x4 |[005(34%) [ 007 (4.7%) | 0.06 (4.0%) | 0.42 (27.8%) | 0.22 (14.4%) | 1.51
4x4x5 || 0.04 (3.3%) | 0.06 (4.5%) | 0.05 (3.9%) | 0.33 (27.3%) | 0.20 (16.1%) | 1.22

network is 73709. However, after the reduction to the reduced Purkinje nodes, only
3937 nodes are left (besides the shared nodes). Finally, matrix K. in (3.10) consists
of 11989 nonzero components. The sparse LU factorization of matrix K, has only
16481 nonzeros with a fill-in reduced ordering. Thus, the solution to K, in (3.19) in
the smoother is unlikely to produce a crucial overhead.

As for the relaxation on the local and global meshes, the multigrid V-cycle, with
one pre- and one postsmoothing iteration, is applied. The V-cycle on the local mesh
consists of three levels as the coarsest local mesh then has the same spatial resolution
as the finest global mesh. One smoothing iteration is performed on the coarsest local
mesh. The V-cycle on the global mesh consists of six levels. On the coarsest global
mesh, twenty smoothing iterations are performed.

First, we examine the parallel performance of the local-global multigrid algorithm.
Parallelization strategies used in our implementation are described in Appendix A.
The timing results are measured on a PC-cluster composed of Pentium 4 processors
(3.2GHz) connected via Myrinet. Shown in Table 4.2 are the elapsed times for the
main processes in one iteration of the local-global multigrid algorithm, where the
performance was examined for up to 80 processors. In the table, “L to G” and “G
to L” denote the elapsed times for the local-to-global and global-to-local data trans-
formations in (A.1), respectively. “Krylov” denotes the elapsed time for the Krylov
acceleration. “Smoother” denotes the elapsed time for the smoothing iterations at
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Fig. 4.2 Convergence history with respect to (a) iterations and (b) elapsed time.

all levels, where “Voxel” corresponds to the relaxation on the voxel meshes in (3.16)
and (3.17), and “Purkinje” corresponds to the processes on the shared and reduced
Purkinje nodes in (3.15), (3.18), (3.19), and (3.20). The numbers in parentheses are
the ratios to the total time.

We observe a very satisfactory scaling. The elapsed times for the data transforma-
tions between the local and global meshes are relatively small in all cases. However,
the elapsed time for the smoothing on the reduced Purkinje nodes is more pronounced
as the number of processors increases. In particular, in (3.15) and (3.18), one-to-many
communications are necessary to transfer the data to the shared nodes. It seems that
this influences the parallel performance negatively.

Further, we analyze the convergence of the local-global multigrid algorithm. The
convergence histories with respect to the number of iterations and the elapsed times
are presented in Figure 4.2 for three different approaches. The notations “strong
coupling with Krylov” and “strong coupling without Krylov” denote the local-global
multigrid algorithm, respectively, with and without the Krylov acceleration technique,
where the reduced Purkinje nodes are taken into account in the smoothing at every
level, as described in section 3.3. On the other hand, the notation “loose coupling
with Krylov” denotes the solution algorithm with the Krylov acceleration technique
but solving the reduced Purkinje nodes and the voxel nodes in a decoupled way. This
means that the direct solution on the reduced Purkinje nodes (including the shared
nodes) and the local-global multigrid algorithm on the voxel mesh are performed
alternately. In this case, the coupling with the reduced Purkinje nodes is dealt with
only at the finest level on the local mesh.

In the Krylov acceleration technique, up to five iterants are recombined for the
acceleration, and the acceleration process is restarted every five iterations. The results
in Figure 4.2 show the effectiveness of the Krylov acceleration technique and the
importance of the smoothing on the reduced Purkinje nodes at every level. The
convergence speed of the loose coupling approach is obviously much slower than that
of the proposed local-global multigrid algorithm. Even though there is considerable
overhead in dealing with the reduced Purkinje nodes at every level, the proposed
algorithm is still significantly faster than the loose coupling approach with respect
to the elapsed time. In our real-life simulations, we commonly adopt 10~° as the
convergence tolerance for the relative L2-norm of the residual. Therefore, one solution
takes approximately 8 seconds. If we solve the potential problem every 1 or 0.2 ms,
about 8000 or 40000 seconds, respectively, are needed for the solutions to a 1 second
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simulation with 80 processors. This is approximately 40 or 70%, respectively, of the
total elapsed time in the ECG simulation to obtain the results given in Figure 2.2.

5. Conclusions. A parallel solution to the bidomain equation that appears in the
excitation propagation analysis of the human heart was constructed. The stability of
the explicit scheme was analyzed and an efficient multigrid technique to solve the po-
tential problem with the torso model was introduced. In our approach, the potential
problem was discretized on the composite mesh composed of a fine local mesh around
the heart and a coarse global mesh covering the torso. A conservative finite element
discretization adopting the Lagrange multiplier approach was introduced and a multi-
grid solution technique for this discretization was naturally derived. Furthermore, a
method to combine the Purkinje fiber network with the multigrid solution technique
was shown, whereby the matrix on the Purkinje network was reduced before entering
the multilevel solver and the reduced matrix on the network was dealt with by a direct
solution method at every level. The parallel efficiency and good convergence results
were proved through an experiment with a realistic simulation model.

Appendix A. Parallelization Strategy. Here, we introduce the parallelization
strategy of the bidomain analysis on a distributed memory parallel computer. Fig-
ure A.1 depicts the general situation for a composite mesh.

Note that there is no problem regarding the conservation discussed in section 2.3,
even in the case where the local voxel mesh covers more than the torso region, as long
as the boundaries of the torso on the local mesh coincide with the global mesh edges.
In such a case, the local voxel mesh nodes on the torso boundaries are excluded from
T'Le. Thus, there is no exchange of current there.

As shown on the right-hand side of Figure A.1, the solution process is decomposed
into three phases with respect to data distribution between the processors. The first

1@

Fig. A.l (Left) two-dimensional image of three meshes (g (on the heart), QL (local rectangular
mesh), QC (global rectangular mesh)) and (right) their partitioning (for 4 processes).
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phase corresponds to the explicit Euler time integration of the inner iteration described
in section 2.1. Here, the computation is performed only at the nodes on the heart
muscle Q. The second and third phases include the local-global multigrid algorithm
described in section 3.1 on the local and global voxel meshes, respectively. For the
second and third phases, the nodes are partitioned regularly in each direction. In
contrast, the first phase is based on a partitioning of an unstructured graph which
consists only of the nodes on the heart muscle Q. For the partitioning, we adopt the
graph partitioning tool ParMETIS [10] to obtain the partitioning information. Since
these data distributions are not consistent, as can be seen in Figure A.1, redistribution
of variables takes place at each phase change. The variables that are redistributed at
each phase change are described in the diagram below:

Qn
¢L Tl KiVm
(A.1) oFf
¢ —6¢ 11 IETrE Ikt
QG

The communication speed of the redistribution between the local and global meshes
is crucial to the overall parallel performance because this redistribution is performed
every cycle in the local-global multigrid algorithm. The overhead cost for the redis-
tribution in the real-life application has been presented in section 4.

In each phase, parallelism is obtained in a standard way except for the IC smoother
in the second and third phases. The IC smoother is modified, as it can easily be par-
allelized under the regular partitioning; that is, the local IC smoother is performed
in each processor with one layer overlap at the subdomain boundaries.

In the case where the Purkinje fiber network is connected, the vectors ¢,, g; and
the matrices Ky, Kys, Kir in (3.14) are stored in one of the processors (say, Proc0),
while the matrix for the interpolation on the shared nodes I*® is distributed along the
regular partitioning of the voxel mesh. Thus, the vector data Ks,tﬁsk) on Proc0 is
scattered in (3.15), and the distributed vector data I®¢**1) is gathered to Proc0 in
(3.18). This process may generate considerable overhead when the number of shared
nodes is large.
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A Study on Mechano-Electrochemical Modeling of Cardiomyocyte
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Triphasic theory has been proposed to couple mechanical, chemical and electrical phenomena in
the analysis of hydrated charged soft tissues. As a cardiac myocyte, which consists of a solid phase
and a charged fluid phase filling its interstices, is this type of tissue, the applicability of the triphasic
theory to the modeling of cardiac myocyte was discussed in this research. An efficient finite element
formulation for large deformation analyses was newly developed. The concentration of each ion is
set as a primary variable to treat major ions, such as sodium, calcium, and potassium, separately.
Physiological features of cardiac myocyte, such as activities of ion channels and sarcoplasmic
reliculum, were reasonably included into the new formulation. Even under a simple 2D modeling with
limited number of parameters, the simulation qualitatively reproduced various cardiac behaviors
such as excitations of cardiac cells induced by current stimuli and field stimuli.

Key Words : Biomechanics, Finite Element Method, Nonlinear Problem, Coupling Problem, Ana-
lytical Model, Triphasic Theory, Cardiac Myocyte, Cell Membrane, lon Channel

1. # B

OIEOIE B OARTTE 70 T OIL ORIz B 5 —1E
DEALLERIETHD . O BALIBO RIS TH
HANED A F o F v RNE B TEFA A BHAD L
TR AU 23R, WESCHLVY Y A F 2 DK
ISEBER 0, FORESMIZISL TLGES)
IZEDUHENBRETD . Z O —#EOIEENL, BR (A
Ao dEik, BB, OBRARY) b5 (WEEE,
BOG, TRAF =B YY) 1% (LR, miE,
M7z Ly OFBRREIZIES JREL, HicBR (BLs
fid) b5 (REEDE). HF B O TORRIZE
BIhd, ~VvF74 Yy 7 AMBETHD. 2004 4,
AL, BAIARLE: A A OREIR, BRORE
HiA £ THiN L TR Z & T, MRMlRstoA 4
WAL BATOWFZEMA R FRHCfpArL 72, 2005 4
IZA S DA AIRE 5 V0 A FRERARAT % 17V,
HaRNTo Ca?t BB, TOBMESHOEIZLD
IHEH D FEAEL BHE I 2L —b L=P. 5%
Bofind gicERIES HFEERY I a2l —va
*EESSAT 2009 4511 H 20 .
*UIEH, AR R T T R R L (8 464
8603 Fli e it Tl XA 0T) .

R RL SRR R I T R B B AR R (@ 277 8563
i oO®ES -1 5).

O ROAE AR A R R R

YRR, 7 oo u =, RECA R AR B AR

[£-mail : hirabayashi @ mech.nagoya u.ac.jp

¥ BRTERBEO — 22 TS B L Bbhs . LG
a3 A HE 7 3 O HIRAR R D BRI A A A BAR T Vi
Td 5 MRN8 eilEr > TV 5. =
DEDH 723 7 a NI D ERLSE HFERKM S
ZEY 85 HoOEiHe L T HERSRES TR
0, ZOHREARERE~OTRILBN T, HERM
BB L Vo 1RO A RARL T . L
ML, TOEMS DI FBODBEEL WL, 2T
BL THES 7o DICFITREDSIE AR & b RGN
FELR . DT, @EO OO A RE R
BOERAL T @A RERRITIZOVWTH 11
FEHTHL.

AWRTIL, 1% BRALFRE ZEL 7=/ 05
KaE 7 N OAVERR~D “AHERRE O ATREMA i 5
ZEERBAMETD. 2B, HROX) OO MR
FHZBEL T3 < DA 40 % B0 85 LERSD
H7-%, “ARFROKRMEORY K2 EE TS Hiok
N AREHRAMNICBEBIL TS FliEE BRL EL1T-o7-.

2. # i

BA AL NZDNT R (3 H B % R age 5
L, BB A A OBERL VAT HBENE
Ricte->TLED . IREWE, HE, FA4 1250 T
(BER)LFERT v VERaEE L TIRY 5 Fik

— 280 —



D15 BRALFERR £ H 8 L fo L€ 7 kic B9 2 ) 1807

Table 1 Comparison of Related Studies
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Table 2 Primary Variables in the Proposed Method
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Displacement of Solid 3 uw | U
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Fig. 1 Structure of cardiac cell
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