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on the first and second blocks, respectively.
|(V, = MN"W) + (W, NI —=M)V)| = 2|(d—M)V,N"W)]
1
<a(V,MV)+—M"2N"w, @ - M)>M~1/2NTw)
[04

1
= a(V,MV) + —(W,NM~ 21 — M)>°M~12NT w).
(04

Thus, we obtain

B\ < I-(-aM 0
1= 0 ~-I+NM~12oM - M? + L@ - my»)M-1/2NT |

By substituting o = 7, /2, the first diagonal block is bounded the same as in Eq. (34),
while the second diagonal block is bounded as

1
—I+NM~20M — M? + E(I - MM I/2NT

1
= —I+—NM""2((1 = a)(I -~ M)? + aDM'/>N"
o

1
< TI+-{U0-a) sup (1-m)?+alml
o me(m,m]

<-I1+2 (1—@) sup (1 —m)?+ 22 )1
2 melm,m] 2

=1—2(1_"—”’)(1— sup (1 —m)HI <I— (2 —T7y) min(m, 2 — m)L
2 melm,m]

Thus, we obtain the upper bound. o

Note For the inexact block LU algorithm, it is not clear whether or not the restriction

in Eq. (36) subject to the spectrum of M is really necessary to bound A(ﬁs,l) larger

than —1. We can see from the following that it is really unavoidable. Let us consider
the following two-dimensional case.

ﬁ81=|: I —m —(1 —m)n ]

’ —n(l—m) Q—-mmn?—-1]"

. . . 2
The lower eigenvalue is given with n,;, = >~ as

(—m +Q-mn? =2 —m2( —nd)2 +4a( — m)2n2)

(—m +Q—mmny — V@2 —m)2(l —mny)? +4(1 —m)2m nm)
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Fig.1 Landscape of the lower
eigenvalue of the 2 x 2 matrix
Rs,1 with respect to m (x-axis)
and n2/m (y-axis)

As can be seen in Fig. 1, L. < —1 for m > 3/2. Thus, the condition in Eq. (36) cannot
be relaxed.

The bounds obtained thus far provide the reduction rate of the error vectors that
are given after the transformation in Eq. (27). Here, we give the reduction rate of the
error vectors before the transformation, as was done in [3]. We introduce a norm by
using the transformation matrix as follows.

HEGHE M S HE )

The positive matrices that determine the norms are given by

Gr=TT= [QAO_ A 33] (39)

for the inexact block triangular algorithm, and

(40)

T
gSE’Z—ST’TS=|:QA B :|

B Qp+BQ,'BT

for the inexact block LU algorithm. Note that the condition in Eq. (22) is necessary
to define the norm as G in the inexact block triangular case, whereas the condition in
Eq. (36) is not required to ensure the positiveness of Gs since the Schur complement
on the second block is equal to Qp. Using the norms defined above, we can restate
the previous lemmas as follows.

Theorem 3 For the inexact block triangular algorithm:
Suppose the following conditions are satisfied:

0 < 6,Q4 <A < Q4 with some §, > 0,
0 < 8,Qp <BA™'BT < (2 — 8,)Qp with some &5 > 0. (41)
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Then, the iterative errors in Eq. (15) satisfy

[E“)i‘]< [E’X] th p = 1 — 28,8

=p with p = 1 — =0q0p.

Y

Eiy E/ 2

Proof This is immediately obtained from Lemma 1. O

Note that in [3] the condition, BA~'B < Qs, is required to obtain the upper bound
of A(RT.1), whereas the condition in Eq. (41) is relaxed.

Theorem 4 For the inexact block LU case:
Suppose the following conditions are satisfied:

0<8,Q4 <A< %(1 —6,)Qa, with some é, > 0,
0 < 8,Qp <BA™'BT < (2-6,)Qp with some 8, > 0. (42)

Then, the iterative errors in Eq. (15) satisfy

=P with p = 1 — ~040p.
Y Y
E/, | E; 2
Proof This is immediately obtained from Lemma 2. O

When we apply the iterative methods above, it is desirable to use Q4 and Qp for
which é, and &, are defined independently of the mesh size. Otherwise, an extraordi-
narily large number of iterations is required. Our target is to propose an efficient, yet
simply implementable, preconditioner for applications in nonlinear continuum analy-
sis on an unstructured grid. In this area, it seems to be very difficult to construct good
Q4 and Qp matrices. This provides the motivation to apply P as a preconditioner and
explore the convergence properties of the preconditioned Krylov subspace with sim-
ply implementable matrices Q4 and Qpg, such as the ILU or symmetric Gauss—Seidel
matrix. Note also that the transformation 7s in Eq. (29) and therefore the norm matrix
(40) can be defined for any positive matrices Q4 and Qpg. Thus, in the next section,
we focus on the use of Pg as a preconditioner for the Krylov subspace methods.

3 Inexact block LU matrix as a preconditioner
In this section, we analyze the eigenvalue distribution of the preconditioned matrix

P! A for the preconditioner P = Ps associated with the inexact block LU algorithm.
Note that Ps can be represented using the transformation matrix 7g in Eq. (29) as

I 0
Ps=1T¢ [0 _I:|TS-
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Thus, a computation similar to Eq. (24) leads to

A1 [T 0 o et M (I — M)NT
TsPs Al _[0 —1]75 Als —[—N(I—M) N(ZI—M)NT]' “h

Though the coefficient matrix .4 and the preconditioner Pg are symmetric, it iS not pos-
sible to define a “real” symmetric matrix similar to the preconditioned matrix Pq’ A
since both matrices are indefinite. Hence, applications of the Krylov subspace methods
for nonsymmetric matrices are unavoidable, and we cannot make any exact estimation
of convergence speed of the preconditioned Krylov subspace iteration based solely on
eigenvalue distribution for the preconditioned matrix. Nevertheless, information on
the eigenvalue distribution of the preconditioned system provides a good indication
of the performance of the preconditioner.

Let V and W be the first and second block vectors, respectively, of the eigenvector
with eigenvalue A for the matrix in Eq. (43). Then, we obtain

(V.MV) (V,d=M)N"w) 1 1
[ KA M [-+[1] s
_ (WNI-M)V) (WNQRI-M)N"W) 1 11
(W, W) W, W)

Here, the symbol (,) means the natural Hermitian dot product of the complex vector
space that satisfies

(V,NI=M)T"W) =W, NI-MTV), VV,W.

We assume that V and W are not zero, since the eigenvalue analysis is trivial if one
of them is zero. If we define the real numbers as

_MY) (L, A-MNTW) (W NQL-MNTW)
A2 w7 (W, W) ’
then we obtain from Eq. (44)
(¢ =My —)»)-4—,82 = [
Thus, the eigenvalue is given as
+ — )2 — 482

2

Lemma 5 Assume that, in addition to the condition on M in Eq. (36), the following
condition holds.

nl <NN" <7l, ie nQp <BQ; B’ <nQs.
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If the eigenvalue A is a real number, then it is bounded as
min (m, g) < A < max(m, 27). (47)
2
If the imaginary part of X is not zero, then

1
% (m. t %) = Re(}) = E(m + 2n), (48)
Im(1)| < min(v/Re(%), V), (49)
and the relation ||V || = ||W|| holds.
Proof If A is a real number, we see from Eq. (46) that

. a+y—la— a+y+|a—
min(e, y) = Y 2'“ y'sks e 2'“ y|=maX(a,y).

From the condition in Eq. (36), we also obtain

1 =

52 <y <2n (50)
This leads to the estimation in Eq. (47).

Next, we consider the case where the imaginary part of A is not zero. In this case,
we immediately see that

a+y

Re()) =
Thus, from Eq. (50) we obtain Eq. (48). From the condition in Eq. (36), we see that
20 —M)? <21 - M.

Thus, the imaginary part of A can be bounded as follows.

oy < o [V A=-MNTW)_ ((W, N(I - M>2NTW)|)”2
- vinwi Iwi?

~ - 1/2
S ((W,N(zz)IHWTZ)N W)l) _ \/g < min(yRe@), vA).  (51)

As for the norm of the block vectors, from the first and second rows in Eq. (44), we
see that

(V, I —M)N” W)) I (—(W, NI - M)V))

Im() = Im (
vV, V) (W, W)

Since the numerator on both sides is the same, we obtain ||V || = ||W]|. |
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It may also be valuable to consider the possibility of using a Krylov subspace method
for real symmetric matrices like MINRES [11] which is applicable to indefinite sys-
tems. A similar study on the Stokes equations was performed by Silvester and Wathen
for block diagonal preconditioners [13,15,16]. Here, we consider the following block
LU-type positive symmetric matrix.

[ 1 07[Qa 071 Q3'BT
o= [aoy ][ o ][0 "]

It differs from Ps in (11) only with respect to the sigh in the second diagonal block
in the central block diagonal matrix. Note that Pyg can be rewritten using 7Zs in

Eq. (29) as
Pys = T Ts.

Thus, we see that the similarity relation given below holds for the preconditioned
matrix.

PA~ T T AT

_[Qi”* o I 0] B"|[1 -Q;'B"][Q;* o
= i 0 Q;l/z _BQZI I B 0 0 I 0 Q;l/z

[ M I — M)N”
| N@—M) —N(@I-M)NT’

Note that if Q4 = A and Qp = S hold, the preconditioned matrix is similar to £
defined in Eq. (30). Thus, the MINRES iterative process converges in two iterations.
This observation indicates that the above preconditioner performs well if Q4 and
Qj are chosen appropriately. From similar computations for Pg’ ! A, we see that any

eigenvalue of the preconditioned matrix P;SI.A satisfies
(@—2)(—y —1) —p*=0.

Thus, we obtain

_a—yxJ@+y)?+4p2
- 5 ,

A

(52)

Lemma 6 Based on the same assumption as Lemma 5, the positive eigenvalues of
P;SIA are bounded as
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while the negative eigenvalues are bounded as

P PYO|

(V]

Proof Note that we obtain the following bounds for 8 from the same estimation in
Eq. (51).

B* <

=
IA
N|

(53)
If A > 0, then A is bounded as

- a@—y)+(@+y)+28 =
< 5 <
o (@a—y)+(ax+y)
- 2

3 o+ B <m+ 7,

A

=a >m.

If A < 0, then A is bounded as

Lle—y)—(@ty) =_y<_1n,

< 5 =5t
o (a—y)—(;+y)—2ﬁ=_y_ﬂ2_zﬁ_ﬁ_

A

A

O

In [7], the following estimation for the convergence of MIRES is given, based on the
assumption that the eigenvalues are contained in [—a, —b] U [c, d] for 3a > 3b > 0,
dd > 3c > 0.

k/2
I Ve -

=< max [P (A)| <2 | ———) (54)
lroll — Pe.Pe@)=1" ad 4 |

where ro and ry are residual vectors at the initial and the kth iterations, respectively,
and Py denotes a kth order polynomial. From Eq. (54) and Lemma 6, we make the
following observation. Assume that we are dealing with a finite element problem in
which the order of the element size is 4. It is reasonable to assume that we can construct
matrices Q4 and Qp, of which m and 7 are bounded independently by the element
size h. That is,

m=0(), n=0(Q).
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Then, the condition

k/2
ad /
V bc

d
s +1

<€

implies
k > |loge|O ((ma)_l/z) :

If both mm and n are O (h?), the above inequality implies

1
k > |loge|O (;1—5)

However, if one of them is O (1), then

1
k> |1 - ).
_IogGIO(h)

In the numerical experiments, we see how the bounds m and n behave with respect to
changes in # and how accurate the above estimates are. We also compare the conver-
gence of the above approach with the preconditioned GMRES by Ps.

4 Fill-controlled ILU matrix as a preconditioner

The iterative methods analyzed in Sects. 2 and 3 require construction of Qp which
should be an approximation of the Schur complement S = BA~!B7 or its approx-
imation BQ;IBT. However, as these matrices are generally dense, the computation
thereof should be avoided in practice. In this section, we analyze the property of the
ILU preconditioners, proposed in [14], that are not affected by this difficulty. The ILU
preconditioner is represented as

p_[LatDs 0 D' o0 [Da+L} B 55)
B Lp +Dp 0 -Dj' 0 D +LE |

where L4 and Lp are strictly lower triangular matrices, and D4 and D are diagonal
matrices. The nonzero pattern of L 4 is the same as that in the lower triangular part
of A, and the nonzero pattern of L is the same as that of the lower triangular part
of BD, IBT, where the nonzero pattern of B is determined from any fill control strat-
egy. Thus, the factorization in the second diagonal block is none other than the ILU
factorization of BD;'B” without fill-ins, since the right hand side of Eq. (55) expands
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to

P [(LA + DD (D4 + L) (L4 +DyD; B
T 204 +LD) | BD,'BT - (Ly + Dp)D; 5 + L)

(56)

We assume that all the diagonal components of D4 and Dp are positive. Then, the
preconditioner can be rewritten as

I 0 , D@4 +L%)  D;'BT
Pr = TT[ ]T, th 7y = iy
=4 1o |0 VA 0 D;'/*(Dp +LE)

Hence, through the similarity transformation of the preconditioned matrix with 7y, we
obtain

nean =g b7 Tag
M; NT — MNJ
= NT T L RNT _RemRr |- O
—(N; =NTMp NiNT +NiNT — NiMyN?

Here, the following notations are used.

- ((LA +DA)D_1/2)_1 A( D,'2(D4 +LA)) ,
1= (s +D»D;?) 7 B (D204 +1D)

=l
- ((LB +DB)DB‘/2) BD,'"2.

From Eq. (56), we see that N1 Nj holds 1f all the fill-ins in the off-diagonal blocks
are taken into account in the construction of B. In this case, Eq. (57) has the same form
as Eq. (43). Thus, we obtain similar eigenvalue estimations. However, considering all
the fill-ins in the off-diagonal blocks is impractical. Thus, in general, we cannot ensure
the positiveness of the second diagonal block in Eq. (57). Hence, we cannot guarantee
that all the eigenvalues of the preconditioned matrix are contained in the right-half
plane.
As in Sect. 3, we can also construct a positive version of Eq. (55) as

_[La+Ds 0 D' o0 I[Ds+LE BT | _ _;
P“"[ B LB+DBH 0 D3 0 Dp + L% =T T
In this case, the similarity transformation gives

M N/ —MNT
PJ:IIA -~ 7I~TATI_1 = AIT NT 'S TI S N7
N; — NI M; —(NINj + NIN; — N]M]NI )
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Once again, we cannot theoretically bound the eigenvalue distribution of the second
diagonal block in the negative region.

5 Numerical experiments
We now examine the performance of the preconditioners introduced in Sects. 3 and 4.

The problem tested is a deformation problem of the so-called Mooney-Rivlin body,
for which the deformation potential per unit volume is given by

W(C) = cilc + crllc. (58)

Here, C is the right Cauchy Green deformation tensor defined as

du\’ ou
=1+ —= I+—),
¢ ( * aX) ( * aX)
where X is the position vector in the undeformed configuration, and u = u(X) is the

displacement vector of the material point X after the deformation. The invariants are
defined as

Tc = det(C)~3tr(C),
e = det(C)~%3 (tr(C)2 _ tr(C2)).

In the above case, we solve the variational problem for the energy functional:

E=/W(C)d§2
Q

with the incompressibility constraint, det(C) — 1 = 0. Here, 2 is the domain of mate-
rial in the undeformed configuration. The constraint variational problem described in
Egs. (5) and (6) is represented by the following weak formulation:

ow B
/ (— + Adet(C)C_') ' ——C—audQ =0, Véu (59)
oC ou
/SA(det(C) —1)dQ2 =0, VéA. (60)
Q

The notation *:” denotes the standard dot product of the tensors, and we apply the
formula:

d det(C)
aC

= det(C)C".
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As described in Sect. 1, Egs. (59) and (60) are further linearized to perform the New-
ton-Raphson iterations, and we have to solve the system of linear equations given in
Eqgs. (8) and (9).

When applying a finite element discretization to constraint problems, we have to
be mindful of the stability of the discretized linear system with respect to the applied
finite element interpolations to the displacement u and the Lagrange multiplier A [4].
To ensure stability, we adopt the so-called mini element [1], in which a central dis-
placement node is added to each triangular or tetrahedral element and the Lagrange
multiplier nodes are placed on the vertices.

In the inexact block LU preconditioner defined in Eq. (11), we need to determine
the matrices Q4 and Q g, where Q4 should be an approximation of A. Thus, we adopt
the ILU factorization without fill-in:

Q4 = (La+Dy)D;' (D4 + LY. (61)

Note that L4 and D, are the same matrices that appeared in the first block of the
ILU factorization in Eq. (55) of the whole matrix A. According to Lemma 5, Qg is
preferably a good approximation of BQ , BT, Though it is easy to perform the matrix
multiplication by BQ, BT of any given vector, the direct computation of the compo-
nents of BQ;IBT leads to a dense matrix. Hence, to work with only sparse matrices,
we again adopt the factorization in Eq. (55) as

Qs = (Lp +Dp)D,' (Dp + LY, (62)

based on the following conslderanon From Eq. (56), Qp in Eq. (62) is expected to
be an approximation of BD 'B”. And again from the off-diagonal part in the same
equation, (L4 + D4)D} BT is expected to be an approximation of B”. Thus, the
following chain of approximative relations holds.

B {(LA +DD; Dy +L§)} B” ~BD,'B ~ (Ly + Dy)D,' s + L)

As for the fill control to construct Q4 by factorizing A, all fill-ins are ignored. Also, in
the factorization of BD B to construct Qp, we do not ¢ allow any fill-ins. However,
in the factorization at the off-diagonal block to compute B, we test both level 1 fill-ins
and the no fill-in case. We denote these preconditioners by Ps(L) and Pj(L), where
L is the fill-in level allowed for B.

We now examine the performance of the preconditioners Ps(L) and Py(L) with
linear systems arising from a deformation analysis by a simple stretch, in which the
undeformed configuration is either a unit square or a unit cube as depicted in Fig. 2.
Due to the symmetry of geometry, we compute only one half of the actual material in
each direction. For example, the following boundary conditions are imposed on the
displacement vector function u = (uy, u2, u3)" in the case of the cube.

uy=ur=0, wuz=D3on{X3=1}: (thetop), uz=0on {X3=0}:(the bottom),
up =0on{X, =0}, wur =00n{X; =0} : (the side walls).
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Fi%. 2 The initial and final configurations of the two-dimensional 202 mesh (left) and three-dimensional
207 mesh (right)

Table 1 The degrees of

freedom (D.O.F.) and the Mesh size DOE nz(A)
number of nonzero components Two-dimensional problem
in the matrix (nz(.A)) 202 5.640 111,686
402 22,480 452,166
802 89,760 1,819,526
Three-dimensional problem
10° 26,510 2,324,764
203 206,020 19,201,294
Fig.3 Arnoldi procedure for v1 =ro(=b— Aug); v1 = v1/||v1]|
AP-! fori=1,...,m;
w; = AP lu;;
forj=1,...,4
hji = (wi,v;);w; = w; — hy jv;;
next j;
hita,i = |lwill; vitr = wi/hita,;
next i;

The magnitude of stretch Dj is increased by 0.1 in each step up to D3 = 0.5. Thus,
five incremental steps are required to reach the final configuration. As for the material
parameters in Eq. (58), ¢; = 0.3, ¢ = 0.15 are adopted. The number of elements
adopted in each direction is either 20, 40 or 80 in the two-dimensional case, and 10 or
20 in the three-dimensional case. The total degrees of freedom, except for the imposed
boundary condition and the number of nonzero components in the coefficient matrix,
are given in Table 1. Note that even though the matrices are sparse, there are nearly
twenty and a hundred nonzeros in each row in the two- and three-dimensional cases,
respectively.

In the linear solutions, we adopted the right-preconditioned full GMRES. The pre-
conditioned GMRES algorithm is based on the Arnoldi procedure [12], in which the
orthonormal basis {v;}i=1... » is constructed for the preconditioned matrix AP as
described in Fig. 3.
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By inspecting the Hessenberg matrix defined by
H(m) = (hj,0)i.j=tm = (AP~ v, v))i jmim, (hji =0 fori+1<j),

we can see how the matrix AP~ ! acts on the Krylov subspace spanned by the basis vec-
tors vy, ..., vy, Thus, at the final solution stage, we extracted the Hessenberg matrix
H (m) (where m is the number of iterations) and examined its eigenvalue distribution.
Table 2 gives the bounds of the eigenvalue distribution, the average number of GMRES
iterations in one solution process, and the average CPU time in one solution process.
In the experiment, each GMRES iteration was stopped when the relative L2-norm
of the residual was smaller than 10~8. For each increment of the displacement, on
average four Newton—Raphson iterations were required before the nonlinear equation
converged. The computation was performed with a single CPU (Intel(R) Pentium(R)
model 4, Clock 3.4 GHz, Cache size 16 kB, Main memory 2 GB). To validate the esti-
mates in Eq. (48) of the eigenvalues with nonzero imaginary parts for Ps, we picked
an eigenvalue X that satisfies

Re(%) = min{Re(X) | Im(2.) # 0}.

The following observations together with their interpretations associated with the
theory in Sects. 3 and 4 were made.

1. Minimal real part of the eigenvalues
In all cases, these minimums are given on the real axis. The values are the same
for all preconditioners for a common mesh size. The order of these is obviously
hz, where h indicates the element size. For Ps, these minimums can possibly be
determined only from m in Eq. (47), since the minimums are the same for the
different fill levels of B which causes the change in N, and thus also the change
inn.

2. Maximal real parts of the eigenvalues
These are almost independent of the element size. In the case of Py, they are larger
than 2, but decrease with an increase in the fill-in level. This indicates that they are
determined from 72 in Eq. (47). It also means that using Pg in the matrix splitting
iterations in Sect. 2 leads to the divergence. We can apply an appropriate scaling
factor to Qp so that the condition in Eq. (42) in Theorem 4 is satisfied. However,
this does not bring about any meaningful convergence improvement in the use
as a preconditioner in these examples. The decrease in the maximums with the
associated increase in the fill-in level in B is brought about by the improvement in
the approximation of §Q AB” by Qp that leads to the decrease in 77. For Pj, the
maximums are well bounded, although they increased slightly when the fill-ins
were applied.

3. Bounds for the imaginary parts of the eigenvalues
For Ps, the bounds are much smaller than one and almost independent of the
element size and the fill-in level in B. We cannot give a good explanation for this
insensitivity to the fill-in level based on the current theory. On the other hand, the
bounds are greater than one for P;(0). But, the bounds are improved in Pj(1).
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4. Eigenvalues with negative real parts
As predicted in Theorem 4, all the eigenvalues are included in the right half plane
for Ps. However, for P there are a few eigenvalues outside this plane, and these
disappear if the fill-ins in B are applied in some cases. This reflects the inherent
difficulty in judging the positiveness of the matrix N|NI + NINl — N]MINl in
Eq. (57). Note that the imaginary parts of these eigenvalues are not that small and
as such, they may not affect the convergence rate too severely.

5. Convergence and execution time
The dependence of the number of iterations on element size 4 is slightly larger
than O (1/ h) for both preconditioners. However, it is much smaller than O (1/ h2).
There is no complete theory to explain this convergence behavior. However, this
tendency of Ps seems to be closely related to the distribution of eigenvalues with

Table 2 The eigenvalue distribution bounds in the right-half plane at the final equilibrium, eigenvalues in
the left-half plane if they exist in column ‘negative Re’, and the average number of GMRES iterations and
solution times

Prec. Mesh  minRe(A) maxRe(A) maxIm(i) x Negative Re
Two-dimensional triangular mesh (eigenvalue distribution)
20 0.016 10.6 0.44 (0.069, +£0.22) None
PsO 40 0.0041 10.6 0.45 (0.018, +0.11) None
80 0.0010 10.6 0.47 (0.0047, £0.057) None
. 20 0.016 1.68 1.26 - (—0.011, £0.51)
PO 40 0.0041 1.70 1.24 - (—0.083, +£0.26)
(—0.044, +0.13)
80 0.0010 1.71 1.24 - (~0.046, £0.13)
(—0.0099, £0.56)
20 0.016 4.7 0.45 (0.10, £0.27) None
Ps(h 40 0.0041 4.6 0.47 (0.026, +0.14) None
80 0.0010 4.6 0.47 (0.0066, £0.071) None
20 0.016 1.82 0.77 - None
P 40 0.0041 1.84 0.74 - (—0.0096, £0.24)
80 0.0010 1.84 0.74 - (—0.014, £0.12)
Three-dimensional tetrahedral mesh (eigenvalue distribution)
10 0.010 5.52 0.44 (0.11, £0.0017) None
Ps @) 20 0.0025 5.53 0.46 (0.082, £0.25) None
10 0.010 1.51 1.06 - (—0.076, £0.73)
P10 (—0.099, +0.33)
20 0.0025 1.53 0.97 - (=0.0052, +0.49)
0.010 3.09 0.35 (0.74, £0.36) None
Ps() 20 0.0025 3.17 0.46 (0.21, £0.37) None
10 0.010 1.60 0.76 - None
Py 0.0025 1.64 0.65 - None
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Table 2 Continued

Iterations and solution times

Prec. Mesh #IT Time (s)

Two-dimensional triangular mesh

20 78 0.31
Ps© 40 165 339
80 374 485
20 84 0.26
P10 4 192 337
80 459 582
20 62 027
Ps) 40 129 2.52
80 287 33.0
20 59 0.23
A 40 134 245
80 315 347
Three-dimensional tetrahedral mesh
10 100 455
Ps©@ 20 227 120
10 113 3.79
P10 20 275 130
10 78 430
Ps() 20 169 90.0
10 76 529
P 20 170 105

The fill level for B is indicated in parentheses in column ‘Prec’

nonzero imaginary parts. This is discussed further when we compare the con-
vergence with the positive preconditioner Ps. In general, the convergence with
‘Ps is substantially better than with P, and the difference becomes larger with
an increase in mesh size O(1/h). The convergence deterioration with P; may
be as a result of the presence of those eigenvalues not included in the right-half
plane, since a fairly similar convergence is observed when they disappear with the
fill-ins.

Next, in addition to observing the simple bounds of the eigenvalues in the table,
we examine the distribution in greater detail, in particular, focusing the eigenvalues
around the origin. The eigenvalue distributions for Ps(0), Ps(1) and P;(0), Pi(1) in
the 802 square problem are depicted in Fig. 4. The plots on the left show the global
distributions, while those on the right show the local distributions around the origin
in the right-half plane. For comparison with the estimation of the imaginary part in
Eq. (49), the curve defined by x = y? is also depicted. The results for Ps show that
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Fig. 4 Eigenvalue distributions for the two-dimensional problem (802). Plus symbol and open circle indi-
cate fill levels of 0 and 1, respectively. The solid line shows the curve y2 = x

Eq. (49) provides an exact estimate of the magnitude of the imaginary part around the
origin. On the other hand, most of the eigenvalues are out of the bounds around the
origin for . This indicates difficulties of theoretical prediction for the convergence
performance of ;. However, Pj realizes comparable convergence speed to Pg as we
will see later in this section.

Since there does not appear to be any theory that can explain the almost O(1/h)
convergence rate for Ps from the eigenvalue distribution, we validate the applicability
of Eq. (54) for the positive symmetric preconditioner Pyg. Table 3 gives the eigen-
value bounds [—a, —b] U [c, d] for the Hessenberg matrix for AP.,.S(I)_' and the
average number of GMRES iterations for the two-dimensional case. Note that here
we can basically apply MINRES instead of GMRES to reduce the computational cost
of the dot products. However, as we are interested in the comparison of the conver-
gence rate with the GMRES iteration preconditioned by Ps(1), GMRES is applied to
AP,s(1)~". The upper bound —b in the negative region seems to decrease with order
h, while the lower bound c in the positive region decreases with order /2. According
to Eq. (54), this results in an order for the number of iterations of (1/ h)3/ 2. A similar
estimate was obtained by Wathen for a block diagonal preconditioner for the Stokes
equation [16]. However, a simple calculation from the number of iterations in the table,
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Table 3 Comparison of the eigenvalue bounds and the convergence for Py g(1) and Ps(1) in the two-
dimensional case

Mesh size —a —b ¢ d gIT
Pis
20 -5.3 —0.37 0.016 1.7 150
40 -53 -0.16 0.0041 1.8 333
80 —-53 —0.075 0.0010 1.9 691
Mesh size min Re(1) max Re(A) x 4T
Ps
20 0.016 4.7 (0.10, +£0.27) 62
40 0.0041 4.6 (0.026, +0.14) 129
80 0.0010 46 (0.0066, £0.071) 287

Fig. 5 Eigenvalue distributions T T T T T T T
on the real axis for the three 3 VRS P 4 O am—
mesh levels (1:202, 2:402,
3:80%)
°
>
[
-
c 2 K ]
7]
<]
=
1 a B

-1 -09-08-0.7-06-05-04-03-02-01 0 0.1

such as
150 - 232 ~ 424 > 333, 333.2%2 ~ 942 » 691,

indicates faster convergence than that predicted from the theory. The reason for the
discrepancy in this convergence estimate may be better understood if we look more
closely at the eigenvalue distribution depicted in Fig. 5. The interesting thing here is
that there is a common border over all the mesh levels where the dense and sparse
distributions in the negative region are separated. Although the number of eigenvalues
in the sparse part increases with an increase in the mesh level, their distribution is still
much sparser compared with the dense part. This certainly brings about a faster con-
vergence than the previous prediction. The reason of this tendency in the eigenvalue
distributions is not entirely clear at the moment. According to the theory, it seems to
be related to the eigenvalue distribution of NN” ~ QEIBQ;'BT.

It is also interesting to compare the convergence rate with Ps. The numbers of
iterations with g are more than double those with Pg. In the extreme case where the
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Table 4 Comparison of the convergence of the first diagonal block matrix A and the whole matrix A

Mesh size Q4 for A Ps(1) for A Pr(1) for A

4T Time (s) 4T Time (s) 1T Time (s)
202 53 0.091 62 0.27 59 0.23
402 104 0.82 129 252 134 245
802 201 9.55 287 33.0 315 347
103 84 3.96 78 5.29 76 430
203 162 492 169 90.0 170 105

exact block LU factorization (i.e. Q4 = A, Qp = S) is applied, the preconditioned
matrix for the former is similar to £ defined in Eq. (30), whereas for the latter it is
the identity matrix. This may explain the tendency above. We cannot, however, give
any reasonable explanation for this relation in the inexact block LU factorization case,
because the Krylov subspace, produced by each of these, is different.

Finally, we compare the convergence of the whole matrix with that of only the first
diagonal block A. In this comparison, we extracted the first diagonal block A and F
from the whole system in Eq. (1) and solved AX = F using the GMRES iteration with
the preconditioner Q4 in each Newton—Raphson step. Note that we applied GMRES
to the positive symmetric problems, since we are interested in the comparison of the
GMRES iteration for the whole system. In Table 4, the average number of iterations
and the CPU time are compared. These results imply reasonable performance of the
proposed preconditioners for the whole system. In particular, the number of iterations
is almost the same for the three-dimensional problem.

6 Conclusions

The main objective of this study was to explore the inexact LU-type preconditioners
for saddle point problems arising in nonlinear continuum analysis. Many of the previ-
ous studies on saddle point problems assumed that good preconditioners, Q4 for A or
Qp for S, were available. However, in real-life applications of finite element analysis
for hyper-elastic materials, this requirement is too strict since we do not have a good
understanding of the properties of the resultant matrices A and B and they usually do
not have any hierarchical structure which makes the application of multilevel methods
easier. Thus, it is important to construct the best preconditioner for the whole system
with the available approximative matrices Q4 and Qpg. From this point of view, we
have tried to make exact estimates of the eigenvalue distribution and to understand the
convergence behavior using an approximation Q4 which is not spectrally equivalent
to A. We have shown that we can achieve almost order 1/ 4 for the number of iterations
before convergence by constructing Q4 and Qp from the simple ILU factorizations.
Although our theoretical explanation for this convergence rate is still incomplete, we
have provided a good starting point for further development of the theory. Further-
more, such a theoretical consideration will certainly bring about further improvements

@ Springer



Preconditioners for indefinite problems 117

in preconditioning techniques for use in the area of highly nonlinear incompressible
continuum analysis.
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Baroreflex Sensitivity Might Predict Responders to Milrinone in
Patients With Heart Failure

Takuya KisHi,' MD, and Kenji SUNAGAWA,' MD

SUMMARY

The phosphodiesterase I inhibitor milrinone (MIL) is considered to be effective for “wet and cold” heart failure.
In some cases, however, the inotropic effects of milrinone are insufficient. A previous study suggested that baroreflex
sensitivity (BRS) predicts the cases in which MIL increases left ventricular dp/dt. The aim of this study was to determine
whether BRS d using the sp g method predicts the MIL responders. Twenty-four patients with
“wet and cold” heart failure whose systolic blood pressure > 100 mmHg were enrolled. At 2 hours MIL improved dys-
pnea, general fatigue, urine volume, and tricuspid regurgitant pressure gradient in 13 patients (responders; R group),
whereas it failed to improve in 11 patients (nonresponders; NR group). BRS in the R group was significantly higher than
that in the NR group prior to the MIL infusion. At 2 hours after the MIL infusion, BRS was further increased in the R
group, but did not increase in the NR group. The sensitivity and specificity of BRS at a cut-off level of 5 ms/mmHg for
the prediction of R group were 0.94 and 0.93, respectively. BRS might be useful for identifying potential responders to
milrinone in patients with blood pressure-preserved “wet and cold” heart failure. (Int HeartJ 2010; 51: 411-415)

Key words: Heart failure, Baroreflex sensitivity, Milrinone

ilrinone, a phosphodiesterase-III inhibitor (PDEII-
1), has an inotropic and vasodilator effect for “wet
and cold” heart failure,"> which is determined as

heart failure with congestion and hypoperfusion.” In some cas-
es, however‘ the inotropic effects of m:lnnone are msuﬂiclent

and with dot is y.” A pre-
vious study suggested that baroteﬂex sensitivity (BRS) can
predict the cases in which mil left icul:

dp/dt® However, whether arterial baroreflex function is related
to the inotropic responsiveness to milrinone has not been clari-
fied in human heart failure.

Baroreflex control is one of the key mechanisms respon-
sible for the short-term control of blood pressure.>” Impair-
ment of this reflex has been found in a number of conditions,
such as aging,” post myocardial infarction,'® hypertension,”
and heart failure."” Baroreflex sensitivity was originally as-
sessed by intra-arterial measurement of the change in pulse in-
terval following a pharmacologically induced change in blood
pressure. However, for some time now, noninvasive monitor-
ing of blood pressure using finger plethysmography has been
available, and further methods for measuring baroreflex sensp
tivity have been d ped, which assess sp u
in blood pressure and pulse interval, and do not requu'e phar

“wet and cold” heart failure.

METHODS

The present study was approved by the Ethics Committee
for Human Research of Kyushu University Graduate School of
Medical Sciences. Data collected retrospectively were fully de-
identified.

Patient We p ly studied patients with
symptomatic acute heart failure admitted to Kyushu University
Hospital from January 2006 to December 2007 who were
treated with i infusion of milri The criteria for
enrollment in the study were clinical evidence of acute heart
failure diagnosed by Framingham criteria'” and low cardiac
output, which is called “wet and cold” heart failure.” We de-
fined low cardiac output from the clinical state of “cold and
wet”. In those patients, the New York Heart Association
(NYHA) functional classification on admission ranged be-
tween I and IV. We excluded patients whose systolic blood
pressure was < 100 mmHg or who had atrial fibrillation,

chronic ob ) y disease, d , right ven-
tricular myocardial mfam:on, or right heart failure. Prior med-

macological lation of blood p pectral analy- ication by i injection of di nitrates, and mor-
sis.'>'® phine was permitted. The dose of milrinone was adjusted

The aim of this study was to determine whether the ding to the condition of each individual patient, and if
baroreflex sensitivity d using the spc se- p of heart failure were not adequately improved by
quence method can identify potential milrinone responders or milrinone, cc i use of or repl with other

not in patients with sinus rhythm and blood pressure-preserved

agents indicated for the treatment of acute heart failure was
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