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DRHOFABIRBRENTTRETHIZ EMNREH
fzo —H. 10D ~OREE*EETH L. FHEIC
BETHAERVDERLEFEOERIELZRLINE
AH-o1=.

Z_TER 22 FETIX, ¥4 00> k0
-5 (UWFRAMaVERT) £HINT, 10D ~
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Fig.1 Data acquisition using an ls long
window shifting every 0.2s
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TRY. CCT. AIFX4xmfTHITHY., 4x1
RY bl eb)ITHRETH S,

AHARTIE, ETHARBIOBRZHETZ T,
OB EERABDELSIIm=14¢ L. B/IN2F
EIZEY QXOERBETILOREITH 4 %
EL.

ERARICIE. FRMICHEL-LIEIELI DE
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DHOEMZEH y(DHECELZTEL., Thon
PORKEICHET HTFERES T OBHOFR
BiroEHE LTHET S,

B-3. DRDLREMI BN DHIER

FRETIE. 4 BEOLARODKE SR, SVT,
VI. LU VF OFERI 21T 51-DIC. RO & 571,
DALBRORHEICE S {BHOEREAN
ELEERBETIVICEISAHEERAL:, &
MRTIE, EERETIVLOANELT, LTI
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DEENMS/ONSEFMLIERE LTLAE

....

Bins(IECG,y) >7 2 Bins(IECGgy)

Fig.2 An example of histogram of
simultaneous distribution between
IECGLy and IECGgy in SR
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DRDERNS 14 EOEREZHET 89S
FUERRETIORBERVWTLREOSE
275589 %. ICDIc=2ETHLELT-,
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3

-40 -



ROCA

SR or SVT vT VF
[l Reference algorithm [l New "Complex" algorithm

[C] New "Period" algorithm B All new algorithms

Fig.3 Classification of cardiac rhythms, which
shows ROCA of SR or SVT, VT, and VF, in
varying the algorithm of calculating indices

EpTE. £ETFARO7ZILIY X LZE
Reference algorithm, Reference algorithm H
5 Period & Delay DEHAEEZZEELEE1D
% New “Period” algorithm , Reference
algorithm ™% Complex DEHAEZETELT-
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Table 1 Computational time of calculating indices
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Nitric oxide (NO) and reactive oxygen species (ROS) play important roles in blood
pressure regulation via the modulation of the autonomic nervous system, particularly in
the central nervous system (CNS). In general, accumulating evidence suggests that NO
inhibits, but ROS activates, the sympathetic nervous system, NO and ROS, however,
interact with each other. Our consecutive studies and those of others strongly indicate
that an imbalance between NO bioavailability and ROS generation in the CNS,
including the brain stem, activates the sympathetic nervous system, and this mechanism
is involved in the pathogenesis of neurogenic aspects of hypertension. In this review,
we focus on the role of NO and ROS in the regulation of the sympathetic nervous
system within the brain stem and subsequent cardiovascular control. Multiple mecha-
nisms are proposed, including modulation of neurotransmitter release, inhibition of
receptors, and alterations of intracellular signaling pathways. Together, the evidence
indicates that an imbalance of NO and ROS in the CNS plays a pivotal role in the
pathogenesis of hypertension.

blood pressure; sympathetic nervous system; central nervous system; nitric oxide;

oxidative stress

ACTIVATION OF THE SYMPATHETIC nervous system is critically
involved in the pathogenesis of hypertension, from initial
occurrence to the development of target organ damage, such as
heart failure, stroke, and renal failure (35, 36). The importance
of the effects of the renin-angiotensin system on the sympa-
thetic nervous system in the pathogenesis of hypertension is
recently highlighted (30, 31). This is not surprising because
both the autonomic nervous system and hormonal factors are
the major regulators of blood pressure; therefore, abnormalities
of either system are likely to be involved in the pathogenesis of
cssential hypertension (30, 31, 37). Esler (30) reported that the
sympathetic nervous system is activated in ~50% of patients
with hypertension, particularly in patients with essential hy-
pertension, Central sympathetic outflow is determined by sev-
eral important nuclei and their circuits in the central nervous
system (CNS) (9, 81). These pathways involve many neu-
rotransmitters and neuromodulators (16, 25, 38, 99). In partic-
ular, the brain stem circuitry is now considered crucial for the
pathogenesis of hypertension, including both excitatory and
inhibitory inputs from the supramedullary nuclei and the baro-
receptors (16, 25, 38, 100, 115). In this review, we focus on the
role of nitric oxide (NO) and reactive oxygen species (ROS) in
the brain stem as factors constituting the neural mechanisms of
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hypertension. Because of the close relationship between NO
and ROS, we discuss the individual roles of NO and ROS in
the brain stem in central mechanisms of hypertension, and then
the relationship between the two. Finally, we will discuss the
possibility of targeting some cardiovascular drugs to improve
the imbalance of NO and ROS.

NO in the Brain

NO is an important mediator of intracellular signaling in
various tissues, including the CNS (32, 118, 119). NO acts via
the second messenger cyclic GMP (32). Thus, soluble guany-
late cyclase is its receptor. NO is synthesized from its precur-
sor, L-arginine, by endogenous NO synthase (NOS). There are
three NOS isoforms: constitutive enzymes, such as neuronal
NOS (nNOS) and endothelial NOS (eNOS), and inducible
enzymes such as inducible NOS (iNOS). A number of studies
have demonstrated the localization of the nNOS, eNOS, and
iNOS within the CNS using in situ hybridization and histo-
chemical staining with NADPH-diaphorase or immunohisto-
chemistry (8). nNOS is abundant in neurons. Considerable
evidence indicates that NOS acts on central and peripheral sites
throughout the autonomic nervous system, which controls the
cardiovascular system, including the receptors and effectors of
the baroreflex pathway (70, 95, 129),

Role of NO in the Brain Stem in Controlling Blood Pressure

Chronic administration of the NO synthesis inhibitor N™-
nitro-L-arginine methyl ester (L-NAME) in drinking water
induces a large increase in blood pressure in rats (29). Gangli-
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onic blockade elicits a greater fall in blood pressure in L-
NAME-treated rats compared with controls, suggesting that the
level of central sympathetic outflow in L-NAME-treated rats is
greater than that in control rats. Microinjection of an ANG Il
type 1 (AT;) receptor blocker (candesartan), but not that of an
AT, receptor blocker (PD123319), into the nucleus tractus
solitarius (NTS) elicits a greater decrease in blood pressure,
heart rate, and renal sympathetic nerve activity (RSNA) in
L-NAME-treated rats than in control rats. These results suggest
that increased RSNA contributes to hypertension induced by
chronic NOS inhibition and that activation of the renin-angio-
tensin system in the NTS is involved, at least in part, in the
increased RSNA via AT receptors (29). The rostral ventrolat-
eral medulla (RVLM), the vasomotor center, is also activated
in this model of hypertension, suggesting enhanced central
sympathetic outflow (9). Pharmacological inhibition of NOS
evoked by N°-monomethyl-L-arginine (L-NMMA) or L-NAME
also induces large increases in blood pressure that are partially
sympathetically mediated in humans (109).

Immunohistochemical studies have revealed a rich distribu-
tion of nNOS in the NTS (8). Microinjection of L-NMMA into
the NTS elicits an increase in blood pressure and RSNA,
regardless of whether the baroreceptors are intact in anesthe-
tized rabbits (39). The neurons in the NTS are activated by NO
projecting to the caudal ventrolateral medulla, thereby activat-
ing the inhibitory neurons in the caudal ventrolateral medulla,
which project to the RVLM, and may ultimately result in
decreased sympathetic nerve activity (SNA). Single-unit extra-
cellular recordings of NTS neurons in rat brain stem slices
revealed that L-arginine increases neuronal activity dose-de-
pendently, but p-arginine does not (80, 116). L-NMMA blocks
the L-arginine-induced increases in the neuronal activity. So-
dium nitroprusside, an NO donor, also increases neuronal
activity. Consistent with the findings from the in vivo studies
(39), these results suggest that NO increases the neuronal
activity in the NTS through an increase in cyclic GMP. It has
been proposed that NO acts in an ultrashort feedback loop, in
which the release of L-glutamate activates nNOS and subse-
quently the production of NO (32). The NO, in turn, diffuses to
presynaptic terminals, where it modulates the release of L-glu-
tamate in response to neuronal activation. Studies using in vivo
microdialysis demonstrated that activation of NMDA receptors
in the NTS induces the release of NO, and NMDA-induced NO
production stimulates L-glutamate release (74, 75, 82). In
addition, this mechanism is involved in the depressor and
bradycardic responses evoked by NMDA receptor activation in
anesthetized rats (82). To determine the effects of increased
NO production in the NTS for much longer periods on blood
pressure, heart rate, and urinary norepinephrine excretion, we
developed an in vivo technique for eNOS gene transfer into the
NTS of rats (43, 44, 46, 107). In this study, the successful
transfer of the eNOS gene into the NTS was confirmed by
several methods, including immunohistochemistry, Western
blot analysis, and nitrite/nitrate concentration measurements
(107). Changes in blood pressure and heart rate were observed
using a radio-telemetry system. It is important to note that we
used eNOS instead of nNOS, which is normally abundant in
the CNS, because the purpose of the study was to increase NO
production from constitutively expressed NOS. The results
indicated that NO in the NTS exerts an inhibitory effect on
SNA in vivo.

BRAIN NO AND ROS AND BLOOD PRESSURE REGULATION

R819

Compared to studies of the NTS, studies of the RVLM in
both acute and anesthestized models have produced more
conflicting results (42, 53, 66, 81, 112, 120, 131). Therefore,
we applied the technique described above to studies of the
RVLM (57, 58). In those studies, blood pressure, heart rate,
and urinary norepinephrine excretion were decreased after
eNOS gene transfer. Microinjection of either L-NMMA or
bicuculine, a GABA receptor antagonist, into the RVLM after
eNOS gene transfer increased blood pressure to greater
levels in the eNOS gene transfer group compared with the
mock gene transfer control group. GABA levels in the
RVLM after the eNOS gene transfer measured by in vivo
microdialysis were also increased in the eNOS gene transfer
group. These results indicate that the increased NO produc-
tion evoked by the overexpression of eNOS in the bilateral
RVLM decreases blood pressure, heart rate, and SNA in
awake rats. Furthermore, these responses are mediated by an
increased release of GABA in the RVLM. These studies
provided convincing evidence that chronic changes in neu-
rotransmitters/neuromodulators in the RVLM have a sustained
impact on blood pressure in awake animals.

There is no clear explanation for the different modulatory
effects of NO on neurons between the NTS and RVLM. NO
increases both excitatory and inhibitory amino acids in the
RVLM (43, 57). NO has also been shown to increase both
L-glutamate and GABA in the paraventricular nucleus of hy-
pothalamus (49). Microinjection of kynurenic acid into the
RVLM, however, did not alter blood pressure after eNOS gene
transfer, although microinjection of bicuculline into the RVLM
augmented the increase in blood pressure (57). Therefore, we
consider that GABAergic inhibition of the RVLM neurons
might be more powerful than the glutamatergic activation in
the resting condition (43, 57). In contrast, the glutamatergic
input into the NTS neurons might be more powerful than the
GABAergic input. In the NTS, there are close anatomic con-
nections between nNOS and glutamatergic receptors (75).
Furthermore, increases in NO induce L-glutamate release and
microinfusion of NMDA and AMPA increase NO levels,
suggesting that there are facilitatory interactions between L-
glutamate and NO (27, 74, 82), although there are no studies
measuring GABA levels induced by NO in the NTS. Further-
more, higher concentrations of NO are required to directly
engage GABAergic inhibition, while lower concentrations of
NO might be important for glutamatergic transmission in the
NTS (125). Thus, it is still difficult and complicated to explain
the physiological response induced by NO in the NTS (119).
With regard to the action of NO on neuronal activity, NO
induces both excitatory and inhibitory postsynaptic currents
that likely depend on the neuron examined (6, 7, 126, 127).

Effects of NO in the Brain System in Experimental Models
of Hypertension

Neurogenic mechanisms are dominant in the pathogenesis of
essential hypertension in ~50% of patients (30). Spontane-
ously hypertensive rats (SHR) or stroke-prone SHR (SHRSP)
exhibit increased RSNA during the development of hyperten-
sion, and blood pressure and RSNA are positively correlated
(52, 79). The L-arginine-NO pathway is disrupted in SHR and
SHRSP. The depressor response to an intracerebroventricular
injection of an NO donor is greater in SHRSP than in normo-
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tensive control rats, whereas the pressor response to intracere-
broventricular injection of L-NAME is smaller (13). Semiquan-
titative RT-PCRs and in situ hybridization in SHR and Wistar-
Kyoto (WKY) rats at 4 (prehypertensive) and 14 (established
hypertension) wk of age (101) indicate that eNOS mRNA
expression changes with the development of hypertension.
Although there are no differences between the groups at 4 wk
of age, nNOS gene expression increases in the hypothalamus,
dorsal medulla, and caudal ventrolateral medulla of SHR
compared with WKY rats at 14 wk of age. In the RVLM, there
are no differences between the groups. In the SHRSP, there are
also no differences in nNOS expression levels in the RVLM
compared with WKY rats (101). A recent study demonstrated
that NOS activity, measured by the ability of tissue homoge-
nate to convert [*H]L-arginine to [*H]L-citrulline in a calcium-
and NADPH-dependent manner, is impaired in the cerebral
cortex and brain stem of prehypertensive SHR (104). In con-
trast, NOS activity is increased in the hypothalamus and brain
stem in SHR rats with established hypertension compared with
WKY rats (104). Thus, attenuated NOS activity in the cortex
and brain stem of prehypertensive SHR might play a role in the
pathogenesis of hypertension, and the up-regulated NOS ac-
tivity in the hypothalamus and brain stem of SHR with estab-
lished hypertension might serve to compensate for the hyper-
tension. The expression of iNOS mRNA and protein is under
the limits of detection in the hypothalamus of both WKY rats
and SHR (40). Decreased NOS activity measured by the
nitrite and nitrate contents was also demonstrated in the
hypothalamus of SHR (1). In hypertensive SHRSP, nNOS
protein expression levels in the hypothalamus and brain
stem were enhanced compared with those in WKY (59). In
a renovascular hypertensive rat model, mRNA expression
levels of nNOS and soluble guanylate cyclase genes are
reduced in the hypothalamus but not in the dorsal medulla
(69). Together, these results suggest that the L-arginine-NO
pathway is impaired in hypertensive rats, including SHR,
possibly because of a posttranscriptional abnormality (70).
Overexpression of eNOS in the NTS results in a greater
depressor response in SHR than in WKY rats in the awake
state (44). In that study, eNOS was used instead of nNOS to
increase NO production locally in the NTS. Findings from
another study suggest that the depressed NO modulation is
consistent with the lower NOS activity in the dorsal brain
stem (103). Therefore, the abnormality in the L-arginine-NO
pathway in the NTS might be involved in the maintenance
of hypertension of SHR. A recent study by Waki et al. (121)
demonstrated that endogenous eNOS activity in the NTS
plays a major role in determining the blood pressure set
point in SHR and contributes to maintaining high arterial
blood pressure in this model, suggesting the possible in-
volvement of neurovascular coupling (96). In the RVLM of
SHRSP, overexpression of eNOS elicits greater depressor
and sympathoinhibitory responses than in WKY (58). Fur-
thermore, the increase in NO production evoked by the
overexpression of eNOS in the RVLM enhances the inhib-
itory action of GABA on the RVLM neurons (58). The
results indicate that NO dysfunction and the resulting dis-
inhibition of the RVLM contribute to increase RSNA in
SHRSP.

BRAIN NO AND ROS AND BLOOD PRESSURE REGULATION

Effects of NO in the Brain Stem on Baroreflex Function

As described earlier, NO activity in the NTS and RVLM
influences cardiovascular regulation. We examined the role of
endogenous NO in the brain stem in the rapid central adapta-
tion of baroreflex control of RSNA in anesthetized rabbits (41).
Bilateral carotid sinuses were isolated, and a stepwise increase
in pressure was applied to the carotid sinuses, while arterial
pressure and RSNA were recorded. The procedure was per-
formed after intracisternal injection of L-NAME, p-NAME,
L-arginine, or the vehicle solution. L-NAME enhances the rapid
adaptation of the arterial baroreflex control of renal sympa-
thetic nerve activity in rabbits (41). Transmission of arterial
baroreflex signals depends on NO (27, 118). It was reported
that the baroreceptor reflex gain in awake animals was in-
creased by NO in the bradycardic component, although in these
studies NOS inhibitors were administered systemically to ex-
amine the role of NO on baroreflex function (78, 87). Further-
more, overexpression of eNOS in the RVLM improves im-
paired baroreflex control of heart rate in SHRSP (60).

In summary, NO in the brain stem, particularly in the NTS
and RVLM, has a sympathoinhibitory function, thereby reduc-
ing blood pressure. NO in the brain stem also facilitates the
baroreflex function. The sympathoinhibitory effects of NO are
impaired in animal models of hypertension, and supplementa-
tion of NO in the brain stem in hypertensive rats attenuates the
abnormality, thereby decreasing blood pressure. The facilitory
release of neurotransmitters induced by NO might be involved
in the synaptic transmission mechanism.

ROS in the Brain

Substantial evidence also indicates that increased oxidative
stress is involved in the pathogenesis of hypertension (12, 47,
48, 94, 99). ROS, such as superoxide anions and hydroxyl
radicals, increase oxidative stress. There are several sources of
ROS generation, such as NADPH oxidase, xanthine oxidase,
mitochondria, and NOS uncoupling (12, 47, 48, 94, 99). On the
other hand, reduction of antioxidant enzymes, such as super-
oxide dismutases {SOD), also induces an increase in oxidative
stress (47, 48, 99). Although the role of ROS in the regulation
of blood pressure in the normotensive state is not clear,
increased ROS generation in the brain stem contributes to
neural mechanisms of hypertension (47, 48). For example,
although there is evidence of an increase in oxidative stress in
the vasculature in hypertension, we showed, for the first time,
that increased ROS in the RVLM contributes to SNA, leading
to the neural mechanisms of hypertension in SHRSP (61).
Zimmerman et al. (133) demonstrated that hypertension caused
by low doses of circulating ANG II depends on the production
of superoxide in the circumventricular organs (133). It was
demonstrated that physiological responses to brain ANG II
involve ROS production (15, 132, 133). Considering the im-
portance of the brain ANG Il system (2, 10, 26, 28, 83, 85, 86,
108), ROS play an important role in the neural regulation of
blood pressure because ROS production largely depends on
AT receptor stimulation (47, 48, 99).

Role of ROS in Neural Mechanisms of Hypertension

As described earlier, on the basis of results demonstrating
that microinjection of Tempol or overexpression of manga-
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nese-superoxide dismutase in the RVLM markedly decreases
blood pressure in SHRSP, but not in WKY, increased oxidative
stress in the RVLM contributes to the neural mechanisms of
hypertension in SHRSP (61). Oxidative stress levels in the
RVLM were determined by measuring thiobarbituric acid-
reactive substances (TBARS) levels and electron spin reso-
nance (ESR) spectroscopy with a spin trapping technique (47,
48, 61). In SHR, oxidative stress in the RVLM plays an
important role in hypertension via activation of the sympathetic
nervous system (19, 66, 106, 117). An increase in oxidative
stress in the RVLM also contributes to hypertension via acti-
vation of the sympathetic nervous system in rats with renovas-
cular hypertension (two-kidney one-clip hypertensive model)
(92). This model is an ANG II-dependent model of hyperten-
sion. Therefore, it is conceivable that ANG II increases oxida-
tive stress by acting both centrally and peripherally, thereby
activating the sympathetic nervous system and leading to
hypertension as one of the hypertensive mechanisms in this
model. AT, receptor expression levels in the RVLM and the
paraventricular nucleus of the hypothalamus are enhanced in
this rat renovascular model of hypertension (93). Interestingly,
NADPH oxidase activity is increased, but Cu/Zn-SOD expres-
sion in the RVLM is unchanged. In a subsequent study, the
authors showed that oxidative stress increased in both the
RVLM and paraventricular nucleus, as well as systemically in
this hypertensive model (93). These results suggest that sys-
temic activation of the renin-angiotensin system activates AT,
receptors in the brain, including the RVLM and paraventricular
nucleus, thereby increasing SNA, leading to hypertension, as
one of the mechanisms.

Sources of ROS Generation in the Brain Stem

NADPH oxidase is a major source of ROS in hypertension
(71, 72) and has a critical role in generating ROS in the brain
(5, 14, 51, 90, 122, 134). ANG 1I is upstream of NADPH
oxidase activation, which requires Racl (48, 90, 122, 134).
NADPH oxidase-derived ROS are involved in the effects of
ANG 1I on Ca?* influx in the NTS neurons receiving vagal
afferents (122). Importantly, the essential subunit of NADPH
oxidase, gp91phox, is present in somatodendritic and axonal
profiles containing AT, receptors (122). The potentiation of
Ca?* currents indicates that ANG II increases neuronal excit-
ability and spontaneous activity in some neurons (135). ANG
II failed to increase ROS production or to potentiate L-type

Ca?*
ANGII
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Ca* currents in the dorsomedial portion of the NTS neurons
of mice lacking Nox2 (123). Thus, the excitatory actions of
ANG II in the NTS neurons are caused, at least, in part, by the
activation of L-type Ca®* channels. It should be noted that
ANG II-induced inhibition of neuronal delayed rectifying po-
tassium current (/xv) is mediated by ROS in primary neurons
isolated from the hypothalamus and brain stem, because both
NAD(P)H oxidase inhibition and Tempol prevented the ANG
11 inhibition of Ixy (113).

Mitochondria are another source of ROS generation in the
brain. Chan et al. (21) examined the role of the mitochondrial
electron transport chain in the RVLM of SHR and found that
mitochondrial electron transport chain dysfunction in the
RVLM of SHR depressed complex I or III activity and reduced
the electron transport capacity (ETC) between complexes I and
III or IT and III (21). Interestingly, microinjection of coenzyme
Qyo into the RVLM of SHR reversed the depressed ETC
activity and enhanced superoxide generation. In addition, mi-
croinjection of antisense oligonucleotide against the p22phox
subunit of NADPH oxidase into the RVLM reduced the en-
hanced ROS production in SHR (21). It is also important to
note that microinjection of coenzyme Qo into the RVLM of
SHR decreases blood pressure (21). These results suggest that
impairment of mitochondrial ETC complexes contributes to
chronic oxidative stress in the RVLM of SHR, leading to
enhanced central sympathetic drive and hypertension (21, 136).
Consistent with their observation, we also found that ANG 11
induced the mitochondria-derived ROS production via activa-
tion of NADPH oxidase, although we did not find differences
in the mitochondrial respiratory complexes between SHRSP
and WKY (91), thus suggesting a feedforward system for ROS
generation (21, 91, 136) (Fig. 1). Mitochondrial produced
superoxide mediates the ANG II inhibition of Ikv (128).
Recently, Chan et al. (22) suggested that transcriptional up-
regulation of mitochondrial uncoupling protein 2 (UCP2) in
response to an increase in superoxide plays an active role in the
feedback regulation of ROS production in the RVLM (22).
Furthermore, oral treatment with rosiglitazone enhances a
central antihypertensive effect via an upregulation of peroxi-
some proliferator-activated receptor-y (PPAR-y) and reduced
oxidative stress in the RVLM of SHR (23). Stimulation of
PPAR-v results in the upregulation of UCP2, thereby reducing
oxidative stress. The dose of rosiglitazone used in that study,

K-O-

Ca channel

iy

NAD (P) H @
N

Mitochondria

0 C K channel
T T
: Fig. 1. A suggested scheme demonstrating that ANG II
: A stimulation increases reactive oxygen species (ROS)
generation via NAD(P)H oxidase and related mecha-
nisms. [Modified from Nozoe et al. (91).]
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however, was fairly high, and this does not necessarily relate to
the clinical setting.

Downstream Signaling Pathway of the AT, Receptor
Stimulation in the RVLM Involving ROS Production

As described above, activation of the AT receptor produces
superoxide anions as an initial step of ROS generation through
NADPH oxidase. Thus, the signaling pathway should be piv-
otal for neuronal activation leading to hypertension via central
sympathetic outflow. NAD(P)H oxidase-derived ROS produc-
tion mediates the ANG Il-induced pressor response via activa-
tion of p38 MAPK and ERK in the RVLM (18, 20). Chan et al.
(20) demonstrated that intracerebroventricular infusion of
ANG II elicits the long-term pressor response, and this pressor
response is mediated by protein kinase C/ERK/cyclic adeno-
sine monophosphate response element binding protein and
c-fos induction (20). It should be noted that the ANG II-
induced pressor response might not necessarily be related to
ROS production in the RVLM. The ANG Il-induced pressor
response, however, is significantly inhibited by ROS scaveng-
ing, and endogenous blockade of AT, receptors in the brain
stem of SHRSP reduces ROS and blood pressure (48, 91).
Activation of caspase-3 acting through the Ras/p38 MAPK/
ERK pathway in the RVLM might be involved in sympathoe-
xcitation of SHRSP (65). In addition, the apoptotic proteins
Bax and Bad are activated, and the antiapoptotic protein Bcl-2
is inhibited in the RVLM of SHRSP (65). The Ras inhibitor
substantially attenuated these changes, thereby attenuating
caspase-3 associated with the decrease in blood pressure. In
contrast, however, c-Jun N-terminal kinase activity was not
altered in the RVLM of SHRSP compared with that of WKY
(65). It should be noted that the possibility of caspase-3-
independent neuronal apoptosis in the RVLM or of a direct link
between ROS and caspase-3 activation was not examined in
that study (65). However, this finding is consistent with the
results demonstrating that microinjection of ANG II induces
AT receptor-dependent ROS production and phosphorylation
of p38 MAPK and ERK, but not stress-activated protein
kinase/Jun N-terminal kinase in the RVLM of Sprague-Dawley
rats (18). Interestingly, this is not the case in the RVLM of
heart failure rabbits (77). Stress-activated protein kinase/Jun
N-terminal kinase activity was increased in the RVLM of these
heart failure rabbits (77). The increased phosphorylation of Jun
N-terminal kinase may lead to activation of the transcription
factor AP-1, which is a dimer of Jun and c-Fos family mem-
bers. It is not clear why these differences between hypertension
and heart failure occur. It is possible that signal transduction
changes in the progression from hypertension to heart failure,
thereby leading to further enhanced central sympathetic out-
flow. Further studies are needed to establish a more direct link
between these signaling pathways, redox sensitivity, and the
development and/or progression of hypertension.

Imbalance of Brain NO and ROS

Superoxide derived from NADPH oxidase reacts with and
inactivates NO and thereby modulates its bioavailability (32,
97, 114) (Fig. 2). The converse is also true; that is, NO reduces
superoxide, which may be beneficial (32, 99) (Fig. 2). An
increase in NO in the RVLM decreases blood pressure and
sympathetic nervous system activity to a greater extent in
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COnstltutlve NOS Inflammation
eNOS nNOS iNOS
L-arginine
B
NO NO+o0;—oNoOo

Depletioy / /chanic

Uncoupling NMDA-R! ¢GMP  consumption of

NOS L-arginine and
BH4
To Depletion

Glutamate T Uncoupling
GABA 1 NOS

Fig. 2. A scheme demonstrating the interaction between nitric oxide (NO) and
ROS generation. NMDA-R, N-methyl-D-aspartate receptors; GABA, y-ami-
nobutyric acid; BH4, tetrahydrobiopterin; NOS, nitric oxide synthase; eNOS,
endothelial NOS; iNOS, inducible NOS; nNOS, neuronal NOS. [Modified
from Hirooka (47).]

SHRSP than in WKY rats (58). This might be due to a
reduction in superoxide via NO in the RVLM of SHRSP,
which is increased in the RVLM of SHRSP (61). All three
NOS isoforms generate superoxide depending on substrate
(L-arginine) and cofactor (tetrahydrobiopterin) availability (32,
97, 114). The induction of both iNOS and ROS during inflam-
mation is well established (88, 97). A recent study suggested
that ROS and reactive nitrogen species, such as peroxynitrite
dose-dependently regulate iNOS function (114). Overexpres-
sion of iNOS in the RVLM causes sympathoexcitation via an
increase in oxidative stress (54). As expected, the release of
more nitrite/nitrate (NO,) in RVLM dialysate is induced by
iNOS overexpression than by eNOS overexpression (54). Rel-
ative to the constitutive isoforms, iNOS has approximately
five-fold higher NO production (97). NO, release, however, is
increased by approximately twofold higher by iNOS overex-
pression than by eNOS overexpression (54). We considered
that the precursor of NO production, L-arginine, and its cofac-
tor, tetrahydrobiopterin, might be consumed and insufficient
when iNOS is chronically expressed, thereby iNOS would
produce superoxide instead of NO (Fig. 2). Otherwise, chronic
overexpression of iNOS increases levels of NO chronically,
which, in turn, reacts with superoxide in a diffusion-limited
reaction to produce peroxinitrite (Fig. 2). In fact, we found an
increase in the TBARS levels in the RVLM and the pressor
response after overexpression of iNOS. The increased pressor
response was, however, abolished by iNOS inhibitors or Tem-
pol. Once ROS production is increased, ROS enhance super-
oxide production from iNOS, indicating that ROS promote
iNOS uncoupling. Further, peroxynitrite, produced from the
reaction between NO and superoxide, reduces both NO and
superoxide generation, indicating that peroxynitrite causes
iNOS dysfunction enzymatically. In our study, we detected
some iNOS-positive cells with the antinitrotyrosine antibody
(54). Furthermore, iNOS expression levels were increased in
the RVLM of SHRSP compared with WKY (56). Kung et al.
(68) suggested that mitochondrial respiratory enzyme com-
plexes in the RVLM were cellular targets of NO and ROS
interaction after eNOS gene transfer. This concept is problem-
atic, however, in that they suggest that superoxide and per-
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oxynitrite are produced after eNOS gene transfer into the
RVLM (68). Another recent study suggested that NMDA
receptor activation increases ROS production through NO and
Nox2 (33). Further studies are needed to explore whether this
mechanism functions via ubiquitous glutamatergic synaptic
transmission in vivo.

Sympathoinhibitory Effects of Antihypertensive Drugs
and Statins

NADPH oxidase, which is activated by AT; receptor stim-
ulation, is a major source of ROS (11, 17, 113, 135). The
specific brain nuclei that regulate SNA, such as the anteroven-
tral third ventricle, paraventricular nucleus of the hypothala-
mus, NTS, and the RVLM, are rich in AT; receptors (2, 10, 26,
28, 83). AT, receptor expression levels are upregulated in the
RVLM of hypertensive animal models compared with normo-
tensive controls (105). Thus, it is possible that AT; receptor
blockers reduce oxidative stress in the brain, as well as in the
peripheral vasculature. It is also possible that AT; receptor
blockers inhibit ROS production by blocking AT1 receptor-
mediated intracellular signaling (11, 48, 50) and that this
antioxidant action accounts for the absence of reflex-induced
sympathoexcitation after treatment with AT, receptor blockers.
We evaluated the effects of AT, receptor blockers, olmesartan
and telmisartan, on brain oxidative stress in SHRSP (4, 48).
Both AT, receptor blockers have antioxidant properties in the
brain without stimulating reflex-mediated SNA in SHRSP. We
used in vivo ESR spectroscopy to examine the effect of oral
olmesartan on oxidative stress in the brain (4), because the in
vivo ESR method is a powerful technique for evaluating
oxidative stress (3, 110, 111). The effects of peripherally
administered olmesartan or telmisartan on central sympathetic
outflow have been demonstrated in other studies (34, 76). Are
these antioxidant effects of olmesartan or telmisartan specific
for each drug or the AT; receptor blocker class? Other angio-
tensin receptor blockers, such as losartan or candesartan, have
similar sympatho-inhibitory effects in the CNS, although there
are some differences among angiotensin receptor blockers (24,
89, 102, 124). The differences of the central effects of each
angiotensin receptor blocker might depend on its lipophilicity,
phamacokinetics, and the transporter system (24, 34, 48, 124).
Furthermore, systemically administered candesartan reduces
brain ANG II via downregulation of the brain renin-angioten-
sin system (98). This finding provides new mechanistic insight
into the treatment of hypertension by the AT} receptor blockers
(84). Unfortunately, however, these effects of AT, receptor
blockers, that is, reduction of brain oxidative stress and sym-
patho-inhibitory effects, even when administered systemically,
are usually ignored by researchers or clinicians, but should be
considered as potential therapeutic candidates.

Considering the inhibitory effects of AT; receptor blockers
on brain oxidative stress and sympathetic nervous system
activity, it would be interesting to know whether other cardio-
vascular drugs have similar effects. We found that atorvastatin
causes depressor and sympathoinhibitory effects with upregu-
lation of NOS in SHRSP (59), which is consistent with the
effects of statins on eNOS upregulation in the vasculature (55).
Atorvastatin also reduces oxidative stress in the RVLM of
SHRSP (62, 63, 64). With regard to the central sympathoin-
hibitory effects of calcium channel blockers, lipophilic dihi-

R823

dropyridine calcium channel blockers, such as nifedipine, ni-
soldipine, and amlodipine, readily cross the blood-brain bar-
rier, thereby presumably blocking brain L-type Ca?* channels
leading to central sympathoinhibition (73). It is generally
considered that an arterial baroreflex-mediated increase in
sympathetic activity is responsible for the unfavorable effects
of short- and strong-acting dihydropyridine calcium channel
blockers; therefore, the intrinsic sympathoinhibitory effects of
calcium channel blockers have been ignored. These findings
together suggest that increased NOS activity and antioxidant
effects in the brain stem might be involved in the central
sympathoinhibitory effects of some calcium channel blockers
(45, 55, 67). The precise mechanisms involved, however,
remain unknown, and further studies are required.

Summary and Conclusions

In summary, accumulating evidence indicates that an imbal-
ance of NO and ROS in the CNS, particularly in the brain stem,
is crucially involved in hypertension via the activation of
central sympathetic outflow. Upstream and downstream con-
sequences of the precise mechanisms are discussed. Several
questions remain, however, because the interactions between
NO and ROS are complex. Further studies are required to gain
a better understanding of the role of brain NO and ROS in
autonomic cardiovascular regulation and potential therapeutic
targets.
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