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of a malignant cholangiocyte cell line. The up-regulated expression of miR-21 is also
detected in human colon, lung, pancreas, prostate, and stomach cancer (49,55), suggest-
ing the possibility that miR-21 inhibits apoptotic cell death in these cancers.

Interestingly, it has been reported that the expression level of let-7 is reduced in human
lung cancers (56). This result suggests that let-7 might act as a tumor suppressor gene
in lung cancer. In fact, regardless of disease stage, lung cancer patients with down-
regulation of let-7had shortened post-operative survival ( 56). Furthermore, Johnson
et al. (57) found that let-7 negatively regulated the expression of human RAS family
members, which possess potent oncogenic activity. Actually, RAS protein levels are
inversely correlated with let-7 expression levels in human lung cancers, suggesting a
possible mechanism for let-7 in lung cancer.

To identify novel miRNAs involved in cellular transformation, Voorhoeve et al. (58)
performed functional genetic screens using a library of vectors expressing human miR-
NAs and in vitro neoplastic transformation assays. They showed that miR-372 and
miR-373 accelerate proliferation and tumorigenic development in primary human cells
that express oncogenic RAS and tumor suppressor p53, possibly through suppression of
p53-mediated CDK inhibition by down-regulation of large tumor suppressor homolog 2
(LATS2) (58,59). Furthermore, miR-372 was found to be exclusively over-expressed in
most human testicular germ cell tumors that rarely exhibit loss of p53 function, suggest-
ing contribution of miR-372 to the of human testi germ cell tumors by
inhibition of the p53 pathway (58).

Recent evidence indicates that polymorphisms and genetic variation in germ line as
well as somatic cells have a critical role in cancer predisposition and malignancy (60,61).
However, in spite of comprehensive scanning of protein coding genes, the molecular
basis of familial cancers remains largely unknown. Recently, a germ line mutation of
the miR-16-1-miR-15a primary precursor, which impaired mature miRNA expressions,
was identified in B-cell chronic lymphocytic leukemia patients (62). Furthermore, germ
line or somatic mutations of miRNAs were found in 11 of 75 patients with B-cell chronic
lymphocytic leukemia, but none of these mutations were found in 160 persons without
cancer (62). These results suggest that gencnc variation of miRNAs in a germ line may
play |mponant roles in cancer predisposition and mali y. In addition, germ line
mutation in miRNA-target sites of mRNA 3’ UTR were found i ln KIT and slit and trk-like
family member 1 (SLITRK1), suggesting genetic variation of miRNA-target sites in a
germ line may also play significant roles in disease predisposition (50,63).

Human cytochrome P450 (CYP) 1B1, which is abundantly expressed in malignant
tumor tissues, is a member of drug-metabolizing enzymes and catalyzes the metabolic
activation of various procarcinogens. Recently, it was found that CYPIBI expression
was post-transcriptionally inhibited by miR-27b (64). Furthermore, decrease of miR-
27b expression and i of CYPIBI expression in most breast cancer tissues was
detected (64). These results indicate that miRNAs may play important roles in not only
physiologic events but also drug metabolism and production of carcinogens.

Global expressnon profiling analySIs of protein coding genes is known to be useful
for cancer d. and p predictions (65). Recently, Lu et al. (37) indicated
that miRNA expression proﬁles can successfully classify poorly differentiated cancers
that cannot be classified by mRNA expression profiles. Accordingly, miRNA expressi
profiles are more accurately correlated with clinical severity of cancer malignancy than
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Table 1
Canser-Associated miRNAs

miRNA Cancer types Targets® References
Oncogene
miR-17-92 BCL, lung CTGF, E2F1,Tspl  42-45
miR-21 breast, cholangiocyte, colon, PTEN 49, 52-55

glioblastoma, lung, pancreas,

prostate, stomach
miR-155 BCL, breast, colon, lung, thyroid ATIR 46, 49-51
miR-372/373 testicular germ cell LATS2 58
Tumor suppressor gene
let-7a breast, lung RAS 55-57
miR-15a/16 B-CLL BCL2 39,40

“ Target genes identified by the biological experiments are listed.
Abbreviations: ATIR, angiotensin II type I receptor; B-CLL, B-cell chronic lymphocytic leukemia; BCL,
B-cell lymphoma; BCL2, B-cell lymphoma 2; CTGF, connective tissue growth factor; LATS2, large tu-
mor suppressor homolog 2; PTEN, phosphatase and tensin homolog deleted on chromosome 10; Tspl,
thrombospondin-1.

protein-coding gene expression profiles. This result indicates the potential of miRNA
expression profiles in cancer classification and prognosis prediction (37).

Becausc miRNAs act as or tumor supp genes (Table 1), miRNAs
are p largcts of herapeuti ies. Recently, Krutzfeldt et al. (66) indicated
that ch 1 leotides, called irs, efficiently inhibited

miRNAs in vwo Addluonally, it is reported that introduction of 2'-O-methoxyethyl
phosphorothioate antisense oligonucleotide of miR-122 (abundant in the liver and reg-

ulates cholesterol and fatty-acid bolism) di plasma chol 1 levels and
improves liver steatosis in mice with diet-i mduced obesity (67). These findings indicate
that anti li leotides are also p 1 targets for drug discovery, suggesting

the possibility that intractable cancers may become curable by over-expression and/or
inhibition of miRNAs. However, for miRNAs to be used in gene therapy, further im-
provement is required to make miRNAs more effective and less toxic than other cancer
therapy.

4. PERSPECTIVE

It has been established that miRNAs play critical roles in cell differentiation, prolif-
eration, and apoptosis, and the abnormalities of specific miRNA expression contribute
to tumorigenesis. Additionally, recent studies show that polymorphisms or genetic vari-
ation of miRNAs and miRNA-target sites of mRNAs in a germ line may play important
roles in cancer predisposition and mahgnancy (50 62). Therefore, mJRNAs are expected
to be powerful tools for cancer cl gnosis, and prog p as
well as to be potential targets of cancer therapy.

Furthermore, ldennﬁcauon of target mRNAs regulated by miRNAs, elucidation of the

ic or tumor i by miRNAs, and identification

PP
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of genetic variation in miRNAs and miRNA-target sites of mRNAs may lead to
the discovery of new molecular targets related to oncogenesis. Bioinformatics ap-
proaches have predicted that a single miRNA may have hundreds of target genes
(5,6,68,69,70,71,72,73,74), although detailed experimental validation has yet to be
done. Develop ofa hensive assay to rapidly identify target mRNAs would
greatly assist our understandmg of miRNAs and lead to novel therapeutic approaches
against cancer.
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Biogenesis and Function Mechanisms
of Micro-RNAs and Their Role as Oncogenes
and Tumor Suppressors

Soken Tsuchiya, Kazuya Terasawa, Ryo Kunimoto, Yasushi Okuno,
Fumiaki Sato, Kazuharu Shimizu, and Gozoh Tsujimoto

Introduction

Micro-RNAs (miRNAs) are evolutionarily conserved small noncoding RNAs (20~
23 nucleotides). MiRNAs regulate various physiological pathways such as differ-
entiation, proliferation, and apoptosis by negative regulation of the gene expressi

at the posttranscriptional level [1-3]. Currently, more than 800 human miRNAs
have been identified and registered in the miRNA database miRBase [4]. Strikingly,
30% of protein-coding transcripts in humans is predicted to be regulated by miR-
NAs [5,6]. Recently, miRNAs have been reported to work as oncogenes or tumor
suppressor genes and be directly involved in the initiation, progression, and metas-
tasis of various cancers [7-9]. Therefore, we focus on the role that miRNAs play in
cancer and the use of miRNAs in drug discovery. Collection of evidence suggests
that miRNAs can be p ially useful for di i is and finding
novel strategies for cancer diagnosis and therapy.

Biogenesis of miRNAs

MiRNAs are generated in multiple steps (Fig. 1). Initially, miRNAs are tran-
scribed by RNA polymerase II as long RNA precursors (pri-miRNAs) [10-12].
Pri-miRNAs are usually several kilobases in length, and contain a 7-methyl
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Fig. 1 Schema!lc diagram of biogenesis and ﬁmclwn in micro-RNAs (miRNAs). MiRNAs ase

by RNA processed by Drosha/DGCR8 and Dicex:
MiRNA-loaded RNA-induced silencing complex (RISC) causes the cleavage or translations
silencing of target mRNAs

guanosine cap structure and a poly(A) tail similar to pmtem-codmg mRNAs. The
pri-miRNAs are p d into p of y 70 nucls (pre-
miRNAs) with a stem-loop s!.ruclure and a lwo—nucle,onde 3’-overhang by the
RNase IIl enzyme, Drosha, and a double-stranded RNA-binding protein, DGCR&
Pasha [13-15]. Then, pre-miRNAs are transported to the cytoplasm by a membes
of the Ran transport receptor family, exportin-5 [16,17). Pre-miRNAs exported s
the cytoplasm are further processed by another RNase III enzyme, Dicer, and
unwound by a helicase [18]. Finally, only one mature miRNA strand (gusde
strand) is incorporated m!o a RNA-induced silencing complex (RISC) that medi-
ates cleavage or 1 inhibition of target mRNAs, while the other stramé
(passenger strand) is quickly degraded [19-21]. The stability of the base pairs %
the 5"-end of the duplex determines which strand is incorporated in RISC [22.23]
RISC is composed of Dicer, Argonaute2 (Ago2), and the double-strand RNA-
binding protein, TRBP [21,24], and cleaves target mRNAs more efficiently by
using pre-miRNAs rather than v.hc duplex RNAs that do not have the stem-loeg

that p g by Dicer may be coupled with assembly «f
the matum miRNA into RISC [21]. The incorporated miRNA guides the RISC s
the 1 in the 3" d region (UTR) of tarpes

mRNAs. MiRNAs base-palr to the 3"-UTR of target mRNA with perfect or neas-
perfect complementarity, leading to the target mRNA degradation by Aged.
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a component of RISC [25]. In contrast, partial base-pairing between a miRNA
and a target mRNA leads to translational silencing of a target mRNA without
RNA degradation [26]. In partial base-pamng, the bmdmg of some nucleotides in
the 5”-region of miRNAs has been indicated to be Ily by sys-
tematic mutation experiments [27,28].

The Role of miRNAs in Cancer

Recently, it has been reported that the expression of several miRNAs is altered in a
variety of human cancers, suggesting potential roles of miRNAs in tumorigenesis
[29). Calin et al. [30] showed that more than 50% of miRNAs were located in
cancer-associated genomic regions or in fragile sites. In fact, miR-15a and miR-16
genes exist as a cistronic cluster at 13q14, which is deleted or downregulated in
most cases (~68%) of B-cell chronic lymphocytic leukemias [31]. Cimmino et al.

[32] found that both these miRNAs negatively regulate the expression of B cell
lymphoma 2 (BCL2), which inhibits apoptosis and is present in many types of
cancer includi ias. In fact, ion of miR-15 and miR-16 in the

MEG-01 cell line induces apoptotic cell death.

Alterations in gene copy number of miRNAs are detected in a variety of human
cancers [33-35). Zhang et al. [33] showed that miRNAs exhibited high-frequency
genonuc altcranons in human ovarian cancer, breast cancer, and melanoma using

1 based ive genomic hybridization. F ita et al.
{34] found that thc expression and gene copy number of the miR-17-92 cluster
composed of seven miRNAs is increased in lung cancer cell lines, especially with
small-cell lung cancer histology. Enforced expression of miRNAs included in this
polycistronic cluster enhances cell proliferation in a lung cancer cell line. The
increase in expression and gene copy number of miR-17-92 cluster was also found
in B-cell lymphomas [35). The expression of miRNAs in this cluster is upregulated
by c-Myc, whose expression and/or function is one of the most common abnormali-
ties in human cancers, and miR-17-5p and miR-20a in this miR-17-92 cluster nega-
tively regulate the expression of transcriptional factor E2F1 [36]. Furthermore, it
was indicated that the miR-17-19b cluster included in miR-17-92 cluster inhibited
apoptotic cell death and accelerated c-Myc-induced lymphomagcnesls in mice

reconstituted with miR-17-19b clusts ietic stem cells
[35). Furthermore, the miR-17-92 clnstm has becn reported to augmcm anglogem
esis in vivo by lation of P 1 and

tissue growth factor in Ras-transformed colonocytes [37].
Global cxpressnon profiling analys|s of pmtem{odlng genes is known to be

useful for cancer di and p P i [38]. Recently, Lu et al. [29]
indicated that miRNA ion profiles can fully classify poorly dxffercn~
tiated cancers that cannot be ified by mRNA ion profiles. A

miRNA expression profiles are more accurately correlated with clinical severity
of cancer malignancy than protein-coding gene expression profiles. This result
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indicates the potential of miRNA expression profiles in cancer classification and
prognosis prediction [29].

Because miRNAs act as oncogenes or tumor suppressor genes, miRNAs are
potential targets of therapeuuc stra(egles Recently, Krutzfeldt et al. [39] indicated

that i i termed irs, efficiently
inhibited m1RNAs in vivo. Addmonally. it |s reponed t.hat introduction of
2'-0-methoxyethyl phosphorothi leotide of miR-122 (abun-

dant in the liver; regulates cholesterol and fatty acid metabolism) decreases plasma
cholesterol levels and improves liver steatosis in mice with diet-induced obesity
[40]. These findings indicate that antisense oligonucleotides are also potential tar-
gets for drug discovery, suggesting the possibility that intractable cancers may
become curable by overexpression and/or inhibition of miRNAs. However, for
miRNAs to be used in gene therapy, further improvements to make miRNAs more
effective and less toxic than other cancer therapy are required.

Prediction of Target mRNAs

ldentlﬁcauon of the mlRNA -targeted genes pmvndes decp hlologlcal insights to
d the new of the p Therefore,
development of a comprehensive assay to mpldly identify target mRNAs would
greatly assist understanding of miRNAs and lead to novel therapeutic approaches
against cancer. Although there are many bioinformatics approaches for target pre-
diction, which have predicted that a single miRNA may have hundreds of target
genes [5,6. 41—45], lhcy have room for many improvements in accuracy and com-
P ly. Thus, we have developed a new computational
approach to extract regulatory nctworks between miRNAs and their target mRNAs
(Fig. 2). We assumed that the expression pattern of miRNA would present inverse
correlation with that of its corresponding target mRNA. Hence, selecting the
inverse correlative pairs among the miRNA-target pairs predicted by the sequence-
based algorism (ex. miRanda) from expression profiles of mRNAs and miRNAs.
we have successfully reduced rhc false-positive pairs of target prediction results.
, O ing target i ion of the predi pairs onto the coex-

pressed gene ks, we have also d thc gene k lated
the common miRNA. We hope the inferred networks can be helpful to understand

the biological systems of the miRNAs world.

It has been established that the abnormalities of specific miRNA expression
contribute to tumongenesns Therefore, miRNAs are expected to be powerful tools

for cancer classi di and iction as well as potential
targets of cancer therapy. Furthermore, identification of L’u'gel mRNAs mgulamd by
miRNAs, elucidation of the genic or tumor supp

by miRNAs and identification of genetic variation in miRNAs and miRNA-target
sites of mRNAs may lead to the discovery of new molecular targets related to
oncogenesis.
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‘Sequence-based
Target prediction
(ex. miRanda)
A~ mRNA A
UTR
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Expression 3' UTR
pattern
‘ Create network
miRNA
mRNA

Fig. 2 Scheme of formulation of networks between miRNAs and their target mRNAs
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Abstract

Background: Mast cells (MCs) play pivotal roles in allergy and innate immunity and consist of heterogenous
subclasses. However, the molecular basis determining the different characteristics of these multiple MC
subclasses remains unclear.

Results: To approach this, we developed a method of RNA extraction/amplification for intact in vivo MCs pooled
from frozen tissue sections, which enabled us to obtain the global gene expression pattern of pooled MCs
belonging to the same subclass. MCs were isolated from the submucosa (sMCs) and mucosa (mMCs) of mouse
stomach sections, respectively, |5 cells were pooled, and their RNA was extracted, amplified and subjected to
microarray analysis. Known marker genes specific for mMCs and sMCs showed expected expression trends,
indicating accuracy of the analysis.

We identified 1272 genes showing significantly different expression levels between sMCs and mMCs, and
classified them into clusters on the basis of similarity of their expression profiles compared with bone marrow-
derived MCs, which are the cultured MCs with so-called 'immature' properties. Among them, we found that
several key genes such as Notch4 had sMC-biased expression and Ptgr/ had mMC-biased expression.
Furthermore, there is a difference in the expression of several genes including extracellular matrix protein
components, adhesion molecules, and cytoskeletal proteins between the two MC subclasses, which may reflect
functional adaptation of each MC to the mucosal or submucosal environment in the stomach.

Conclusion: By using the method of RNA amplification from pooled intact MCs, we characterized the distinct
gene expression profiles of sSMCs and mMCs in the mouse stomach. Our findings offer insight into possible
unidentified properties specific for each MC subclass.
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Background
Mast cells (MCs) are derived from hematopoietic stem
cells and play important roles in allergic responses, innate
immunity and defense against parasite infection. Unlike
olher blood cells, MCs mlgrate into peripheral tissues as
and i into mature mast
cells. One oﬁhe unique features of MCs is that they show
a variety of phenotypes depending on the different tissue
of their ion [1]. In MCs, vari-
ous MC-specific serine proteases are stored in lhe secre-
tory granules, and their gene and protein are

microenvi

http://www.biomedcentral.com/1471-2164/10/35

mined the minimum cell number required to achieve
reproducible RNA amplification. We then compared the
gene expression profiles obtained from small numbers of
mMCs and sMCs in the mouse stomach, and found sev-
eral key genes to be specifically expressed in one subclass
of MCs, which may reflect some aspects of the distinct
properties between the two MC subclasses in the gastroin-
testinal tract.

Results and discussion
of an RNA amplification protocol to obtain

dramatically altered when their cell is
altered. For example, Reynolds et al. have shown that at
least six distinct members of mouse MC-specific serine

are d in di combinati in dif-
ferem mast cell populations [2]. In addition, recent stud-
ies have shown that mature MCs vary in terms of what
surface receptors and lipid mediators they express [3,4].
Because each mast cell population in vivo must play a spe-
cific role in the body, it is important to determine the
character of each population of MCs.

Comprehensive gene expression analysis is a powerful
approach to understand the characterization of various
MC subpopulations. To date, several studies on microar-
ray analysis of MCs have been conducted [5-7], but most
of them dealt with MCs cultured in vitro. Alternatively,
gene expression profiles of MCs isolated from skin and
lung have been analyzed [3.8-10]. However, the numbers
of MCs analyzed as one sample were relatively high and
they were exposed to physical forces, enzymes and the
anti-Kit antibody for purification, during which the origi-
nal properties of the MCs may have been affected.

In the gastrointestinal tract, there are MCs that are mainly
classified into two subclasses; mucosal MCs (mMCs) and
submucosal MCs (sMCs) on the basis of their location,
morphology (size and shape) and granule contents
[11,12]. mMCs are mainly found in the mucosa of the gas-
trointestinal system, having chondroitin sulfate-contain-
ing granules, which are stained with toluidine blue but
not safranin, and their activation occurs during parasite
infection [13], while sMCs are localized in the submucosa
of the gastrointestinal tract and their granules are rich in
heparin and stained with both toluidine blue and safrani

gene exp profiles from a small amount of RNA

To gain insight into the functional differences between the
different subclasses of MCs, we employed three rounds of
the T7-based RNA amplification method. Based on the
preliminary experiments using peritoneal MCs and bone
marrow-derived MCs (BMMCs), we estimated that a sin-
gle MC yields 2 pg of RNA. Before we performed compar-
ative analysis of MCs from different tissues, we first
evaluated the accuracy and reproducibility of three rounds
of the T7-based RNA amplification method, starting with
the amount of RNA that can be obtained from a single
MC. To assess this, we first compared the microarray
results obtained from 5 ug of BMMC RNA prepared by the
standard protocol with those obtained from the same
RNA diluted 105- or 106-fold (30 pg, 10 pg and 2 pg) and
subjected to three rounds of T7-based amplification (Fig-
ure 1a-c). Although three rounds of amplification yielded
enough quantity of RNA for microarray analysis (>20 pug)
even in the case of 2 pg RNA, scatter plot analysis revealed
that the qualities of the obtained results were quite differ-
ent between the samples from 5 pg and 2 pg RNA. The
genes judged as 'Presence’ in both 30 pg and 5 pg of RNA
were 8,149 genes, which corresponded to 72% of genes
judged as 'Presence’ in the 5 pg of RNA (11,344 genes; Fig-
ure 1a), while only 4,116 genes were judged as 'Presence’
inboth 2 pgand 5 ug of RNA, which corresponded to only
36% of genes judged as 'Presence’ in the 5 pg RNA (Figure
1c). The decrease in the number of genes judged as 'Pres-
ence' in the diluted samples (30 pg, 10 pg and 2 pg) may
be due to the loss of low copy number RNA species during
amplification.

We next examined the reproducibility of the microarray
results obtained from two sets of 30 pg BMMC RNA sam-

[1,11]. However, the molecular basis determining the dif-
ferences in biochemical properties of these two MC sub-
classes remains uncertain, partially due to the difficulty of
their isolation.

To overcome these probl here we a
method of RNA amplification from intact MCs isolated
from frozen tissue sections, which enables us to conven-
iently obtain the global gene expression pattern of MCs in
various tissues. To validate this method, we first deter-

Sy

ples (30 pg-1 and 30 pg-2) or two sets of 2 pg samples (2
pg-1 and 2 pg-2) (Figure 1d and 1e). In the 30 pg RNA
samples, 7,537 (30 pg-1) and 8,777 (30 pg-2) genes were
judged as 'Presence’. However, only 4,324 (2 pg-1) and
4,460 (2 pg-2) genes were judged as 'Presence’ in each 2
pg RNA sample, again suggesting the loss of low copy
number RNAs during amplification from a small amount
of RNA. As to the reproducibility, 86% of the ‘Presence’
genes in the 30 pg-1 and 74% of 'Presence’ genes in the 30
pg-2 sample were judged as 'Presence’ in both 30 pg RNA
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