known. Fat Redistribution: Redistribution/accumulation of body fat including central obesity, dorsocervical fat enlargement (buffalo hump), peripheral wasting, facial wasting, breast enlargement, and "cushingoid appearance" have been observed in patients receiving antiretroviral therapy. The mechanism and long-term consequences of these events are currently unknown. A causal relationship has not been established. **Information for Patients:** EPIVIR is not a cure for HIV infection and patients may continue to experience illnesses associated with HIV infection, including opportunistic infections. Patients should remain under the care of a physician when using EPIVIR. Patients should be advised that the use of EPIVIR has not been shown to reduce the risk of transmission of HIV to others through sexual contact or blood contamination. Patients should be advised that EPIVIR Tablets and Oral Solution contain a higher dose of the same active ingredient (lamivudine) as EPIVIR-HBV Tablets and Oral Solution. If a decision is made to include lamivudine in the HIV treatment regimen of a patient dually infected with HIV and HBV, the formulation and dosage of lamivudine in EPIVIR (not EPIVIR-HBV) should be used. Patients should be advised that the long-term effects of EPIVIR are unknown at this time. EPIVIR Tablets and Oral Solution are for oral ingestion only. Patients should be advised of the importance of taking EPIVIR with combination therapy on a regular dosing schedule and to avoid missing doses. Parents or guardians should be advised to monitor pediatric patients for signs and symptoms of pancreatitis. Patients should be informed that redistribution or accumulation of body fat may occur in patients receiving antiretroviral therapy and that the cause and long-term health effects of these conditions are not known at this time. Diabetic patients should be advised that each 15-mL dose of EPIVIR Oral Solution contains 3 grams of sucrose. **Drug Interactions:** Lamivudine is predominantly eliminated in the urine by active organic cationic secretion. The possibility of interactions with other drugs administered concurrently should be considered, particularly when their main route of elimination is active renal secretion via the organic cationic transport system (e.g., trimethoprim). TMP 160 mg/SMX 800 mg once daily has been shown to increase lamivudine exposure (AUC) by 44% (see CLINICAL PHARMACOLOGY). No change in dose of either drug is recommended. There is no information regarding the effect on lamivudine pharmacokinetics of higher doses of TMP/SMX such as those used to treat *Pneumocystis carinii* pneumonia. No data are available regarding interactions with other drugs that have renal clearance mechanisms similar to that of lamivudine. Lamivudine and zalcitabine may inhibit the intracellular phosphorylation of one another. Therefore, use of lamivudine in combination with zalcitabine is not recommended. Carcinogenesis, Mutagenesis, and Impairment of Fertility: Long-term carcinogenicity studies with lamivudine in mice and rats showed no evidence of carcinogenic potential at exposures up to 10 times (mice) and 58 times (rats) those observed in humans at the recommended therapeutic dose for HIV infection. Lamivudine was not active in a microbial mutagenicity screen or an in vitro cell transformation assay, but showed weak in vitro mutagenic activity in a cytogenetic assay using cultured human lymphocytes and in the mouse lymphoma assay. However, lamivudine showed no evidence of in vivo genotoxic activity in the rat at oral doses of up to 2,000 mg/kg, producing plasma levels of 35 to 45 times those in humans at the recommended dose for HIV infection. In a study of reproductive performance, lamivudine administered to rats at doses up to 4,000 mg/kg/day, producing plasma levels 47 to 70 times those in humans, revealed no evidence of impaired fertility and no effect on the survival, growth, and development to weaning of the offspring. **Pregnancy:** Pregnancy Category C. Reproduction studies have been performed in rats and rabbits at orally administered doses up to 4,000 mg/kg/day and 1,000 mg/kg/day, respectively, producing plasma levels up to approximately 35 times that for the adult HIV dose. No evidence of teratogenicity due to lamivudine was observed. Evidence of early embryolethality was seen in the rabbit at exposure levels similar to those observed in humans, but there was no indication of this effect in the rat at exposure levels up to 35 times that in humans. Studies in pregnant rats and rabbits showed that lamivudine is transferred to the fetus through the placenta. In 2 clinical studies conducted in South Africa, pharmacokinetic measurements were performed on samples from pregnant women who received lamivudine beginning at week 38 of gestation (10 women who received 150 mg twice daily in combination with zidovudine and 10 who received lamivudine 300 mg twice daily without other antiretrovirals) or beginning at week 36 of gestation (16 women who received lamivudine 150 mg twice daily in combination with zidovudine). These studies were not designed or powered to provide efficacy information. Lamivudine pharmacokinetics in the pregnant women were similar to those obtained following birth and in non-pregnant adults. Lamivudine concentrations were generally similar in maternal, neonatal, and cord serum samples. In a subset of subjects from whom amniotic fluid specimens were obtained following natural rupture of membranes, amniotic fluid concentrations of lamivudine ranged from 1.2 to 2.5 mcg/mL (150 mg twice daily) and 2.1 to 5.2 mcg/mL (300 mg twice daily) and were typically greater than 2 times the maternal serum levels. See the ADVERSE REACTIONS section for the limited late-pregnancy safety information available from these studies. Lamivudine should be used during pregnancy only if the potential benefits outweigh the risks. **Antiretroviral Pregnancy Registry:** To monitor maternal-fetal outcomes of pregnant women exposed to lamivudine, a Pregnancy Registry has been established. Physicians are encouraged to register patients by calling 1-800-258-4263. Nursing Mothers: The Centers for Disease Control and Prevention recommend that HIV-infected mothers not breastfeed their infants to avoid risking postnatal transmission of HIV infection. A study in lactating rats administered 45 mg/kg of lamivudine showed that lamivudine concentrations in milk were slightly greater than those in plasma. Lamivudine is also excreted in human milk. Samples of breast milk obtained from 20 mothers receiving lamivudine monotherapy (300 mg twice daily) or combination therapy (150 mg lamivudine twice daily and 300 mg zidovudine twice daily) had measurable concentrations of lamivudine. Because of both the potential for HIV transmission and the potential for serious adverse reactions in nursing infants, mothers should be instructed not to breastfeed if they are receiving lamivudine. Pediatric Use: HIV: Limited, uncontrolled pharmacokinetic and safety data are available from administration of lamivudine (and zidovudine) to 36 infants up to 1 week of age in 2 studies in South Africa. In these studies, lamivudine clearance was substantially reduced in 1-week-old neonates relative to pediatric patients (>3 months of age) studied previously. There is insufficient information to establish the time course of changes in clearance between the immediate neonatal period and the age-ranges >3 months old. See the ADVERSE REACTIONS section for the limited safety information available from these studies. The safety and effectiveness of twice-daily EPIVIR in combination with other antiretroviral agents have been established in pediatric patients 3 months of age and older. In Study A2002, pharmacokinetic properties of lamivudine were assessed in a subset of 57 HIV-infected pediatric patients (age range: 4.8 months to 16 years, weight range: 5 to 66 kg) after oral and IV administration of 1, 2, 4, 8, 12, and 20 mg/kg/day. In the 9 infants and children (range: 5 months to 12 years of age) receiving oral solution 4 mg/kg twice daily (the usual recommended pediatric dose), absolute bioavailability was $66\% \pm 26\%$ (mean \pm SD), which was less than the $86\% \pm 16\%$ (mean \pm SD) observed in adults. The mechanism for the diminished absolute bioavailability of lamivudine in infants and children is unknown. Systemic clearance decreased with increasing age in pediatric patients, as shown in Figure 2. Figure 2. Systemic Clearance (L/hr•kg) of Lamivudine After oral administration of lamivudine 4 mg/kg twice daily to 11 pediatric patients ranging from 4 months to 14 years of age, C_{max} was 1.1 ± 0.6 mcg/mL and half-life was 2.0 ± 0.6 hours. (In adults with similar blood sampling, the half-life was 3.7 ± 1 hours.) Total exposure to lamivudine, as reflected by mean AUC values, was comparable between pediatric patients receiving an 8-mg/kg/day dose and adults receiving a 4-mg/kg/day dose. Distribution of lamivudine into cerebrospinal fluid (CSF) was assessed in 38 pediatric patients after multiple oral dosing with lamivudine. CSF samples were collected between 2 and 4 hours postdose. At the dose of 8 mg/kg/day, CSF lamivudine concentrations in 8 patients ranged from 5.6% to 30.9% (mean \pm SD of 14.2% \pm 7.9%) of the concentration in a simultaneous serum sample, with CSF lamivudine concentrations ranging from 0.04 to 0.3 mcg/mL. The effect of renal impairment on lamivudine pharmacokinetics in pediatric patients is not known. The safety and pharmacokinetic properties of EPIVIR in combination with antiretroviral agents other than zidovudine have not been established in pediatric patients. See INDICATIONS AND USAGE: Description of Clinical Studies, CLINICAL PHARMACOLOGY, WARNINGS, ADVERSE REACTIONS, and DOSAGE AND ADMINISTRATION. HBV: See the complete prescribing information for EPIVIR-HBV Tablets and Oral Solution for additional information on the pharmacokinetics of lamivudine in HBV-infected children. Geriatric Use: Clinical studies of EPIVIR did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently from younger subjects. In general, dose selection for an elderly patient should be cautious, reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy. In particular, because lamivudine is substantially excreted by the kidney and elderly patients are more likely to have decreased renal function, renal function should be monitored and dosage adjustments should be made accordingly (see PRECAUTIONS: Patients with Impaired Renal Function and DOSAGE AND ADMINISTRATION). ### **ADVERSE REACTIONS** Clinical Trials in HIV: Adults: Selected clinical adverse events with a ≥5% frequency during therapy with EPIVIR 150 mg twice daily plus RETROVIR 200 mg 3 times daily compared with zidovudine are listed in Table 5. Table 5. Selected Clinical Adverse Events (≥5% Frequency) in Four Controlled Clinical Trials (A3001, A3002, B3001, B3002) EPIVIR 150 mg Twice Daily plus RETROVIR **RETROVIR*** Adverse Event (n = 251)(n = 230)Body as a whole Headache 35% 27% Malaise & fatigue 27% 23% Fever or chills 10% 12% Digestive Nausea 33% 29% Diarrhea 18% 22% Nausea & vomiting 12% 13% Anorexia and/or decreased appetite 7% 10% Abdominal pain 9% 11% Abdominal cramps 6% 3% Dyspepsia 5% 5% Nervous system Neuropathy 12% 10% Insomnia & other sleep disorders 11% 7% **Dizziness** 10% 4% Depressive disorders 9% 4% Respiratory 20% Nasal signs & symptoms 11% Cough 18% 13% Skin 9% Skin rashes 6% Musculoskeletal Musculoskeletal pain 12% 10% 8% 6% Myalgia Arthralgia 5% 5% ^{*}Either zidovudine monotherapy or zidovudine in combination with zalcitabine. The types and frequencies of clinical adverse events reported in patients receiving EPIVIR 300 mg once daily or EPIVIR 150 mg twice daily (in 3-drug combination regimens in EPV20001 and EPV40001) were similar. The most common adverse events in both treatment groups were nausea, dizziness, fatigue and/or malaise, headache, dreams, insomnia and other sleep disorders, and skin rash. Pancreatitis was observed in 9 of the 2,613 adult patients (0.3%) who received EPIVIR in the controlled clinical trials EPV20001, NUCA3001, NUCA3001, NUCA3002, NUCB3002, and B3007. Selected laboratory abnormalities observed during therapy are summarized in Table 6. Table 6. Frequencies of Selected Laboratory Abnormalities in Adults in Four 24-Week Surrogate Endpoint Studies (A3001, A3002, B3001, B3002) and a Clinical Endpoint Study (B3007) | (2007) | T | | | | |--------------------------------------|----------------------------|-----------------------|-------------------|----------------------| | | 24-Week Surrogate Endpoint | | Clinical Endpoint | | | | Studies* | | Study* | | | | | | EPIVIR plus | Placebo plus | | Test | EPIVIR plus | | Current | Current | | (Threshold Level) | RETROVIR | RETROVIR [†] | Therapy | Therapy [‡] | | Absolute neutrophil count | 7.2% | 5.4% | 15% | 13% | | (<750/mm ³) | | | | | | Hemoglobin (<8.0 g/dL) | 2.9% | 1.8% | 2.2% | 3.4% | | Platelets (<50,000/mm ³) | 0.4% | 1.3% | 2.8% | 3.8% | | ALT (>5.0 x ULN) | 3.7% | 3.6% | 3.8% | 1.9% | | AST (>5.0 x ULN) | 1.7% | 1.8% | 4.0% | 2.1% | | Bilirubin (>2.5 x ULN) | 0.8% | 0.4% | ND | ND | | Amylase (>2.0 x ULN) | 4.2% | 1.5% | 2.2% | 1.1% | ^{*}The median duration on study was 12 months. ULN = Upper limit of normal. ND = Not done. In small, uncontrolled studies in which pregnant women were given lamivudine alone or in combination with zidovudine beginning in the last few weeks of pregnancy (see PRECAUTIONS: Pregnancy), reported adverse events included anemia, urinary tract infections, and complications of labor and delivery. In postmarketing experience, liver function abnormalities and pancreatitis have been reported in women who received lamivudine in combination with other antiretroviral drugs during pregnancy. It is not known whether risks of [†] Either zidovudine monotherapy or zidovudine in combination with zalcitabine. [‡]Current therapy was either zidovudine, zidovudine plus didanosine, or zidovudine plus zalcitabine. adverse events associated with lamivudine are altered in pregnant women compared to other HIV-infected patients. The frequencies of selected laboratory abnormalities reported in patients receiving EPIVIR 300 mg once daily or EPIVIR 150 mg twice daily (in 3-drug combination regimens in EPV20001 and EPV40001) were similar. **Pediatric Patients:** Selected clinical adverse events and physical findings with a $\geq 5\%$ frequency during therapy with EPIVIR 4 mg/kg twice daily plus RETROVIR 160 mg/m² 3 times daily compared with didanosine in therapy-naive (≤ 56 days of antiretroviral therapy) pediatric patients are listed in Table 7. Table 7. Selected Clinical Adverse Events and Physical Findings (≥5% Frequency) in Pediatric Patients in Study ACTG300 | | EPIVIR plus | | |---------------------------------|-------------|------------| | | RETROVIR | Didanosine | | Adverse Event | (n = 236) | (n = 235) | | Body as a whole | | | | Fever | 25% | 32% | | Digestive | | - 197 | | Hepatomegaly | 11% | 11% | | Nausea & vomiting | 8% | 7% | | Diarrhea | 8% | 6% | | Stomatitis | 6% | 12% | | Splenomegaly | 5% | 8% | | Respiratory | | | | Cough | 15% | 18% | | Abnormal breath sounds/wheezing | 7% | 9% | | Ear, Nose, and Throat | | | | Signs or symptoms of ears* | 7% | 6% | | Nasal discharge or congestion | 8% | 11% | | Other | | | | Skin rashes | 12% | 14% | | Lymphadenopathy | 9% | 11% | ^{*}Includes pain, discharge, erythema, or swelling of an ear. Selected laboratory abnormalities experienced by therapy-naive (≤56 days of antiretroviral therapy) pediatric patients are listed in Table 8. Table 8. Frequencies of Selected Laboratory Abnormalities in Pediatric Patients in Study ACTG300 | AC10300 | | | |---------------------------------------------------|-------------|------------| | Test | EPIVIR plus | | | (Threshold Level) | RETROVIR | Didanosine | | Absolute neutrophil count (<400/mm ³) | 8% | 3% | | Hemoglobin (<7.0 g/dL) | 4% | 2% | | Platelets (<50,000/mm ³) | 1% | 3% | | ALT (>10 x ULN) | 1% | 3% | | AST (>10 x ULN) | 2% | 4% | | Lipase (>2.5 x ULN) | 3% | 3% | | Total Amylase (>2.5 x ULN) | 3% | 3% | ULN = Upper limit of normal. Pancreatitis, which has been fatal in some cases, has been observed in antiretroviral nucleoside-experienced pediatric patients receiving EPIVIR alone or in combination with other antiretroviral agents. In an open-label dose-escalation study (A2002), 14 patients (14%) developed pancreatitis while receiving monotherapy with EPIVIR. Three of these patients died of complications of pancreatitis. In a second open-label study (A2005), 12 patients (18%) developed pancreatitis. In Study ACTG300, pancreatitis was not observed in 236 patients randomized to EPIVIR plus RETROVIR. Pancreatitis was observed in 1 patient in this study who received open-label EPIVIR in combination with RETROVIR and ritonavir following discontinuation of didanosine monotherapy. Paresthesias and peripheral neuropathies were reported in 15 patients (15%) in Study A2002, 6 patients (9%) in Study A2005, and 2 patients (<1%) in Study ACTG300. Limited short-term safety information is available from 2 small, uncontrolled studies in South Africa in neonates receiving lamivudine with or without zidovudine for the first week of life following maternal treatment starting at week 38 or 36 of gestation (see PRECAUTIONS: Pediatric Use). Adverse events reported in these neonates included increased liver function tests, anemia, diarrhea, electrolyte disturbances, hypoglycemia, jaundice and hepatomegaly, rash, respiratory infections, sepsis, and syphilis; 3 neonates died (1 from gastroenteritis with acidosis and convulsions, 1 from traumatic injury, and 1 from unknown causes). Two other nonfatal gastroenteritis or diarrhea cases were reported, including 1 with convulsions; 1 infant had transient renal insufficiency associated with dehydration. The absence of control groups further limits assessments of causality, but it should be assumed that perinatally-exposed infants may be at risk for adverse events comparable to those reported in pediatric and adult HIV-infected patients treated with lamivudine-containing combination regimens. Long-term effects of in utero and infant lamivudine exposure are not known. Lamivudine in Patients with Chronic Hepatitis B: Clinical trials in chronic hepatitis B used a lower dose of lamivudine (100 mg daily) than the dose used to treat HIV. The most frequent adverse events with lamivudine versus placebo were ear, nose, and throat infections (25% versus 21%); malaise and fatigue (24% versus 28%); and headache (21% versus 21%), respectively. The most frequent laboratory abnormalities reported with lamivudine were elevated ALT, elevated serum lipase, elevated CPK, and posttreatment elevations of liver function tests. Emergence of HBV viral mutants during lamivudine treatment, associated with reduced drug susceptibility and diminished treatment response, was also reported (also see WARNINGS and PRECAUTIONS). Please see the complete prescribing information for EPIVIR-HBV Tablets and Oral Solution for more information. **Observed During Clinical Practice:** In addition to adverse events reported from clinical trials, the following events have been identified during post-approval use of lamivudine. Because they are reported voluntarily from a population of unknown size, estimates of frequency cannot be made. These events have been chosen for inclusion due to a combination of their seriousness, frequency of reporting, or potential causal connection to lamivudine. **Body as a Whole:** Redistribution/accumulation of body fat (see PRECAUTIONS: Fat Redistribution). Digestive: Stomatitis. Endocrine and Metabolic: Hyperglycemia. General: Weakness. **Hemic and Lymphatic:** Anemia (including pure red cell aplasia and severe anemias progressing on therapy), lymphadenopathy, splenomegaly. Hepatic and Pancreatic: Lactic acidosis and hepatic steatosis, pancreatitis, posttreatment exacerbation of hepatitis B (see WARNINGS and PRECAUTIONS). Hypersensitivity: Anaphylaxis, urticaria. Musculoskeletal: Muscle weakness, CPK elevation, rhabdomyolysis. **Nervous:** Paresthesia, peripheral neuropathy. **Respiratory:** Abnormal breath sounds/wheezing. **Skin:** Alopecia, rash, pruritus. #### **OVERDOSAGE** There is no known antidote for EPIVIR. One case of an adult ingesting 6 g of EPIVIR was reported; there were no clinical signs or symptoms noted and hematologic tests remained normal. Two cases of pediatric overdose were reported in ACTG300. One case was a single dose of 7 mg/kg of EPIVIR; the second case involved use of 5 mg/kg of EPIVIR twice daily for 30 days. There were no clinical signs or symptoms noted in either case. It is not known whether lamivudine can be removed by peritoneal dialysis or hemodialysis. If overdose occurs, the patient should be monitored, and standard supportive treatment applied as required. ### DOSAGE AND ADMINISTRATION **Adults:** The recommended oral dose of EPIVIR for adults is 300 mg daily, administered as either 150 mg twice daily or 300 mg once daily, in combination with other antiretroviral agents (see DESCRIPTION OF CLINICAL STUDIES, PRECAUTIONS, MICROBIOLOGY, and CLINICAL PHARMACOLOGY). If lamivudine is administered to a patient dually infected with HIV and HBV, the dosage indicated for HIV therapy should be used as part of an appropriate combination regimen (see WARNINGS). Pediatric Patients: Infants/Children/Adolescents: The recommended oral dose of EPIVIR for HIV-infected pediatric patients 3 months up to 16 years of age is 4 mg/kg twice daily (up to a maximum of 150 mg twice a day), administered in combination with other antiretroviral agents. **Dose Adjustment:** It is recommended that doses of EPIVIR be adjusted in accordance with renal function (see Table 9) (see CLINICAL PHARMACOLOGY). Table 9. Adjustment of Dosage of EPIVIR in Adults and Adolescents in Accordance with Creatinine Clearance | Creatinine Clearance | | | |----------------------|-------------------------------------------|--| | (mL/min) | Recommended Dosage of EPIVIR | | | ≥50 | 150 mg twice daily or 300 mg once daily | | | 30-49 | 150 mg once daily | | | 15-29 | 150 mg first dose, then 100 mg once daily | | | 5-14 | 150 mg first dose, then 50 mg once daily | | | <5 | 50 mg first dose, then 25 mg once daily | | Insufficient data are available to recommend a dosage of EPIVIR in patients undergoing dialysis. Although there are insufficient data to recommend a specific dose adjustment of EPIVIR in pediatric patients with renal impairment, a reduction in the dose and/or an increase in the dosing interval should be considered. ### **HOW SUPPLIED** EPIVIR Tablets, 150 mg, are white, modified diamond-shaped, film-coated tablets engraved with "GX CJ7" on one side and plain on the reverse side. Bottle of 60 tablets (NDC 0173-0470-01) with child-resistant closure. EPIVIR Tablets, 300 mg, are gray, modified diamond-shaped, film-coated tablets engraved with "GX EJ7" on one side and plain on the reverse side. Bottle of 30 tablets (NDC 0173-0714-00) with child-resistant closure. Store at 25°C (77°F); excursions permitted to 15° to 30°C (59° to 86°F) [see USP Controlled Room Temperature]. EPIVIR Oral Solution, a clear, colorless to pale yellow, strawberry-banana flavored liquid, contains 10 mg of lamivudine in each 1 mL in plastic bottles of 240 mL (NDC 0173-0471-00) with child-resistant closures. This product does not require reconstitution. Store in tightly closed bottles at 25°C (77°F) [see USP Controlled Room Temperature]. GlaxoSmithKline Research Triangle Park, NC 27709 Manufactured under agreement from **Shire Pharmaceuticals Group plc** Basingstoke, UK ©2003, GlaxoSmithKline. All rights reserved. September 2003 RL-2035 ### PRESCRIBING INFORMATION ZIAGEN[®] (abacavir sulfate) Tablets ZIAGEN[®] (abacavir sulfate) Oral Solution ### WARNING FATAL HYPERSENSITIVITY REACTIONS HAVE BEEN ASSOCIATED WITH THERAPY WITH ZIAGEN. PATIENTS DEVELOPING SIGNS OR SYMPTOMS OF HYPERSENSITIVITY (WHICH INCLUDE FEVER; SKIN RASH; FATIGUE; GASTROINTESTINAL SYMPTOMS SUCH AS NAUSEA, VOMITING, DIARRHEA, OR ABDOMINAL PAIN; AND RESPIRATORY SYMPTOMS SUCH AS PHARYNGITIS, DYSPNEA, OR COUGH) SHOULD DISCONTINUE ZIAGEN AS SOON AS A HYPERSENSITIVITY REACTION IS SUSPECTED. TO AVOID A DELAY IN DIAGNOSIS AND MINIMIZE THE RISK OF A LIFE-THREATENING HYPERSENSITIVITY REACTION, ZIAGEN SHOULD BE PERMANENTLY DISCONTINUED IF HYPERSENSITIVITY CANNOT BE RULED OUT, EVEN WHEN OTHER DIAGNOSES ARE POSSIBLE (E.G., ACUTE ONSET RESPIRATORY DISEASES, GASTROENTERITIS, OR REACTIONS TO OTHER MEDICATIONS). ZIAGEN SHOULD NOT BE RESTARTED FOLLOWING A HYPERSENSITIVITY REACTION BECAUSE MORE SEVERE SYMPTOMS WILL RECUR WITHIN HOURS AND MAY INCLUDE LIFE-THREATENING HYPOTENSION AND DEATH. SEVERE OR FATAL HYPERSENSITIVITY REACTIONS CAN OCCUR WITHIN HOURS AFTER REINTRODUCTION OF ZIAGEN IN PATIENTS WHO HAVE NO IDENTIFIED HISTORY OR UNRECOGNIZED SYMPTOMS OF HYPERSENSITIVITY TO ABACAVIR THERAPY (SEE WARNINGS, PRECAUTIONS: INFORMATION FOR PATIENTS, AND ADVERSE REACTIONS). LACTIC ACIDOSIS AND SEVERE HEPATOMEGALY WITH STEATOSIS, INCLUDING FATAL CASES, HAVE BEEN REPORTED WITH THE USE OF NUCLEOSIDE ANALOGUES ALONE OR IN COMBINATION, INCLUDING ZIAGEN AND OTHER ANTIRETROVIRALS (SEE WARNINGS). #### DESCRIPTION ZIAGEN is the brand name for abacavir sulfate, a synthetic carbocyclic nucleoside analogue with inhibitory activity against HIV. The chemical name of abacavir sulfate is (1S,cis)-4-[2-amino-6-(cyclopropylamino)-9*H*-purin-9-yl]-2-cyclopentene-1-methanol sulfate (salt) (2:1). Abacavir sulfate is the enantiomer with *IS*, 4*R* absolute configuration on the cyclopentene ring. It has a molecular formula of $(C_{14}H_{18}N_6O)_2$ • H_2SO_4 and a molecular weight of 670.76 daltons. It has the following structural formula: Abacavir sulfate is a white to off-white solid with a solubility of approximately 77 mg/mL in distilled water at 25°C. It has an octanol/water (pH 7.1 to 7.3) partition coefficient (log P) of approximately 1.20 at 25°C. **ZIAGEN Tablets** are for oral administration. Each tablet contains abacavir sulfate equivalent to 300 mg of abacavir and the inactive ingredients colloidal silicon dioxide, magnesium stearate, microcrystalline cellulose, and sodium starch glycolate. The tablets are coated with a film that is made of hydroxypropyl methylcellulose, polysorbate 80, synthetic yellow iron oxide, titanium dioxide, and triacetin. ZIAGEN Oral Solution is for oral administration. One milliliter (1 mL) of ZIAGEN Oral Solution contains abacavir sulfate equivalent to 20 mg of abacavir (20 mg/mL) in an aqueous solution and the inactive ingredients artificial strawberry and banana flavors, citric acid (anhydrous), methylparaben and propylparaben (added as preservatives), propylene glycol, saccharin sodium, sodium citrate (dihydrate), and sorbitol solution. In vivo, abacavir sulfate dissociates to its free base, abacavir. In this insert, all dosages for ZIAGEN are expressed in terms of abacavir. #### **MICROBIOLOGY** **Mechanism of Action:** Abacavir is a carbocyclic synthetic nucleoside analogue. Intracellularly, abacavir is converted by cellular enzymes to the active metabolite carbovir triphosphate. Carbovir triphosphate is an analogue of deoxyguanosine-5'-triphosphate (dGTP). Carbovir triphosphate inhibits the activity of HIV-1 reverse transcriptase (RT) both by competing with the natural substrate dGTP and by its incorporation into viral DNA. The lack of a 3'-OH group in the incorporated nucleoside analogue prevents the formation of the 5' to 3' phosphodiester linkage essential for DNA chain elongation, and therefore, the viral DNA growth is terminated. Antiviral Activity In Vitro: The in vitro anti-HIV-1 activity of abacavir was evaluated against a T-cell tropic laboratory strain HIV-1 IIIB in lymphoblastic cell lines, a monocyte/macrophage tropic laboratory strain HIV-1 BaL in primary monocytes/macrophages, and clinical isolates in peripheral blood mononuclear cells. The concentration of drug necessary to inhibit viral replication by 50 percent (IC₅₀) ranged from 3.7 to 5.8 μ M against HIV-1 IIIB, and was 0.26 \pm 0.18 μ M (1 μ M = 0.28 mcg/mL) against 8 clinical isolates. The IC₅₀ of abacavir against HIV-1 BaL varied from 0.07 to 1.0 μ M. Abacavir had synergistic activity in combination with amprenavir, nevirapine, and zidovudine, and additive activity in combination with didanosine, lamivudine, stavudine, and zalcitabine in vitro. These drug combinations have not been adequately studied in humans. The relationship between in vitro susceptibility of HIV to abacavir and the inhibition of HIV replication in humans has not been established. **Drug Resistance:** HIV-1 isolates with reduced sensitivity to abacavir have been selected in vitro and were also obtained from patients treated with abacavir. Genetic analysis of isolates from abacavir-treated patients showed point mutations in the reverse transcriptase gene that resulted in amino acid substitutions at positions K65R, L74V, Y115F, and M184V. Phenotypic analysis of HIV-1 isolates that harbored abacavir-associated mutations from 17 patients after 12 weeks of abacavir monotherapy exhibited a 3-fold decrease in susceptibility to abacavir in vitro. Genetic analysis of HIV-1 isolates from 21 previously antiretroviral therapy-naive patients with confirmed virologic failure (plasma HIV-1 RNA ≥400 copies/mL) after 16 to 48 weeks of abacavir/lamivudine/zidovudine therapy showed that 16/21 isolates had abacavir/lamivudine-associated mutation M184V, either alone (11/21), or in combination with Y115F (1/21) or zidovudine-associated (4/21) mutations at the last time point. Phenotypic data available on isolates from 10 patients showed that 7 of the 10 isolates had 25- to 86-fold decreases in susceptibility to lamivudine in vitro. Likewise, isolates from 2 of these 7 patients had 7- to 10-fold decreases in susceptibility to abacavir in vitro. The clinical relevance of genotypic and phenotypic changes associated with abacavir therapy has not been established, but is currently under evaluation. **Cross-Resistance:** Recombinant laboratory strains of HIV-1 (HXB2) containing multiple reverse transcriptase mutations conferring abacavir resistance exhibited cross-resistance to lamivudine, didanosine, and zalcitabine in vitro. For clinical information in treatment-experienced patients, see INDICATIONS AND USAGE: Description of Clinical Studies and PRECAUTIONS. ### **CLINICAL PHARMACOLOGY** Pharmacokinetics in Adults: The pharmacokinetic properties of abacavir have been studied in asymptomatic, HIV-infected adult patients after administration of a single intravenous (IV) dose of 150 mg and after single and multiple oral doses. The pharmacokinetic properties of abacavir were independent of dose over the range of 300 to 1,200 mg/day. Absorption and Bioavailability: Abacavir was rapidly and extensively absorbed after oral administration. The geometric mean absolute bioavailability of the tablet was 83%. After oral administration of 300 mg twice daily in 20 patients, the steady-state peak serum abacavir concentration (C_{max}) was 3.0 ± 0.89 mcg/mL (mean \pm SD) and AUC_(0-12 hr) was 6.02 ± 1.73 mcg•hr/mL. Bioavailability of abacavir tablets was assessed in the fasting and fed states. There was no significant difference in systemic exposure (AUC ∞) in the fed and fasting states; therefore, ZIAGEN Tablets may be administered with or without food. Systemic exposure to abacavir was comparable after administration of ZIAGEN Oral Solution and ZIAGEN Tablets. Therefore, these products may be used interchangeably. **Distribution:** The apparent volume of distribution after IV administration of abacavir was 0.86 ± 0.15 L/kg, suggesting that abacavir distributes into extravascular space. In 3 subjects, the CSF AUC_(0-6 hr) to plasma abacavir AUC_(0-6 hr) ratio ranged from 27% to 33%. Binding of abacavir to human plasma proteins is approximately 50%. Binding of abacavir to plasma proteins was independent of concentration. Total blood and plasma drug-related radioactivity concentrations are identical, demonstrating that abacavir readily distributes into erythrocytes. **Metabolism:** In humans, abacavir is not significantly metabolized by cytochrome P450 enzymes. The primary routes of elimination of abacavir are metabolism by alcohol dehydrogenase (to form the 5'-carboxylic acid) and glucuronyl transferase (to form the 5'-glucuronide). The metabolites do not have antiviral activity. In vitro experiments reveal that abacavir does not inhibit human CYP3A4, CYP2D6, or CYP2C9 activity at clinically relevant concentrations. **Elimination:** Elimination of abacavir was quantified in a mass balance study following administration of a 600-mg dose of ¹⁴C-abacavir: 99% of the radioactivity was recovered, 1.2% was excreted in the urine as abacavir, 30% as the 5'-carboxylic acid metabolite, 36% as the 5'-glucuronide metabolite, and 15% as unidentified minor metabolites in the urine. Fecal elimination accounted for 16% of the dose. In single-dose studies, the observed elimination half-life $(t_{1/2})$ was 1.54 ± 0.63 hours. After intravenous administration, total clearance was 0.80 ± 0.24 L/hr/kg (mean \pm SD). **Special Populations:** Adults With Impaired Renal Function: The pharmacokinetic properties of ZIAGEN have not been determined in patients with impaired renal function. Renal excretion of unchanged abacavir is a minor route of elimination in humans. Adults with Impaired Hepatic Function: The pharmacokinetics of abacavir have been studied in patients with mild hepatic impairment (Child-Pugh score 5 to 6). Results showed that there was a mean increase of 89% in the abacavir AUC, and an increase of 58% in the half-life of abacavir after a single dose of 600 mg of abacavir. The AUCs of the metabolites were not modified by mild liver disease; however, the rates of formation and elimination of the metabolites were decreased. A dose of 200 mg (provided by 10 mL of ZIAGEN Oral Solution) administered twice daily is recommended for patients with mild liver disease. The safety, efficacy, and pharmacokinetics of abacavir have not been studied in patients with moderate or severe hepatic impairment, therefore ZIAGEN is contraindicated in these patients. **Pediatric Patients:** The pharmacokinetics of abacavir have been studied after either single or repeat doses of ZIAGEN in 68 pediatric patients. Following multiple-dose administration of ZIAGEN 8 mg/kg twice daily, steady-state $AUC_{(0-12 \text{ hr})}$ and C_{max} were 9.8 ± 4.56 mcg \bullet hr/mL and 3.71 ± 1.36 mcg/mL (mean \pm SD), respectively (see PRECAUTIONS: Pediatric Use). **Geriatric Patients:** The pharmacokinetics of ZIAGEN have not been studied in patients over 65 years of age. **Gender:** The pharmacokinetics of ZIAGEN with respect to gender have not been determined. **Race:** The pharmacokinetics of ZIAGEN with respect to race have not been determined. **Drug Interactions:** In human liver microsomes, abacavir did not inhibit cytochrome P450 isoforms (2C9, 2D6, 3A4). Based on these data, it is unlikely that clinically significant drug interactions will occur between abacavir and drugs metabolized through these pathways. Due to their common metabolic pathways via glucuronyl transferase with zidovudine, 15 HIV-infected patients were enrolled in a crossover study evaluating single doses of abacavir (600 mg), lamivudine (150 mg), and zidovudine (300 mg) alone or in combination. Analysis showed no clinically relevant changes in the pharmacokinetics of abacavir with the addition of lamivudine or zidovudine or the combination of lamivudine and zidovudine. Lamivudine exposure (AUC decreased 15%) and zidovudine exposure (AUC increased 10%) did not show clinically relevant changes with concurrent abacavir. Due to their common metabolic pathways via alcohol dehydrogenase, the pharmacokinetic interaction between abacavir and ethanol was studied in 24 HIV-infected male patients. Each patient received the following treatments on separate occasions: a single 600-mg dose of abacavir, 0.7 g/kg ethanol (equivalent to 5 alcoholic drinks), and abacavir 600 mg plus 0.7 g/kg ethanol. Coadministration of ethanol and abacavir resulted in a 41% increase in abacavir AUC ∞ and a 26% increase in abacavir $t_{1/2}$. In males, abacavir had no effect on the pharmacokinetic properties of ethanol, so no clinically significant interaction is expected in men. This interaction has not been studied in females. **Methadone:** In a study of 11 HIV-infected subjects receiving methadone-maintenance therapy (40 mg and 90 mg daily), with 600 mg of ZIAGEN twice daily (twice the currently recommended dose), oral methadone clearance increased 22% (90% CI 6% to 42%). This alteration will not result in a methadone dose modification in the majority of patients; however, an increased methadone dose may be required in a small number of patients. #### INDICATIONS AND USAGE ZIAGEN Tablets and Oral Solution, in combination with other antiretroviral agents, are indicated for the treatment of HIV-1 infection. This indication is based on 2 controlled trials of 16 and 48 weeks' duration that evaluated suppression of HIV RNA and changes in CD4 cell count. At present, there are no results from controlled trials evaluating the effect of ZIAGEN on clinical progression of HIV (see Description of Clinical Studies). Description of Clinical Studies: Therapy-Naive Adults: CNAAB3003 is a multicenter, double-blind, placebo-controlled study in which 173 HIV-infected, therapy-naive adults were randomized to receive either ZIAGEN (300 mg twice daily), lamivudine (150 mg twice daily), and zidovudine (300 mg twice daily) or lamivudine (150 mg twice daily) and zidovudine (300 mg twice daily). The duration of double-blind treatment was 16 weeks. Study participants were: male (76%), Caucasian (54%), African-American (28%), and Hispanic (16%). The median age was 34 years, the median pretreatment CD4 cell count was 450 cells/mm³, and median plasma HIV-1 RNA was 4.5 log₁₀ copies/mL. Proportions of patients with plasma HIV-1 RNA <400 copies/mL (using Roche Amplicor HIV-1 MONITOR® Test) through 16 weeks of treatment are summarized in Figure 1. ZIAGEN/Lamivudine/Zidovudine (n = 87) ☐ Lamivudine/Zidovudine (n = 86) ¹Missing data were considered as HIV-1 RNA ≥400 copies/mL. After 16 weeks of therapy, the median CD4 increases from baseline were 47 cells/mm³ in the group receiving ZIAGEN and 112 cells/mm³ in the placebo group. CNAAB3005 was a multicenter, double-blind, controlled study in which 562 HIV-infected, therapy-naive adults with a pre-entry plasma HIV-1 RNA >10,000 copies/mL were randomized to receive either ZIAGEN (300 mg twice daily) plus COMBIVIR (lamivudine 150 mg/zidovudine 300 mg twice daily), or indinavir (800 mg 3 times a day) plus COMBIVIR twice daily. Study participants were male (87%), Caucasian (73%), African-American (15%), and Hispanic (9%). At baseline the median age was 36 years, the median pretreatment CD4 cell count was 360 cells/mm³, and median plasma HIV-1 RNA was 4.8 log₁₀ copies/mL. Proportions of patients with plasma HIV-1 RNA <400 copies/mL (using Roche Amplicor HIV-1 MONITOR Test) through 48 weeks of treatment are summarized in Figure 2. Figure 2. Proportions of Patients with HIV-1 RNA <400 copies/mL in Study CNAAB3005¹ ■ ZIAGEN/Lamivudine/Zidovudine (n = 282) □ Indinavir/Lamivudine/Zidovudine (n = 280) ¹Discontinuations of randomized therapy or missing data were considered as HIV-1 RNA ≥400 copies/mL. Through Week 48, an overall mean increase in CD4 cells of about 150 cells/mm³ was observed in both treatment arms. Table 1. Outcomes of Randomized Treatment Through Week 48 (CNAAB3005) | | ZIAGEN/Lamivudine/ | Indinavir/ | |------------------------------------------------|--------------------|-----------------------| | | Zidovudine | Lamivudine/Zidovudine | | Outcome | (n = 282) | (n = 280) | | HIV RNA <400 copies/mL | 46% | 47% | | HIV RNA ≥400 copies/mL* | 29% | 28% | | CDC Class C event | 2% | <1% | | Discontinued due to adverse reactions | 9% | 11% | | Discontinued due to other reasons [†] | 6% | 6% | | Randomized but never initiated treatment | 7% | 5% | *Includes viral rebound and failure to achieve confirmed <400 copies/mL by Week 48. Therapy-Experienced Pediatric Patients: CNAA3006 is a randomized, double-blind study comparing ZIAGEN 8 mg/kg twice daily, lamivudine 4 mg/kg twice daily, and zidovudine 180 mg/m² twice daily versus lamivudine 4 mg/kg twice daily and zidovudine 180 mg/m² twice daily. Two hundred and five pediatric patients were enrolled: female (56%), Caucasian (17%), [†]Includes consent withdrawn, lost to follow up, protocol violations, those with missing data, and other. African-American (50%), Hispanic (30%), median age of 5.4 years, baseline CD4 cell percent >15% (median = 27%), and median baseline plasma HIV-1 RNA of 4.6 \log_{10} copies/mL. Eighty percent and 55% of patients had prior therapy with zidovudine and lamivudine, respectively, most often in combination. The median duration of prior nucleoside analogue therapy was 2 years. Proportions of patients with plasma HIV-1 RNA levels \leq 10,000 and <400 copies/mL, respectively, through 24 weeks of treatment are summarized in Figure 3. Figure 3. Proportions of Patients with Plasma HIV-1 RNA \leq 10,000 copies/mL or <400 copies/mL Through Week 24 in Study CNAA3006^{1,2} - ZIAGEN/Lamivudine/Zidovudine (n = 102) - □ Lamivudine/Zidovudine (n = 103) ¹Missing data were considered as above the HIV-1 RNA threshold. After 16 weeks of therapy, the median CD4 increases from baseline were 69 cells/mm³ in the group receiving ZIAGEN and 9 cells/mm³ in the control group. ### CONTRAINDICATIONS hepatic impairment. Abacavir sulfate has been associated with fatal hypersensitivity reactions. ZIAGEN SHOULD NOT BE RESTARTED FOLLOWING A HYPERSENSITIVITY REACTION TO ABACAVIR (see WARNINGS, PRECAUTIONS, and ADVERSE REACTIONS). ZIAGEN Tablets and Oral Solution are contraindicated in patients with previously demonstrated hypersensitivity to any of the components of the products (see WARNINGS). ZIAGEN Tablets and Oral Solution are contraindicated in patients with moderate or severe ²No significant difference was observed at 24 weeks for the ≤10,000 copies/mL threshold.