~450 mg/kg of term body weight) to pregnant mice from days 12 through 18 of gestation. There was an increase in the number of tumors in the lung, liver, and female reproductive tracts in the offspring of mice receiving the higher dose level of zidovudine. It is not known how predictive the results of rodent carcinogenicity studies may be for humans. Zidovudine was mutagenic in a 5178Y/TK<sup>+/-</sup> mouse lymphoma assay, positive in an in vitro cell transformation assay, clastogenic in a cytogenetic assay using cultured human lymphocytes, and positive in mouse and rat micronucleus tests after repeated doses. It was negative in a cytogenetic study in rats given a single dose. Zidovudine, administered to male and female rats at doses up to 7 times the usual adult dose based on body surface area considerations, had no effect on fertility judged by conception rates. **Pregnancy:** Pregnancy Category C. Oral teratology studies in the rat and in the rabbit at doses up to 500 mg/kg/day revealed no evidence of teratogenicity with zidovudine. Zidovudine treatment resulted in embryo/fetal toxicity as evidenced by an increase in the incidence of fetal resorptions in rats given 150 or 450 mg/kg/day and rabbits given 500 mg/kg/day. The doses used in the teratology studies resulted in peak zidovudine plasma concentrations (after one half of the daily dose) in rats 66 to 226 times, and in rabbits 12 to 87 times, mean steady-state peak human plasma concentrations (after one sixth of the daily dose) achieved with the recommended daily dose (100 mg every 4 hours). In an in vitro experiment with fertilized mouse oocytes, zidovudine exposure resulted in a dose-dependent reduction in blastocyst formation. In an additional teratology study in rats, a dose of 3,000 mg/kg/day (very near the oral median lethal dose in rats of 3,683 mg/kg) caused marked maternal toxicity and an increase in the incidence of fetal malformations. This dose resulted in peak zidovudine plasma concentrations 350 times peak human plasma concentrations. (Estimated area-under-the-curve [AUC] in rats at this dose level was 300 times the daily AUC in humans given 600 mg per day.) No evidence of teratogenicity was seen in this experiment at doses of 600 mg/kg/day or less. Two rodent transplacental carcinogenicity studies were conducted (see Carcinogenesis, Mutagenesis, Impairment of Fertility). A randomized, double-blind, placebo-controlled trial was conducted in HIV-infected pregnant women to determine the utility of RETROVIR for the prevention of maternal-fetal HIV-transmission (see INDICATIONS AND USAGE: Description of Clinical Studies). Congenital abnormalities occurred with similar frequency between neonates born to mothers who received RETROVIR and neonates born to mothers who received placebo. Abnormalities were either problems in embryogenesis (prior to 14 weeks) or were recognized on ultrasound before or immediately after initiation of study drug. Antiretroviral Pregnancy Registry: To monitor maternal-fetal outcomes of pregnant women exposed to RETROVIR, an Antiretroviral Pregnancy Registry has been established. Physicians are encouraged to register patients by calling 1-800-258-4263. Nursing Mothers: The Centers for Disease Control and Prevention recommend that HIV-infected mothers not breastfeed their infants to avoid risking postnatal transmission of HIV. Zidovudine is excreted in human milk (see CLINICAL PHARMACOLOGY: Pharmacokinetics: Nursing Mothers). Because of both the potential for HIV transmission and the potential for serious adverse reactions in nursing infants, mothers should be instructed not to breastfeed if they are receiving RETROVIR (see Pediatric Use and INDICATIONS AND USAGE: Maternal-Fetal HIV Transmission). **Pediatric Use:** RETROVIR has been studied in HIV-infected pediatric patients over 3 months of age who had HIV-related symptoms or who were asymptomatic with abnormal laboratory values indicating significant HIV-related immunosuppression. RETROVIR has also been studied in neonates perinatally exposed to HIV (see ADVERSE REACTIONS, DOSAGE AND ADMINISTRATION, INDICATIONS AND USAGE: Description of Clinical Studies, and CLINICAL PHARMACOLOGY: Pharmacokinetics). **Geriatric Use:** Clinical studies of RETROVIR did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently from younger subjects. Other reported clinical experience has not identified differences in responses between the elderly and younger patients. In general, dose selection for an elderly patient should be cautious, reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy. ## **ADVERSE REACTIONS** **Adults:** The frequency and severity of adverse events associated with the use of RETROVIR are greater in patients with more advanced infection at the time of initiation of therapy. Table 6 summarizes events reported at a statistically significant greater incidence for patients receiving RETROVIR in a monotherapy study: Table 6. Percentage (%) of Patients with Adverse Events<sup>\*</sup> in Asymptomatic HIV Infection (ACTG019) | | RETROVIR 500 mg/day | Placebo | |------------------|---------------------|-----------| | Adverse Event | (n = 453) | (n = 428) | | Body as a whole | | | | Asthenia | 8.6%† | 5.8% | | Headache | 62.5% | 52.6% | | Malaise | 53.2% | 44.9% | | Gastrointestinal | | | | Anorexia | 20.1% | 10.5% | | Constipation | 6.4%† | 3.5% | | Nausea | 51.4% | 29.9% | | Vomiting | 17.2% | 9.8% | <sup>\*</sup>Reported in ≥5% of study population. Not statistically significant versus placebo. In addition to the adverse events listed in Table 6, other adverse events observed in clinical studies were abdominal cramps, abdominal pain, arthralgia, chills, dyspepsia, fatigue, hyperbilirubinemia, insomnia, musculoskeletal pain, myalgia, and neuropathy. Selected laboratory abnormalities observed during a clinical study of monotherapy with RETROVIR are shown in Table 7. Table 7. Frequencies of Selected (Grade 3/4) Laboratory Abnormalities in Patients with **Asymptomatic HIV Infection (ACTG019)** | | RETROVIR 500 mg/day | Placebo | |------------------------------------------------------|---------------------|-----------| | Adverse Event | (n = 453) | (n = 428) | | Anemia (Hgb<8 g/dL) | 1.1% | 0.2% | | Granulocytopenia (<750 cells/mm <sup>3</sup> ) | 1.8% | 1.6% | | Thrombocytopenia (platelets<50,000/mm <sup>3</sup> ) | 0% | 0.5% | | ALT (>5 x ULN) | 3.1% | 2.6% | | AST (>5 x ULN) | 0.9% | 1.6% | | Alkaline phosphatase (>5 x ULN) | 0% | 0% | ULN = Upper limit of normal. Pediatrics: Study ACTG300: Selected clinical adverse events and physical findings with a ≥5% frequency during therapy with EPIVIR 4 mg/kg twice daily plus RETROVIR 160 mg/m<sup>2</sup> 3 times daily compared with didanosine in therapy-naive (≤56 days of antiretroviral therapy) pediatric patients are listed in Table 8. Table 8. Selected Clinical Adverse Events and Physical Findings (≥5% Frequency) in Pediatric Patients in Study ACTG300 | in Pediatric Patients in Study ACTG300 | | | |----------------------------------------|-------------|-------------------| | | EPIVIR plus | | | | RETROVIR | Didanosine | | Adverse Event | (n = 236) | (n = 235) | | Body as a whole | | | | Fever | 25% | 32% | | Digestive | | a vale tite | | Hepatomegaly | 11% | 11% | | Nausea & vomiting | 8% | 7% | | Diarrhea | 8% | 6% | | Stomatitis | 6% | 12% | | Splenomegaly | 5% | 8% | | Respiratory | , | , | | Cough | 15% | 18% | | Abnormal breath sounds/wheezing | 7% | 9% | | Ear, Nose, and Throat | | the second second | | Signs or symptoms of ears* | 7% | 6% | | Nasal discharge or congestion | 8% | 11% | | Other | | | | Skin rashes | 12% | 14% | | Lymphadenopathy | 9% | 11% | <sup>\*</sup>Includes pain, discharge, erythema, or swelling of an ear. Selected laboratory abnormalities experienced by therapy-naive (≤56 days of antiretroviral therapy) pediatric patients are listed in Table 9. Table 9. Frequencies of Selected (Grade 3/4) Laboratory Abnormalities in Pediatric Patients in Study ACTG300 | Test | EPIVIR plus | | |------------------------------------------------------|-------------|------------| | (Abnormal Level) | RETROVIR | Didanosine | | Neutropenia (ANC<400 cells/mm <sup>3</sup> ) | 8% | 3% | | Anemia (Hgb<7.0 g/dL) | 4% | 2% | | Thrombocytopenia (platelets<50,000/mm <sup>3</sup> ) | 1% | 3% | | ALT (>10 x ULN) | 1% | 3% | | AST (>10 x ULN) | 2% | 4% | | Lipase (>2.5 x ULN) | 3% | 3% | | Total amylase (>2.5 x ULN) | 3% | 3% | ULN = Upper limit of normal. ANC = Absolute neutrophil count. Additional adverse events reported in open-label studies in pediatric patients receiving RETROVIR 180 mg/m<sup>2</sup> every 6 hours were congestive heart failure, decreased reflexes, ECG abnormality, edema, hematuria, left ventricular dilation, macrocytosis, nervousness/irritability, and weight loss. The clinical adverse events reported among adult recipients of RETROVIR may also occur in pediatric patients. Use for the Prevention of Maternal-Fetal Transmission of HIV: In a randomized, double-blind, placebo-controlled trial in HIV-infected women and their neonates conducted to determine the utility of RETROVIR for the prevention of maternal-fetal HIV transmission, RETROVIR Syrup at 2 mg/kg was administered every 6 hours for 6 weeks to neonates beginning within 12 hours following birth. The most commonly reported adverse experiences were anemia (hemoglobin <9.0 g/dL) and neutropenia (<1,000 cells/mm³). Anemia occurred in 22% of the neonates who received RETROVIR and in 12% of the neonates who received placebo. The mean difference in hemoglobin values was less than 1.0 g/dL for neonates receiving RETROVIR compared to neonates receiving placebo. No neonates with anemia required transfusion and all hemoglobin values spontaneously returned to normal within 6 weeks after completion of therapy with RETROVIR. Neutropenia was reported with similar frequency in the group that received RETROVIR (21%) and in the group that received placebo (27%). The long-term consequences of in utero and infant exposure to RETROVIR are unknown. **Observed During Clinical Practice:** In addition to adverse events reported from clinical trials, the following events have been identified during use of RETROVIR in clinical practice. Because they are reported voluntarily from a population of unknown size, estimates of frequency cannot be made. These events have been chosen for inclusion due to either their seriousness, frequency of reporting, potential causal connection to RETROVIR, or a combination of these factors. **Body as a Whole:** Back pain, chest pain, flu-like syndrome, generalized pain, redistribution/accumulation of body fat (see PRECAUTIONS: Fat Redistribution). Cardiovascular: Cardiomyopathy, syncope. Endocrine: Gynecomastia. Eye: Macular edema. **Gastrointestinal:** Constipation, dysphagia, flatulence, oral mucosa pigmentation, mouth ulcer. General: Sensitization reactions including anaphylaxis and angioedema, vasculitis. **Hemic and Lymphatic:** Aplastic anemia, hemolytic anemia, leukopenia, lymphadenopathy, pancytopenia with marrow hypoplasia, pure red cell aplasia. **Hepatobiliary Tract and Pancreas:** Hepatitis, hepatomegaly with steatosis, jaundice, lactic acidosis, pancreatitis. **Musculoskeletal:** Increased CPK, increased LDH, muscle spasm, myopathy and myositis with pathological changes (similar to that produced by HIV disease), rhabdomyolysis, tremor. **Nervous:** Anxiety, confusion, depression, dizziness, loss of mental acuity, mania, paresthesia, seizures, somnolence, vertigo. Respiratory: Cough, dyspnea, rhinitis, sinusitis. **Skin:** Changes in skin and nail pigmentation, pruritus, rash, Stevens-Johnson syndrome, toxic epidermal necrolysis, sweat, urticaria. Special Senses: Amblyopia, hearing loss, photophobia, taste perversion. Urogenital: Urinary frequency, urinary hesitancy. ## **OVERDOSAGE** Acute overdoses of zidovudine have been reported in pediatric patients and adults. These involved exposures up to 50 grams. No specific symptoms or signs have been identified following acute overdosage with zidovudine apart from those listed as adverse events such as fatigue, headache, vomiting, and occasional reports of hematological disturbances. All patients recovered without permanent sequelae. Hemodialysis and peritoneal dialysis appear to have a negligible effect on the removal of zidovudine while elimination of its primary metabolite, GZDV, is enhanced. #### DOSAGE AND ADMINISTRATION Adults: The recommended oral dose of RETROVIR is 600 mg per day in divided doses in combination with other antiretroviral agents. **Pediatrics:** The recommended dose in pediatric patients 6 weeks to 12 years of age is 160 mg/m<sup>2</sup> every 8 hours (480 mg/m<sup>2</sup>/day up to a maximum of 200 mg every 8 hours) in combination with other antiretroviral agents. **Maternal-Fetal HIV Transmission:** The recommended dosing regimen for administration to pregnant women (>14 weeks of pregnancy) and their neonates is: **Maternal Dosing:** 100 mg orally 5 times per day until the start of labor (see INDICATIONS AND USAGE: Description of Clinical Studies). During labor and delivery, intravenous RETROVIR should be administered at 2 mg/kg (total body weight) over 1 hour followed by a continuous intravenous infusion of 1 mg/kg/hour (total body weight) until clamping of the umbilical cord. **Neonatal Dosing:** 2 mg/kg orally every 6 hours starting within 12 hours after birth and continuing through 6 weeks of age. Neonates unable to receive oral dosing may be administered RETROVIR intravenously at 1.5 mg/kg, infused over 30 minutes, every 6 hours. (See PRECAUTIONS if hepatic disease or renal insufficiency is present.) Monitoring of Patients: Hematologic toxicities appear to be related to pretreatment bone marrow reserve and to dose and duration of therapy. In patients with poor bone marrow reserve, particularly in patients with advanced symptomatic HIV disease, frequent monitoring of hematologic indices is recommended to detect serious anemia or neutropenia (see WARNINGS). In patients who experience hematologic toxicity, reduction in hemoglobin may occur as early as 2 to 4 weeks, and neutropenia usually occurs after 6 to 8 weeks. **Dose Adjustment:** Anemia: Significant anemia (hemoglobin of <7.5 g/dL or reduction of >25% of baseline) and/or significant neutropenia (granulocyte count of <750 cells/mm³ or reduction of >50% from baseline) may require a dose interruption until evidence of marrow recovery is observed (see WARNINGS). In patients who develop significant anemia, dose interruption does not necessarily eliminate the need for transfusion. If marrow recovery occurs following dose interruption, resumption in dose may be appropriate using adjunctive measures such as epoetin alfa at recommended doses, depending on hematologic indices such as serum erythropoetin level and patient tolerance. For patients experiencing pronounced anemia while receiving chronic coadministration of zidovudine and some of the drugs (e.g., fluconazole, valproic acid) listed in Table 4, zidovudine dose reduction may be considered. **End-Stage Renal Disease:** In patients maintained on hemodialysis or peritoneal dialysis, recommended dosing is 100 mg every 6 to 8 hours (see CLINICAL PHARMACOLOGY: Pharmacokinetics). Hepatic Impairment: There are insufficient data to recommend dose adjustment of RETROVIR in patients with mild to moderate impaired hepatic function or liver cirrhosis. Since RETROVIR is primarily eliminated by hepatic metabolism, a reduction in the daily dose may be necessary in these patients. Frequent monitoring for hematologic toxicities is advised (see CLINICAL PHARMACOLOGY: Pharmacokinetics and PRECAUTIONS: General). #### **HOW SUPPLIED** RETROVIR Tablets 300 mg (biconvex, white, round, film-coated) containing 300 mg zidovudine, one side engraved "GX CW3" and "300" on the other side. Bottle of 60 (NDC 0173-0501-00). Store at 15° to 25°C (59° to 77°F). RETROVIR Capsules 100 mg (white, opaque cap and body with a dark blue band) containing 100 mg zidovudine and printed with "Wellcome" and unicorn logo on cap and "Y9C" and "100" on body. Bottles of 100 (NDC 0173-0108-55) and Unit Dose Pack of 100 (NDC 0173-0108-56). Store at 15° to 25°C (59° to 77°F) and protect from moisture. RETROVIR Syrup (colorless to pale yellow, strawberry-flavored) containing 50 mg zidovudine in each teaspoonful (5 mL). Bottle of 240 mL (NDC 0173-0113-18) with child-resistant cap. Store at 15° to 25°C (59° to 77°F). GlaxoSmithKline Research Triangle Park, NC 27709 ©2003, GlaxoSmithKline. All rights reserved. April 2003 RL-1194 EPIVIR® Tablets (lamivudine tablets) EPIVIR® Oral Solution (lamivudine oral solution) ## **WARNING** LACTIC ACIDOSIS AND SEVERE HEPATOMEGALY WITH STEATOSIS, INCLUDING FATAL CASES, HAVE BEEN REPORTED WITH THE USE OF NUCLEOSIDE ANALOGUES ALONE OR IN COMBINATION, INCLUDING LAMIVUDINE AND OTHER ANTIRETROVIRALS (SEE WARNINGS). EPIVIR TABLETS AND ORAL SOLUTION (USED TO TREAT HIV INFECTION) CONTAIN A HIGHER DOSE OF THE ACTIVE INGREDIENT (LAMIVUDINE) THAN EPIVIR-HBV® TABLETS AND ORAL SOLUTION (USED TO TREAT CHRONIC HEPATITIS B). PATIENTS WITH HIV INFECTION SHOULD RECEIVE ONLY DOSING FORMS APPROPRIATE FOR TREATMENT OF HIV (SEE WARNINGS AND PRECAUTIONS). ## **DESCRIPTION** EPIVIR (also known as 3TC) is a brand name for lamivudine, a synthetic nucleoside analogue with activity against human immunodeficiency virus-1 (HIV-1) and hepatitis B virus (HBV). The chemical name of lamivudine is (2R,cis)-4-amino-1-(2-hydroxymethyl-1,3-oxathiolan-5-yl)-(1H)-pyrimidin-2-one. Lamivudine is the (-)enantiomer of a dideoxy analogue of cytidine. Lamivudine has also been referred to as (-)2',3'-dideoxy, 3'-thiacytidine. It has a molecular formula of $C_8H_{11}N_3O_3S$ and a molecular weight of 229.3. It has the following structural formula: Lamivudine is a white to off-white crystalline solid with a solubility of approximately 70 mg/mL in water at 20°C. **EPIVIR Tablets** are for oral administration. Each 150-mg film-coated tablet contains 150 mg of lamivudine and the inactive ingredients hypromellose, magnesium stearate, microcrystalline cellulose, polyethylene glycol, polysorbate 80, sodium starch glycolate, and titanium dioxide. Each 300-mg film-coated tablet contains 300 mg of lamivudine and the inactive ingredients black iron oxide, hypromellose, magnesium stearate, microcrystalline cellulose, polyethylene glycol, polysorbate 80, sodium starch glycolate, and titanium dioxide. **EPIVIR Oral Solution** is for oral administration. One milliliter (1 mL) of EPIVIR Oral Solution contains 10 mg of lamivudine (10 mg/mL) in an aqueous solution and the inactive ingredients artificial strawberry and banana flavors, citric acid (anhydrous), methylparaben, propylene glycol, propylparaben, sodium citrate (dihydrate), and sucrose (200 mg). #### **MICROBIOLOGY** **Mechanism of Action:** Lamivudine is a synthetic nucleoside analogue. Intracellularly, lamivudine is phosphorylated to its active 5'-triphosphate metabolite, lamivudine triphosphate (L-TP). The principal mode of action of L-TP is the inhibition of HIV-1 reverse transcriptase (RT) via DNA chain termination after incorporation of the nucleoside analogue into viral DNA. L-TP is a weak inhibitor of mammalian DNA polymerases $\alpha$ and $\beta$ , and mitochondrial DNA polymerase $\gamma$ . Antiviral Activity In Vitro: The in vitro activity of lamivudine against HIV-1 was assessed in a number of cell lines (including monocytes and fresh human peripheral blood lymphocytes) using standard susceptibility assays. IC $_{50}$ values (50% inhibitory concentrations) were in the range of 2 nM to 15 $\mu$ M. Lamivudine had anti-HIV-1 activity in all acute virus-cell infections tested. In HIV-1-infected MT-4 cells, lamivudine in combination with zidovudine at various ratios exhibited synergistic antiretroviral activity. The relationship between in vitro susceptibility of HIV-1 to lamivudine and the inhibition of HIV-1 replication in humans has not been established. Please see the EPIVIR-HBV package insert for information regarding the inhibitory activity of lamivudine against HBV. **Drug Resistance:** Lamivudine-resistant variants of HIV-1 have been selected in vitro. Genotypic analysis showed that the resistance was due to a specific amino acid substitution in the HIV-1 reverse transcriptase at codon 184 changing the methionine residue to either isoleucine or valine. HIV-1 strains resistant to both lamivudine and zidovudine have been isolated from patients. Susceptibility of clinical isolates to lamivudine and zidovudine was monitored in controlled clinical trials. In patients receiving lamivudine monotherapy or combination therapy with lamivudine plus zidovudine, HIV-1 isolates from most patients became phenotypically and genotypically resistant to lamivudine within 12 weeks. In some patients harboring zidovudine-resistant virus at baseline, phenotypic sensitivity to zidovudine was restored by 12 weeks of treatment with lamivudine and zidovudine. Combination therapy with lamivudine plus zidovudine delayed the emergence of mutations conferring resistance to zidovudine. Mutations in the HBV polymerase YMDD motif have been associated with reduced susceptibility of HBV to lamivudine in vitro. In studies of non-HIV-infected patients with chronic hepatitis B, HBV isolates with YMDD mutations were detected in some patients who received lamivudine daily for 6 months or more, and were associated with evidence of diminished treatment response; similar HBV mutants have been reported in HIV-infected patients who received lamivudine-containing antiretroviral regimens in the presence of concurrent infection with hepatitis B virus (see PRECAUTIONS and EPIVIR-HBV package insert). **Cross Resistance:** Lamivudine-resistant HIV-1 mutants were cross resistant to didanosine (ddI) and zalcitabine (ddC). In some patients treated with zidovudine plus didanosine or zalcitabine, isolates resistant to multiple reverse transcriptase inhibitors, including lamivudine, have emerged. Genotypic and Phenotypic Analysis of On-Therapy HIV-1 Isolates From Patients With Virologic Failure (see INDICATIONS AND USAGE: Description of Clinical Studies): The clinical relevance of genotypic and phenotypic changes associated with lamivudine therapy has not been fully established. Study EPV20001: Fifty-three of 554 (10%) patients enrolled in EPV20001 were identified as virological failures (plasma HIV-1 RNA level ≥400 copies/mL) by Week 48. Twenty-eight patients were randomized to the lamivudine once-daily treatment group and 25 to the lamivudine twice-daily treatment group. The median baseline plasma HIV-1 RNA levels of patients in the lamivudine once-daily group and lamivudine twice-daily group were 4.9 log<sub>10</sub> copies/mL and 4.6 log<sub>10</sub> copies/mL, respectively. Genotypic analysis of on-therapy isolates from 22 patients identified as virologic failures in the lamivudine once-daily group showed that isolates from 0/22 patients contained treatment-emergent mutations associated with zidovudine resistance (M41L, D67N, K70R, L210W, T215Y/F, or K219Q/E), isolates from 10/22 patients contained treatment-emergent mutations associated with efavirenz resistance (L100I, K101E, K103N, V108I, or Y181C), and isolates from 8/22 patients contained a treatment-emergent lamivudine resistance-associated mutation (M184I or M184V). Genotypic analysis of on-therapy isolates from patients (n = 22) in the lamivudine twice-daily treatment group showed that isolates from 1/22 patients contained treatment-emergent zidovudine resistance mutations, isolates from 7/22 contained treatment-emergent efavirenz resistance mutations, and isolates from 5/22 contained treatment-emergent lamivudine resistance mutations. Phenotypic analysis of baseline-matched on-therapy HIV-1 isolates from patients (n = 13) receiving lamivudine once daily showed that isolates from 12/13 patients were susceptible to zidovudine; isolates from 8/13 patients exhibited a 25- to 295-fold decrease in susceptibility to efavirenz, and isolates from 7/13 patients showed an 85- to 299-fold decrease in susceptibility to lamivudine. Phenotypic analysis of baseline-matched on-therapy HIV-1 isolates from patients (n = 13) receiving lamivudine twice daily showed that isolates from all 13 patients were susceptible to zidovudine; isolates from 3/13 patients exhibited a 21- to 342-fold decrease in susceptibility to efavirenz, and isolates from 4/13 patients exhibited a 29- to 159-fold decrease in susceptibility to lamivudine. **Study EPV40001:** Fifty patients received zidovudine 300 mg twice daily plus abacavir 300 mg twice daily plus lamivudine 300 mg once daily and 50 patients received zidovudine 300 mg plus abacavir 300 mg plus lamivudine 150 mg all twice daily. The median baseline plasma HIV-1 RNA levels for patients in the 2 groups were 4.79 log<sub>10</sub> copies/mL and 4.83 log<sub>10</sub> copies/mL, respectively. Fourteen of 50 patients in the lamivudine once-daily treatment group and 9 of 50 patients in the lamivudine twice-daily group were identified as virologic failures. Genotypic analysis of on-therapy HIV-1 isolates from patients (n = 9) in the lamivudine once-daily treatment group showed that isolates from 6 patients had abacavir and/or lamivudine resistance-associated mutation M184V alone. On-therapy isolates from patients (n = 6) receiving lamivudine twice daily showed that isolates from 2 patients had M184V alone, and isolates from 2 patients harbored the M184V mutation in combination with zidovudine resistance-associated mutations. Phenotypic analysis of on-therapy isolates from patients (n = 6) receiving lamivudine once daily showed that HIV-1 isolates from 4 patients exhibited a 32- to 53-fold decrease in susceptibility to lamivudine. HIV-1 isolates from these 6 patients were susceptible to zidovudine. Phenotypic analysis of on-therapy isolates from patients (n = 4) receiving lamivudine twice daily showed that HIV-1 isolates from 1 patient exhibited a 45-fold decrease in susceptibility to lamivudine and a 4.5-fold decrease in susceptibility to zidovudine. ## CLINICAL PHARMACOLOGY Pharmacokinetics in Adults: The steady-state pharmacokinetic properties of the EPIVIR 300-mg tablet once daily for 7 days compared to the EPIVIR 150-mg tablet twice daily for 7 days were assessed in a crossover study in 60 healthy volunteers. EPIVIR 300 mg once daily resulted in lamivudine exposures that were similar to EPIVIR 150 mg twice daily with respect to plasma AUC<sub>24,ss</sub>; however, C<sub>max,ss</sub> was 66% higher and the trough value was 53% lower compared to the 150-mg twice-daily regimen. Intracellular lamivudine triphosphate exposures in peripheral blood mononuclear cells were also similar with respect to AUC<sub>24,ss</sub> and C<sub>max24,ss</sub>; however, trough values were lower compared to the 150-mg twice-daily regimen. Inter-subject variability was greater for intracellular lamivudine triphosphate concentrations versus lamivudine plasma trough concentrations. The clinical significance of observed differences for both plasma lamivudine concentrations and intracellular lamivudine triphosphate concentrations is not known. The pharmacokinetic properties of lamivudine have been studied in asymptomatic, HIV-infected adult patients after administration of single intravenous (IV) doses ranging from 0.25 to 8 mg/kg, as well as single and multiple (twice-daily regimen) oral doses ranging from 0.25 to 10 mg/kg. The pharmacokinetic properties of lamivudine have also been studied as single and multiple oral doses ranging from 5 mg to 600 mg/day administered to HBV-infected patients. **Absorption and Bioavailability:** Lamivudine was rapidly absorbed after oral administration in HIV-infected patients. Absolute bioavailability in 12 adult patients was $86\% \pm 16\%$ (mean $\pm$ SD) for the 150-mg tablet and $87\% \pm 13\%$ for the oral solution. After oral administration of 2 mg/kg twice a day to 9 adults with HIV, the peak serum lamivudine concentration ( $C_{max}$ ) was $1.5 \pm 0.5$ mcg/mL (mean $\pm$ SD). The area under the plasma concentration versus time curve (AUC) and $C_{max}$ increased in proportion to oral dose over the range from 0.25 to 10 mg/kg. An investigational 25-mg dosage form of lamivudine was administered orally to 12 asymptomatic, HIV-infected patients on 2 occasions, once in the fasted state and once with food (1,099 kcal; 75 grams fat, 34 grams protein, 72 grams carbohydrate). Absorption of lamivudine was slower in the fed state ( $T_{max}$ : $3.2 \pm 1.3$ hours) compared with the fasted state ( $T_{max}$ : $0.9 \pm 0.3$ hours); $C_{max}$ in the fed state was $40\% \pm 23\%$ (mean $\pm$ SD) lower than in the fasted state. There was no significant difference in systemic exposure (AUC $\infty$ ) in the fed and fasted states; therefore, EPIVIR Tablets and Oral Solution may be administered with or without food. The accumulation ratio of lamivudine in HIV-positive asymptomatic adults with normal renal function was 1.50 following 15 days of oral administration of 2 mg/kg twice daily. **Distribution:** The apparent volume of distribution after IV administration of lamivudine to 20 patients was $1.3 \pm 0.4$ L/kg, suggesting that lamivudine distributes into extravascular spaces. Volume of distribution was independent of dose and did not correlate with body weight. Binding of lamivudine to human plasma proteins is low (<36%). In vitro studies showed that, over the concentration range of 0.1 to 100 mcg/mL, the amount of lamivudine associated with erythrocytes ranged from 53% to 57% and was independent of concentration. **Metabolism:** Metabolism of lamivudine is a minor route of elimination. In man, the only known metabolite of lamivudine is the trans-sulfoxide metabolite. Within 12 hours after a single oral dose of lamivudine in 6 HIV-infected adults, $5.2\% \pm 1.4\%$ (mean $\pm$ SD) of the dose was excreted as the trans-sulfoxide metabolite in the urine. Serum concentrations of this metabolite have not been determined. **Elimination:** The majority of lamivudine is eliminated unchanged in urine by active organic cationic secretion. In 9 healthy subjects given a single 300-mg oral dose of lamivudine, renal clearance was $199.7 \pm 56.9$ mL/min (mean $\pm$ SD). In 20 HIV-infected patients given a single IV dose, renal clearance was $280.4 \pm 75.2$ mL/min (mean $\pm$ SD), representing $71\% \pm 16\%$ (mean $\pm$ SD) of total clearance of lamivudine. In most single-dose studies in HIV-infected patients, HBV-infected patients, or healthy subjects with serum sampling for 24 hours after dosing, the observed mean elimination half-life $(t_{1/2})$ ranged from 5 to 7 hours. In HIV-infected patients, total clearance was $398.5 \pm 69.1$ mL/min (mean $\pm$ SD). Oral clearance and elimination half-life were independent of dose and body weight over an oral dosing range from 0.25 to 10 mg/kg. **Special Populations:** Adults with Impaired Renal Function: The pharmacokinetic properties of lamivudine have been determined in a small group of HIV-infected adults with impaired renal function (Table 1). Table 1. Pharmacokinetic Parameters (Mean ± SD) After a Single 300-mg Oral Dose of Lamivudine in 3 Groups of Adults With Varying Degrees of Renal Function | zamivadine in b Groups of Addits viter varying begrees of Atendral aneston | | | | |----------------------------------------------------------------------------|--------------------------------|---------------|---------------| | | Creatinine Clearance Criterion | | | | | (Number of Subjects) | | | | | >60 mL/min | 10-30 mL/min | <10 mL/min | | Parameter | (n = 6) | (n=4) | (n = 6) | | Creatinine clearance (mL/min) | 111 ± 14 | 28 ± 8 | 6 ± 2 | | C <sub>max</sub> (mcg/mL) | $2.6 \pm 0.5$ | $3.6 \pm 0.8$ | $5.8 \pm 1.2$ | | AUC∞ (mcg•hr/mL) | $11.0 \pm 1.7$ | $48.0 \pm 19$ | $157 \pm 74$ | | Cl/F (mL/min) | $464 \pm 76$ | $114 \pm 34$ | 36 ± 11 | Exposure (AUC $\infty$ ), $C_{max}$ , and half-life increased with diminishing renal function (as expressed by creatinine clearance). Apparent total oral clearance (Cl/F) of lamivudine decreased as creatinine clearance decreased. $T_{max}$ was not significantly affected by renal function. Based on these observations, it is recommended that the dosage of lamivudine be modified in patients with renal impairment (see DOSAGE AND ADMINISTRATION). Based on a study in otherwise healthy subjects with impaired renal function, hemodialysis increased lamivudine clearance from a mean of 64 to 88 mL/min; however, the length of time of hemodialysis (4 hours) was insufficient to significantly alter mean lamivudine exposure after a single-dose administration. Therefore, it is recommended, following correction of dose for creatinine clearance, that no additional dose modification be made after routine hemodialysis. It is not known whether lamivudine can be removed by peritoneal dialysis or continuous (24-hour) hemodialysis. The effects of renal impairment on lamivudine pharmacokinetics in pediatric patients are not known. Adults with Impaired Hepatic Function: The pharmacokinetic properties of lamivudine have been determined in adults with impaired hepatic function. Pharmacokinetic parameters were not altered by diminishing hepatic function; therefore, no dose adjustment for lamivudine is required for patients with impaired hepatic function. Safety and efficacy of lamivudine have not been established in the presence of decompensated liver disease. **Pediatric Patients:** For pharmacokinetic properties of lamivudine in pediatric patients, see PRECAUTIONS: Pediatric Use. **Gender:** There are no significant gender differences in lamivudine pharmacokinetics. Race: There are no significant racial differences in lamivudine pharmacokinetics. **Drug Interactions:** No clinically significant alterations in lamivudine or zidovudine pharmacokinetics were observed in 12 asymptomatic HIV-infected adult patients given a single dose of zidovudine (200 mg) in combination with multiple doses of lamivudine (300 mg q 12 hr). Lamivudine and trimethoprim/sulfamethoxazole (TMP/SMX) were coadministered to 14 HIV-positive patients in a single-center, open-label, randomized, crossover study. Each patient received treatment with a single 300-mg dose of lamivudine and TMP 160 mg/SMX 800 mg once a day for 5 days with concomitant administration of lamivudine 300 mg with the fifth dose in a crossover design. Coadministration of TMP/SMX with lamivudine resulted in an increase of $44\% \pm 23\%$ (mean $\pm$ SD) in lamivudine AUC $\infty$ , a decrease of $29\% \pm 13\%$ in lamivudine oral clearance, and a decrease of $30\% \pm 36\%$ in lamivudine renal clearance. The pharmacokinetic properties of TMP and SMX were not altered by coadministration with lamivudine. Lamivudine and zalcitabine may inhibit the intracellular phosphorylation of one another. Therefore, use of lamivudine in combination with zalcitabine is not recommended. There was no significant pharmacokinetic interaction between lamivudine and interferon alfa in a study of 19 healthy male subjects. ## **INDICATIONS AND USAGE** EPIVIR in combination with other antiretroviral agents is indicated for the treatment of HIV infection (see Description of Clinical Studies). **Description of Clinical Studies:** The use of EPIVIR is based on the results of clinical studies in HIV-infected patients in combination regimens with other antiretroviral agents. Information from trials with clinical endpoints or a combination of CD4+ cell counts and HIV-1 RNA measurements is included below as documentation of the contribution of lamivudine to a combination regimen in controlled trials. Clinical Endpoint Study in Adults: B3007 (CAESAR) was a multicenter, double-blind, placebo-controlled study comparing continued current therapy (zidovudine alone [62% of patients] or zidovudine with didanosine or zalcitabine [38% of patients]) to the addition of EPIVIR or EPIVIR plus an investigational non-nucleoside reverse transcriptase inhibitor (NNRTI), randomized 1:2:1. A total of 1,816 HIV-infected adults with 25 to 250 CD4+ cells/mm³ (median = 122 cells/mm³) at baseline were enrolled: median age was 36 years, 87% were male, 84% were nucleoside-experienced, and 16% were therapy-naive. The median duration on study was 12 months. Results are summarized in Table 2. Table 2. Number of Patients (%) With At Least One HIV Disease Progression Event or Death | Done | | | | |--------------------------|-----------------|-----------------|---------------------| | | | | EPIVIR plus a | | | | EPIVIR plus | NNRTI* plus Current | | | Current Therapy | Current Therapy | Therapy | | Endpoint | (n = 460) | (n = 896) | (n = 460) | | HIV progression or death | 90 (19.6%) | 86 (9.6%) | 41 (8.9%) | | Death | 27 (5.9%) | 23 (2.6%) | 14 (3.0%) | <sup>\*</sup>An investigational non-nucleoside reverse transcriptase inhibitor not approved in the United States. ## Surrogate Endpoint Studies in Adults: Dual Nucleoside Analogue Studies: Principal clinical trials in the initial development of lamivudine compared lamivudine/zidovudine combinations against zidovudine monotherapy or against zidovudine plus zalcitabine. These studies demonstrated the antiviral effect of lamivudine in a 2-drug combination. More recent uses of lamivudine in treatment of HIV infection incorporate it into multiple-drug regimens containing at least 3 antiretroviral drugs for enhanced viral suppression. # **Dose Regimen Comparison Surrogate Endpoint Studies in Therapy-Naive Adults:** EPV20001 was a multicenter, double-blind, controlled study in which patients were randomized 1:1 to receive EPIVIR 300 mg once daily or EPIVIR 150 mg twice daily, in combination with zidovudine 300 mg twice daily and efavirenz 600 mg once daily. A total of 554 antiretroviral treatment-naive HIV-infected adults enrolled: male (79%), Caucasian (50%), median age of 35 years, baseline CD4+ cell counts of 69 to 1,089 cells/mm<sup>3</sup> (median = 362 cells/mm<sup>3</sup>), and median baseline plasma HIV-1 RNA of 4.66 log<sub>10</sub> copies/mL. Outcomes of treatment through 48 weeks are summarized in Figure 1 and Table 3. Figure 1. Virologic Response Through Week 48, EPV20001\*† <sup>\*</sup>Roche AMPLICOR HIV-1 MONITOR. <sup>†</sup> Responders at each visit are patients who had achieved and maintained HIV-1 RNA <400 copies/mL without discontinuation by that visit. Table 3. Outcomes of Randomized Treatment Through 48 Weeks (Intent-to-Treat) | | EPIVIR 300 mg | EPIVIR 150 mg | |------------------------------------------------|----------------|----------------| | | Once Daily | Twice Daily | | | plus RETROVIR | plus RETROVIR | | | plus Efavirenz | plus Efavirenz | | Outcome | (n = 278) | (n = 276) | | Responder* | 67% | 65% | | Virologic failure <sup>†</sup> | 8% | 8% | | Discontinued due to clinical progression | <1% . | 0% | | Discontinued due to adverse events | 6% | 12% | | Discontinued due to other reasons <sup>‡</sup> | 18% | 14% | <sup>\*</sup>Achieved confirmed plasma HIV-1 RNA <400 copies/mL and maintained through 48 weeks. The proportions of patients with HIV-1 RNA <50 copies/mL (via Roche Ultrasensitive assay) through Week 48 were 61% for patients receiving EPIVIR 300 mg once daily and 63% for patients receiving EPIVIR 150 mg twice daily. Median increases in CD4+ cell counts were 144 cells/mm<sup>3</sup> at Week 48 in patients receiving EPIVIR 300 mg once daily and 146 cells/mm<sup>3</sup> for patients receiving EPIVIR 150 mg twice daily. A small, randomized, open-label pilot study, EPV40001, was conducted in Thailand. A total of 159 treatment-naive adult patients (male 32%, Asian 100%, median age 30 years, baseline median CD4+ cell count 380 cells/mm³, median plasma HIV-1 RNA 4.8 log<sub>10</sub> copies/mL) were enrolled. Two of the treatment arms in this study provided a comparison between lamivudine 300 mg once daily (n = 54) and lamivudine 150 mg twice daily (n = 52), each in combination with zidovudine 300 mg twice daily and abacavir 300 mg twice daily. In intent-to-treat analyses of 48-week data, the proportions of patients with HIV-1 RNA below 400 copies/mL were 61% (33/54) in the group randomized to once-daily lamivudine and 75% (39/52) in the group randomized to receive all 3 drugs twice daily; the proportions with HIV-1 RNA below 50 copies/mL were 54% (29/54) in the once-daily lamivudine group and 67% (35/52) in the all-twice-daily group; and the median increases in CD4+ cell counts were 166 cells/mm³ in the once-daily lamivudine group and 216 cells/mm³ in the all-twice-daily group. Clinical Endpoint Study in Pediatric Patients: ACTG300 was a multicenter, randomized, double-blind study that provided for comparison of EPIVIR plus RETROVIR® (zidovudine) to didanosine monotherapy. A total of 471 symptomatic, HIV-infected therapy-naive (≤56 days of antiretroviral therapy) pediatric patients were enrolled in these 2 treatment arms. The median age was 2.7 years (range 6 weeks to 14 years), 58% were female, <sup>&</sup>lt;sup>†</sup> Achieved suppression but rebounded by Week 48, discontinued due to virologic failure, insufficient viral response according to the investigator, or never suppressed through Week 48. <sup>&</sup>lt;sup>‡</sup> Includes consent withdrawn, lost to followup, protocol violation, data outside the study-defined schedule, and randomized but never initiated treatment. and 86% were non-Caucasian. The mean baseline CD4+ cell count was 868 cells/mm³ (mean: 1,060 cells/mm³ and range: 0 to 4,650 cells/mm³ for patients ≤5 years of age; mean 419 cells/mm³ and range: 0 to 1,555 cells/mm³ for patients >5 years of age) and the mean baseline plasma HIV-1 RNA was 5.0 log<sub>10</sub> copies/mL. The median duration on study was 10.1 months for the patients receiving EPIVIR plus RETROVIR and 9.2 months for patients receiving didanosine monotherapy. Results are summarized in Table 4. Table 4. Number of Patients (%) Reaching a Primary Clinical Endpoint (Disease Progression or Death) | Endpoint | EPIVIR plus RETROVIR (n = 236) | Didanosine<br>(n = 235) | |------------------------------------------|--------------------------------|-------------------------| | HIV disease progression or death (total) | 15 (6.4%) | 37 (15.7%) | | Physical growth failure | 7 (3.0%) | 6 (2.6%) | | Central nervous system deterioration | 4 (1.7%) | 12 (5.1%) | | CDC Clinical Category C | 2 (0.8%) | 8 (3.4%) | | Death | 2 (0.8%) | 11 (4.7%) | ## **CONTRAINDICATIONS** EPIVIR Tablets and Oral Solution are contraindicated in patients with previously demonstrated clinically significant hypersensitivity to any of the components of the products. ## **WARNINGS** In pediatric patients with a history of prior antiretroviral nucleoside exposure, a history of pancreatitis, or other significant risk factors for the development of pancreatitis, EPIVIR should be used with caution. Treatment with EPIVIR should be stopped immediately if clinical signs, symptoms, or laboratory abnormalities suggestive of pancreatitis occur (see ADVERSE REACTIONS). Lactic Acidosis/Severe Hepatomegaly with Steatosis: Lactic acidosis and severe hepatomegaly with steatosis, including fatal cases, have been reported with the use of nucleoside analogues alone or in combination, including lamivudine and other antiretrovirals. A majority of these cases have been in women. Obesity and prolonged nucleoside exposure may be risk factors. Particular caution should be exercised when administering EPIVIR to any patient with known risk factors for liver disease; however, cases have also been reported in patients with no known risk factors. Treatment with EPIVIR should be suspended in any patient who develops clinical or laboratory findings suggestive of lactic acidosis or pronounced hepatotoxicity (which may include hepatomegaly and steatosis even in the absence of marked transaminase elevations). Important Differences Among Lamivudine-Containing Products: EPIVIR Tablets and Oral Solution contain a higher dose of the same active ingredient (lamivudine) than in EPIVIR-HBV Tablets and Oral Solution. EPIVIR-HBV was developed for patients with chronic hepatitis B. The formulation and dosage of lamivudine in EPIVIR-HBV are not appropriate for patients dually infected with HIV and HBV. Lamivudine has not been adequately studied for treatment of chronic hepatitis B in patients dually infected with HIV and HBV. If treatment with EPIVIR-HBV is prescribed for chronic hepatitis B for a patient with unrecognized or untreated HIV infection, rapid emergence of HIV resistance is likely to result because of the subtherapeutic dose and the inappropriateness of monotherapy HIV treatment. If a decision is made to administer lamivudine to patients dually infected with HIV and HBV, EPIVIR Tablets, EPIVIR Oral Solution, or COMBIVIR® (lamivudine/zidovudine) Tablets should be used as part of an appropriate combination regimen. COMBIVIR (a fixed-dose combination tablet of lamivudine and zidovudine) should not be administered concomitantly with EPIVIR, EPIVIR-HBV, RETROVIR, or TRIZIVIR®. Posttreatment Exacerbations of Hepatitis: In clinical trials in non-HIV-infected patients treated with lamivudine for chronic hepatitis B, clinical and laboratory evidence of exacerbations of hepatitis have occurred after discontinuation of lamivudine. These exacerbations have been detected primarily by serum ALT elevations in addition to re-emergence of HBV DNA. Although most events appear to have been self-limited, fatalities have been reported in some cases. Similar events have been reported from post-marketing experience after changes from lamivudine-containing HIV treatment regimens to non-lamivudine-containing regimens in patients infected with both HIV and HBV. The causal relationship to discontinuation of lamivudine treatment is unknown. Patients should be closely monitored with both clinical and laboratory followup for at least several months after stopping treatment. There is insufficient evidence to determine whether re-initiation of lamivudine alters the course of posttreatment exacerbations of hepatitis. #### **PRECAUTIONS** Patients with Impaired Renal Function: Reduction of the dosage of EPIVIR is recommended for patients with impaired renal function (see CLINICAL PHARMACOLOGY and DOSAGE AND ADMINISTRATION). Patients with HIV and Hepatitis B Virus Coinfection: Safety and efficacy of lamivudine have not been established for treatment of chronic hepatitis B in patients dually infected with HIV and HBV. In non-HIV-infected patients treated with lamivudine for chronic hepatitis B, emergence of lamivudine-resistant HBV has been detected and has been associated with diminished treatment response (see EPIVIR-HBV package insert for additional information). Emergence of hepatitis B virus variants associated with resistance to lamivudine has also been reported in HIV-infected patients who have received lamivudine-containing antiretroviral regimens in the presence of concurrent infection with hepatitis B virus. Posttreatment exacerbations of hepatitis have also been reported (see WARNINGS). **Differences Between Dosing Regimens:** Trough levels of lamivudine in plasma and of intracellular lamivudine triphosphate were lower with once-daily dosing than with twice-daily dosing (see CLINICAL PHARMACOLOGY). The clinical significance of this observation is not