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fER. D3-ANT oA FBEEITREE LT
B LT, HIV VA VABITIFIFRSE THh 58,
CD4 MRRBEVBEFEICZ N ENHALE (&
4),

K4 A FAHIVEBREEFEMAICBITS TIMI T 7L

HIV BYET R & 0f8E
marker D3-A med ave sd Man-Whitny

U test

homo 380.0 415.9 218.1 0.046

CcD4 hetero 369.5 384.5 183.5 0.036
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CD#  CDAB mokecrle 22 oo 265 0.040 M
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1) SeV18+SIVvif-opt/ AF
- 77{fi 4.0 x1079 CIU/ml
- AR (TG K H/SCD 5t @&



- w4 37T ATEERRCPCRIE) EA
- =2 F b % 5B 0.48EU/mMI K

- BRI ERE 139 ug/ml

- SDS-PAGE : BB H /¥ — 1 DOHeR

2) SeV18+SIVnef-mt-opt/ AF
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M ABR(TG K H/SCD H5#h) &4
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- T2 K b2 U3ER 0.48EU/ml AR
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- 771# 3.0 x1079 CI1U/ml

- BERB(TG S #/SCD £5ith) &

-wA a7 T AeHERRPCRE) #EE
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Abstract Rhesus macaques (Macaca mulatta) are widely
used in developing a strategy for vaccination against human
immunodeficiency virus by using simian immunodeficiency
virus infection as a model system. Because the genome
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diversity of major histocompatibility complex (MHC) is well
known to control the immune responsiveness to foreign
antigens, MHC loci in Indian- and Chinese-origin macaques
used in the experiments have been characterized, and it was
revealed that the diversity of MHC in macaques was larger
than the human MHC. To further characterize the diversity of
Mamu-A and Mamu-B loci, we investigated a total of 73
different sequences of Mamu-A, 83 sequences of Mamu-B,
and 15 sequences of Mamu-I cDNAs isolated from Burmese-
origin macaques. It was found that there were one to five
expressing genes in each locus. Among the Mamu-4, Mamu-
B, and Mamu-I sequences, 44 (60.2%), 45 (54.2%), and
8 (53.3%), respectively, were novel, and most of the other
known alleles were identical to those reported from Chinese-
or Indian-origin macaques, demonstrating a genetic mixture
between the geographically distinct populations of present
day China and India. In addition, it was found that a Mamu
haplotype contained at least two highly transcribed Mamu-A
genes, because multiple Mamu-A1 cDNAs were obtained
from one haplotype. These findings further revealed the
diversity and complexity of MHC locus in the rhesus
macagques.

Keywords Rhesus macaque - MHC - Mamu-A - Mamu-B -
Mamu-I - Haplotype

Introduction

The rhesus macaque (Macaca mulatta) is a member of the
old world monkey. It is estimated that the ancestor of
macaques was diverged from the human-chimpanzee
ancestor approximately 25 million years ago (Stewart and
Disotell 1998). The habitat of the rhesus macaque extends
from Pakistan and India to the southem part of China
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(Timmins et al. 2008), wider than that of the other
nonhuman primates. It is known that the genome diversity
in rhesus macaques is quite unique, because more than 60%
of the rhesus macaque-specific expansions are found in the
protein coding sequences (Gibbs et al. 2007). The increase
in the gene copy number in the rhesus macaque, relative
to that in humans, can also be observed in the major
histocompatibility complex (MHC) locus (Gibbs et al. 2007).

The rhesus macaque is widely used as a nonhuman
primate species model in biomedical researches for human
diseases including acquired immunodeficiency syndrome
(AIDS). Particularly, the development of vaccines against
the human immunodeficiency virus (HIV) in part depends
on the results of experiments using macaques, because the
simian immunodeficiency virus (SIV) infection causes
AIDS-like syndrome (Barouch et al. 2000; Schmitz et al.
1999; Yasutomi et al. 1993). Previous SIV challenge
studies indicated association of MHC class I genotypes
with rapid or delayed AIDS progression in rhesus macaques
like HIV-1 infection in humans (Mothe et al. 2003; Yant et
al. 2006; Loffredo et al. 2008; Reynolds et al. 2008).In
addition, effective vaccination was associated with specific
MHC class I alleles called as “elite controller” alleles, by
which prevention of viral replication could be achieved in
macaques challenged by SIVmac239 (Loffredo et al. 2007;
Maness et al. 2008). In these experiments, macaques of
Indian or Chinese origin have been widely used, and
macaques from different regions such as Burma have also
been used recently.

To evaluate the efficacy of SIV vaccination, it is
necessary to characterize the MHC alleles because the
presentation of antigenic peptides by MHC molecules to T
cells, more specifically the binding of antigenic peptide to
the MHC molecule, depends on the structure of the MHC
allele. We have previously developed a reference strand
conformation analysis-based typing system for Mamu class
I genes and reported that the number of expressing genes
varies among macaques of Burmese or Laotian origin; we
could identify at least 16 different Mamu class 1 locus
haplotypes that were composed of different numbers of
Mamu class 1 genes (Tanaka-Takahashi et al. 2007). In
addition, we reported that a haplotype of Mamu class I
genes, 90-120-Ia, exerted a protective vaccination against

Table 1 Mamu class I alleles found in Burmese-origin macaques

SIVmac239 challenge (Matano et al. 2004). Furthermore, it
was revealed that one of highly expressed Mamu-A allele of
the 90-120-Ia haplotype, Mamu-A1*065:01 (previously
designated as Mamu-4*90120-5), encoded a Mamu-A
molecule that could efficiently present a SIV-derived
Gagy41-249 peptide to cytotoxic T cells from the vaccinated
macaques (Tsukamoto et al. 2008).

The aim of present study was to define the allelic
polymorphisms and haplotype diversity of the Mamu class I
gene from Burmese-origin macaques.

Materials and methods

Animals

A total of 100 rhesus macaques from breeding colonies
maintained in Japan were enrolled. Founders of colonies
were captured in Myanmar or Laos, and the colonies were
separately maintained. Macaque colonies were classified
into seven groups based on their paternal lineages (90-120,
90-010, 90-030, 90-088, 89-002, 89-075, and 91-010F1)
(Tanaka-Takahashi et al. 2007). The animal 91-010F1 was
an offspring of 89-075.

Sequencing analysis of cDNAs from Mamu class I genes

Total cellular RNA was extracted from B lymphoblastoid
cell lines established from the macaques by using RNAiso
reagent (TaKaRa, Shiga, Japan). Oligo (dT)-primed cDNA
was synthesized using Transcriptor reverse high fidelity
transcriptase (Roche, Mannheim, Germany) -according to
the manufacturer’s recommendations. Full-length cDNAs
for Mamu class I genes were amplified by polymerase chain
reaction (PCR) using locus-specific primer pairs, as
described previously (Tanaka-Takahashi et al. 2007), with
a modification of primer pairs to those reported by Karl et
al. (Karl et al. 2008): ’MHC UTR (5'-GGACTCAGAAT
CTCCCCAGACGCCGAG) and 3'MHC_UTR_A (5'-CAG
GAACAYAGACACATTCAGG) for Mamu-A locus and
5’MHC_UTR and 3’MHC_UTR_B (5’-GTCTCTCCAC
CTCCTCAC) for Mamu-B, -I loci, using Phusion Flash
DNA polymerase (Finzymes, Espoo, Finland). The PCR

Loci Number of analyzed macaques = Number of observed alleles  Novel alleles (number, %)  Known alleles (number, %)
Mamu-A 100 73 44 60.2 29 39.8
Mamu-B 93 83 45 54.2 38 458
Mamu-1 93 15 8 533 7 46.7
Others (AG, F) 93 2 - 2 100
Total 173 97 56.1 76 439
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Table 2 Alleles of Mamu-A locus identified in Burmese-origin macaques

Locus  Allele name Novelty*  Accession Number®  Shared allele®  Number of animals  Identity to Mafa or Mane alleles?
Al A1*003:01:03 Novel AB496714

Al A1*003:08 AB444903 C 7

Al A1*003:10 Novel AB444904 1

Al A1*004:01:02 AB444866 C 19 Mafa-A1*004:02
Al A1*007:06:01 Novel AB540211 2

Al A1*008:01:02 Novel AB430443 11

Al A1*008:01:03 Novel AB496711 1

Al A1*008:02 Novel AB477383 2

Al A1*015:01 AB551785 2

Al A1*018:05 AB444927 I 1

Al A1*018:07 Novel AB444928 11

Al A1*018:08 Novel AB444926 6

Al A1*019:02 AB444900 C 2

Al A1*019:05 AB444901 C 1

Al A1*019:07 Novel AB444899 2

Al A1*022:01 AB444895 C 1

Al A1*022:03 Novel AB444894 7

Al A1*023:02 Novel AB444874 4

Al A1*026:03 AB477385 C 1

Al A1*028:06 Novel AB444924 1

Al A1*028:07:01 Novel AB444923 3

Al A1*032:02 Novel AB444933 13

Al A1*032:03 Novel AB444934 4

Al A1*040:01 (AM295910) 1

Al A1*041:01 AB444931 C 1

Al AT*041:02 (EU429608) C 1

Al A1*%042:01 Novel AB444868 C 2

Al A1*043:01 AB444869 C 7

Al A1*049:03 AB444880 C 2

Al A1*049:04 Novel AB444881 2

Al A1*050:01 AB444889 C 7

Al A1*052:01 AB444890 C 3 Mafa-A1*052:02
Al A1*056:02 AB477384 C 6

Al A1*056:02:02 Novel AB444935 3

Al A1*065:01 AB444921 C 6 Mafa-AI1*065:04
Al A1*066:01 Novel AB444888 14

Al A1*074:04:01 Novel AB540213 1

Al A1*105:01 Novel AB444898 1

Al A1*105:02 Novel AB444896 11

Al A1*105:03 Novel AB496716 2

Al A1*105:04 Novel AB496709 1

Al Al1*106:01 Novel AB444875 1

Al A1*107:01 Novel AB4443887 9 Mafa-A1*096:01
Al A1*108:01 Novel AB444925 1

Al A1*109:01 Novel AB444902 7 Mafa-A1*097:01
Al A1*110:01 Novel AB444884 4

Al Al1*111:01 Novel AB444886 1

Al Al1*112:01 Novel AB496717 1

Al A1*117:01:01 Novel AB540212 2
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Table 2 (continued)

Locus  Allele name Novelty®  Accession Number®  Shared allele®  Number of animals  Identity to Mafa or Mane alleles’
Al A1%*118:01:01 Novel AB540214 1

A2 A2*01:03  Novel AB444917 15

A2 A2%05:03:02 AB444910 C 2

A2 A2*05:10 AB444907 I 2

A2 A2*05:11 AB444909 I 7

A2 A2*05:13 (AM295927) C 1

A2 A2*05:14 (AM295928) C 1

A2 A2*05:15:04 Novel AB444914 3

A2 A2%05:22 AB444911 C 1 Mane-A2*05:18
A2 A2*%05:26 AB496715 C 2

A2 A2*05:31 Novel AB444908 2

A2 A2%05:32:02 Novel AB444920 2

A2 A2*05:44 Novel AB444912 1

A2 A2*05:45 Novel AB444915 2

A2 A2*%05:46 Novel AB444913 4 Mane-A2*05:03:01
A3 A3*13:13 Novel AB496712 4

A4 A4*%01:02:02 Novel AB444879 3

A4 A4*14:03 AB444876 C 1 15

A4 A4*14:04 AB444878 C 1

AS A5*30:01:01 (AM295945) C 1

AS A5*30:01:02 AB444882 C 1

A5 A5*30:06 Novel AB444883 2

A6 A6*01:01 AB444938 C 1

A6 A6*01:05 Novel AB444937 4

#New alleles are indicated as novel

® Nucleotide sequences were submitted to public database and can be obtained with the indicated accession number. The accession numbers in the
parentheses indicated that the Mamu class I sequences were identical to those numbers which had been deposited previously by other investigators.

¢ Alleles found in Burmese-origin macaques were shared with macaques originated from the other region. C Chinese-origin macaques, I Indian-origin macaques

9 Identical sequences found in Mafa or Mane alleles

program was composed of the following steps: denatur-
ation at 98°C for 10 s; 25 cycles at 98°C for 1 s, 63°C for
5's, 72°C for 20 s; and additional extension at 72°C for
1 min. The PCR products were cloned into pSTBlue-1
Perfectly Blunt vector (Novagen, W1, USA) according to
the manufacturer’s instructions. Both strands from 30 to
90 independent cDNA clones obtained from each macaque
for each locus were sequenced by BigDye Terminator
cycling system and analyzed in an ABI 3730 automated
sequence analyzer (Applied Biosystems, CA, USA).

Data analyses and nomenclature for Mamu class I alleles

Nucleotide sequences of cDNAs were analyzed and aligned
using Genetyx Ver. 8 software package (Genetyx Corp.,
Japan). When at least three clones from independent PCR
or from different individuals showed identical sequences,
we submitted the sequences to DNA Data Bank of Japan
database and to the Immuno Polymorphism Database for

@ Springer

nonhuman primate MHC (http://www.ebi.ac.uk/ipd/mhc/
submit.html; Robinson et al. 2003) to obtain official
nomenclature for novel alleles of Mamu-4 and -B genes.
Phylogenetic analysis of Mamu-A sequences corresponding
to exon 2, 3 and a part of exon 4 obtained in this study was
done by using Gentetyx Ver. 8 software package. Mamu-
AI* 001:01 was included in the analysis as a reference.
Neighbor-joining trees were constructed with the Kimura 2
parameter method. Bootstrap values were based on 5,000
replications.

Results

Identification of Mamu class I alleles in Burmese-origin
macaques

We analyzed cDNA clones obtained by RT-PCR for Mamu-
A locus and Mamu-B locus (Table 1). When at least three
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clones with identical sequences were obtained from two
independent PCR for an individual or from at least two
individuals, the nucleotide sequences were considered to be
real and not artifacts. We identified 73 different Mamu-A
sequences in 100 individuals. Among them, 44 (60.2%)
were novel, whereas the other 29 (39.8%) were identical to
those reported mainly from Chinese- or Indian-origin
macaques (Table 2). In addition, 50 sequences were from

Fig. 1 Phylogenetic tree of 99 L—_ A12022:03
Mamu-A alleles detected in this A77022:01, 105.02
study. The tree was constructed 98 Ar10501
using neighbor-joining method 99 m

with bootstrap values of 5,000

Mamu-A1, while 14, 1, 3, 3, and 2 sequences were from
Mamu-A2, -A3, -A4, -A5, and -46, respectively (Table 2). A
‘neighbor-joining analysis showed that the sequences from
the same minor Mamu-A genes were clustered with each
other (Fig. 1).

On the other hand, 83 Mamu-B alleles and 15 Mamu-I
alleles were observed in 93 individuals. Among them, 45
(54.2%) and 8 (53.3%) were novel Mamu-B and Mamu-I
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Table 3 Alleles of Mamu-B locus identified in Burmese-origin macaques

Locus Allele name Novelty  Accession Number® Shared allele®  Number of animals Identity to Mafa or Mane alleles®
B B*001:01:01 AB477408 I 12
B B*001:01:02 (AM902529) C 6
B B*002:01 (U41833) I 5
B B*003:01 (U41825) C 1 2
B B*004:01 AB477405 I 11
B B*005:02 AB535753 I 14
B B*007:02 AB477409 C1I 33
B B*007:03 AB477412 C1I 1
B B*007:04:02 Novel AB540183 2
B B*013:01 (AM902539) C 1
B B*013:02:01 Novel AB540185 1
B B*014:01 (AM902540) C 1 Mafa-B*105:01
B B*015:02 (AM902542) C 1
B B*015:03:01 Novel AB540186 2
B B*016:02:01 Novel AB477395 9
B B*017:01 (AF199358) I 2
B B*017:03 (AM902533) C 8
B B*021:02 (AM902536) C 1
B B*023:01 (AM902530) C 2
B B*024:01 (AJ556881) C,1 3
B B*026:02 AB477402 I 8
B B*028:02:01 (AM902532) C 1
B B*029:03:01 Novel AB540191 1
B B*036:03:01 Novel AB477388 4
B B*037:01 AB477401 I 6 Mafa-B*050:01
B B*038:01 (AJ556889) I 1
B B*038:02:01 Novel AB477391 3
B B*039:01 AB477411 C 1 12
B B*040:01:01 Novel AB535751 8
B B*043:01 AB477403 C1I 14
B B*044:06:01 Novel AB540205 1
B B*045:07:01 Novel AB477389 5 Mafa-B*012:01
B B*046:03:01 Novel AB477397 2
B B*046:15 (EU915284) I 1
B B*046:18:01 Novel AB477398 2
B B*046:19:01 Novel AB540193 1
B B*051:06:01 Novel AB477387 2
B B*051:07:01 Novel AB540206 1
B B*054:02:01 Novel AB540194 5
B B*056:03:01 Novel AB540195 2
B B*056:04:01 Novel AB540207 2
B B*059:01 (AM902563) C 1
B B*060:01 (EU669870) I 1
B B*060:03 (EU934766) I 1
B B*060:04:01 Novel AB477394 4
B B*061:02 (AM902564) C 3
B B*061:03 Novel AB430442 7
B B*061:04:01 Novel AB540196 10 Mane-B*061:01
B B*063:02:01 Novel AB540210 3
4 Springer
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Table 3 (continued)

Locus Allele name Novelty* Accession Number® Shared allele® Number of animals Identity to Mafa or Mane alleles®
B B*063:02:02 Novel AB540197 4

B B*063:04:01 Novel AB477399 2

B B*063:05:01 Novel AB540204 2

B B*066:01 AB477406 I 28

B B*066:02:01 Novel AB540198 1

B B*068:04 (AM902571) C 10

B B*069:01 (AF519898) C I 1

B B*069:06:01 Novel AB540209 1

B B*069:07:01 Novel AB540208 2

B B*070:02 (AM902575) C 1

B B*071:01 (AJ489330) I 2

B B*071:02:01 Novel AB540199 1

B B*073:01 AB477404 C 4

B B*073:02:01 Novel AB540200 1

B B*074:02 (AF219484) C 1 .

B B*077:02 AB477410 C 1 Mafa-B*110:01
B B*082:01 (EF580160) C 1

B B*082:05:01 Novel AB477396 5

B B*082:06:01 Novel AB540201 2

B B*083:01 (EF580161) C 2

B B*083:02:01 Novel AB542052 1

B B*085:03:01 Novel AB540202 5

B B*089:01 (EF580172) C 11

B B*091:03 Novel AB551786 2

B B*092:02:01 Novel AB477386 7

B B*092:03:01 Novel AB542053 1

B B*101:01:01 Novel AB477400 3

B B*102:01:01 Novel AB477392 10

B B*105:01:01 Novel AB540184 1 Mane-B*105:01
B B*124:01:01 Novel AB540203 10 Mane-B*124:01
B B*142:01:01 Novel AB542050 1 Mafa-B*023:02
B B*156:01:01 Novel AB540192 1

B B*162:01:01 Novel AB477390 3

B B*163:01:01 Novel AB542051 2

1 1*01:06:01 (EF580176) C 2

I 1*01:06:05 (EU934767) I 4

I 1*01:06:07 (FN396419) 1 Mafa-1*01:11

1 1*01:06:08 Novel AB477416 12

I 1*01:06:09 Novel AB541976 3 Mane-1*01:01:02
| 1*01:06:10 Novel AB541977 1

I 1*01:07:01 AB477420 I 7

I 1*01:08:01 (FJ009194) I 13

1 1*01:08:02 (GQ471888) 1 4

| 1*01:09:01 Novel AB477415 1

1 1*01:18 (EF580175) C 1

1 1*01:20:02 Novel AB477414 2

I 1*01:22:01 Novel AB477417 7

I 1*01:23:01 Novel AB477418 8

1 1*01:24:01 Novel AB477413 2
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Table 3 (continued)

Locus  Allele name Novelty*  Accession Number”  Shared allele®  Number of animals  Identity to Mafa or Mane alleles®
F F*01:03 I 3
AG AG*03:01:01 I

*New alleles are indicated as novel

® Nucleotide sequences were submitted to public database and can be obtained with the indicated accession number. The accession numbers in the
parentheses indicated that the Mamu class I sequences were identical to those numbers which had been deposited previously by other investigators.

¢ Alleles found in Burmese-origin macaques were shared with macaques originated from the other region. C Chinese-origin macaques, / Indian-origin macaques

4 Identical sequences found in Mafa or Mane alleles

alleles, respectively. The other Mamu-B and Mamu-I
sequences were identical to those reported from Chinese-
and/or Indian-origin macaques (Table 3).

Mamu class I haplotypes observed in Burmese-origin
macaques

From the cDNA analyses of genetically related macaques, we
could identify the Mamu-A and Mamu-B sequences compris-
ing 13 different haplotypes from seven paternal lineages
(haplotype ‘w’ was shared by 89-075 and its offspring 91-

Table 4 Mamu class I haplotypes identified in Burmese-origin macaques

010F1) and eight other haplotypes in the colonies; the Mamu
class I haplotype consisted of one to three expressing Mamu-
A genes and one to five expressing Mamu-B (including
Mamu-I) genes, confirming that the number of expressed
Mamu class 1 genes varied with the haplotype (Table 4).
Examples of family pedigrees are shown in Fig. 2. Although
usually only one Mamu-AI allele could be identified in the
haplotypes, the 90-120-a haplotype carried two different
Mamu-Al alleles, which was confirmed by the analysis of
family pedigree (Fig. 2a). In addition, Mamu-B*00! alleles
were tightly linked to a Mamu-B*007 allele (Table 4).

Founder Lineage® Haplotype Major Mamu-A (Al) Minor Mamu-A Mamu-B
90-120 a A1*043:01, A1*065:01 B*061:03, B*068:04, B*089:01

b A1*018:08 A2%05:31 B*036:03:01, B*037:01, B*043:01, B*162:01:01,
90-010 d A1%032:02 B*004:01, B*102:01:01

e A1*066:01 B*005:02, B*¥*040:01:01
90-030 g A1*105:02 A2*05:11 B*066:01

h A1*004:01:02 A4*14:03 B*043:01, B*092:02:01
90-088 j A1*008:01:02 B*007:02, B¥039:01

k A1*018:08 A2%05:45 B*001:01:01, B*007:02
89-002 p A1*018:07 A2%01:03, A4*14:03 B*001:01:01, B*007:02

q Al1*107:01 B*016:02:01
91-010F1 s A1*003:08 B*023:01, 1*01:08:01

w A1*022:03 A4%01:02:02 B*001:01:02, B*007:02, B*017:03
89-075 w A1%*022:03 A4*01:02:02 B*001:01:02, B¥007:02, B*017:03

\ Al *109:01 A3*13:13 B*054:02:01, B*061:04:01, B*063:02:02,

B*068:04, B*124:01:01

R428 i A1*050:01 A2*05:11 B*066:01
R360 o A1*028:07:01 B*056:04:01, B¥066:01
R236 r A1*049:03 A2%05:22 B*001:01:02, B*007:02, B*017:03
95-014 f A1*066:01 A2*05:14, A5*30:01:01 B*005:02
R487 m A1*018:08 A2%05:31 B*026:02, B*045:07:01, B*051:06:01
R252 t A1*032:03 A2*05:14, A5*30:01:01 B*005:02
R446 u A1*004:01:02 B*026:02, B*043:01, B*073:01
R220 c A1*050:01 B*063:02:01, B*066:01

*ID of founder in which each Mamu class I haplotype was found
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A
a/b|
95-014 R440 R487
alf ale b/m
B
| grk
R257 R446 R220
irt jlu kic

Fig. 2 Segregation of Mamu class I haplotypes in the pedigrees of
macaques. Pedigree information and haplotype information are indi-
cated along with ID of macaques. A. Mamu class I haplotypes of a and
b in the parent (90-120) were segregated to its offspring 95-014,
R440, and R487. B. Mamu class I haplotypes of j and k in the parent
(90-088) were segregated to R257, R446, and R220. The Mamu class
I alleles composing the indicated haplotypes are listed in Table 4

Discussion

The rhesus macaque is widely used in the experimental design
for developing a vaccine against HIV. Indian-origin macaques
are well characterized as a model system and it has been
reported that there are several “elite controller” alleles such as
Mamu-A*001 and Mamu-B*017, with which most macaques
showed lower viral loads after STVmac239 challenge (Frie-
drich et al. 2004). In this study, we did not observe Mamu-
AI*00! in Burmese-origin macaques, while we previously
reported that a group of animals carrying the MHC class I
haplotype 90120a (‘a’ haplotype designated in this study,
Table 4) showed vaccine-based control of SIVmac239
replication (Matano et al. 2004). This haplotype contains
Mamu-A*065:01 (previously noted as Mamu-A*90120-5)
allele, and cytotoxic T lymphocyte (CTL) responses specific
for an SIVmac239 Gag,4;.240 (SSVDEQIQW) epitope restrict-
ed by this Mamu-A1 allele are responsible for the SIV control
in the vaccinated macaques carrying the 90120a haplotype
(Kawada et al. 2008). Interestingly, the SIV Gagy4;.549 €pitope
is overlapped with a HLA-B*5701-restricted HIV-1 Gagaq.
249 epitope, TW10 (TSTLQEQIAW), and TW10-specific
CTL responses have also been indicated to exert strong
suppression on HIV-1 replication resulting in lower viral loads
(Tsukamoto et al. 2008; Goulder and Watkins 2008).

Among: 73 Mamu-A sequences detected in this study,
only four sequences were reported to be found in the

Indian-orign macaques. In clear contrast, 25 Mamu-A
sequences were also found in the Chinese-origin macaques,
implying that the genetic background of Burmese-origin
macaques might be closer to Chinese-origin macaques than
to Indian-origin macaques. However, 27 and 25 Mamu-B
sequences were identical to those reported in Chinese- and
Indian-origin macaques, respectively, demonstrating that
Burmese-origin macaques represent a mixture of geograph-
ically distinct Chinese- and Indian-origin macaque popula-
tions. In addition, more than half of Mamu class I alleles
found in this study were novel, indicating that the regional
difference in MHC allelic distribution exists similar to that
in human HLA. Because the habitat of Burmese-origin
rhesus macaques is overlapped in part with the habitat of
crab-eating macaques (cynomolgus rhesus, Macaca fasci-
cularis) and Southern pig-tailed macaques (Macaca nem-
estrina), it is interesting to investigate whether the identical
sequences to Mamu class I alleles would be frequently
found in Mafa or Mane class I alleles. As shown in Tables 2
and 3, about 10% of Mamu class I alleles had identical
sequences to equivalent Mafa or Mane class I alleles, as has
been observed in the other macaque populations (Campbell
et al. 2009; Otting et al. 2009), demonstrating that the
frequency of shared MHC class I alleles was relatively
constant in different populations of macaques.

The Mamu locus is known to be composed of multiple
copies of polymorphic DNA sequences (Daza-Vamenta et
al. 2004; Kulski et al. 2004); for example, Mamu-A locus
encodes for a major and highly transcribed Mamu-41 and
other minor Mamu-A2, -A3, -A4, -A5, A6, and -A7 with
relatively low transcription (Otting et al. 2004, 2007). In this
study, we identified two different Mamu-AI alleles on one
haplotype, Mamu-A1*043:01 and Mamu-A1*065:01 on the
haplotype 90120-a, which was confirmed by the segregation
study of 90-120 family (Fig. 2a). In the phylogenetic tree of

‘Mamu-A sequences, Mamu-A1*043:0] and Mamu-

AI*065:01 alleles were classified into the Mamu-Al allele
group (Fig. 1). These data showed the presence of Mamu-A
haplotype carrying multiple major Mamu-A1, albeit that it
might be a rare exception.

On the other hand, we deduced that some Mamu-AI
alleles could not be well amplified by the PCR primer pair
used in this study. For instance, Mamu-A1*065:01 in the
“a” haplotype (90-120 lineage, Table 4) and Mamu-
A1*003:08 in the “s” haplotype (91-010F1 lineage, Table 4)
could not be well amplified with the primer-set of
5’MHC_UTR and 3’MHC_UTR_A. On the contrary,
Mamu-A1*004:01:02 in the “h” haplotype (90-030 lineage,
Table 4) and Mamu-A1*10:701 in the “q” haplotype (89-
002 lineage, Table 4) were amplified more efficiently with
this primer pair than the other primer pair reported
previously (Tanaka-Takahashi et al. 2007). These observa-
tions raised a possibility that there might be further copy
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number variations in the Mamu class I loci. It appears that a
higher number of highly transcribed and expressed MHC
alleles on a haplotype would be desirable, when the
immunological role in antigen presentation after viral
infection is considered, because the multiple MHC alleles
will enable one to present more number of antigenic
peptides. However, the presence of highly transcribed and
expressed multiple MHC alleles could lead to multiple
holes in the antigen recognition through elimination of T
cells recognizing self-antigenic peptides or foreign antigen-
ic peptides mimicking self-antigens. In this regard, it should
be noted that the transcription levels of Mamu-B alleles, as
estimated by the number of clones isolated from each
macaque, were not so different from one another. We found
that several Mamu-B alleles on the specific haplotypes,
such as “b” haplotype (90-120 lineage) and “v” haplotype
(89-075 lineage), showed similar transcription levels,
although their expression levels might be moderate.
However, because Rosner et al. reported that cell surface
expression of Mamu molecules encoded by several Mamu-
B alleles was weak at the similar expression level to that of
Mamu-A4 (Ronser et al. 2010), there might be a group of
minor Mamu-B, indicating that further analyses will be
required to decipher the complexity of Mamu-B locus.

It is worth noting that we observed a link between
B*001:01 and B*007:02 in four different haplotypes
(Table 4). It was reported that B*001:0/ and B*007 were
common in Indian- and Chinese-origin macaques and that a
haplotype including these alleles, Mamu-B*001, B*07, and
B*030:02, was frequently found in both populations
(Otting et al. 2008). However, that Mamu-B*030:02 or
related allele was not found in Burmese-origin macaques
suggested that the distance between Mamu-B*00! and
B*07 was closer than that to Mamu-B*030:02.

In this study, we sequenced 30-90 clones for each locus
obtained from each macaque. As has been described (Karl
et al. 2008; Otting et al. 2007, 2004), picking up from 16
to 88 clones was enough to detect major Mamu class I
alleles, for example, Mamu-Al alleles. Therefore, we
hoped to isolate the major Mamu-Al alleles from all
individuals in this study. On the other hand, there were
only nine out of 21 haplotypes carrying a Mamu-A2 allele
in this study, although Bassinger et al. (2008) reported that
75% of Chinese-origin macaques carried at least one
Mamu-A2 allele. We could not exclude a possibility that
our cDNA cloning strategy might be insufficient to detect
Mamu-A genes with low expression, such as Mamu-A42.
Alternatively, Mamu-A haplotypes not carrying Mamu-A2
might be prevalent in Burmese-origin macaques. In
addition, the number of Mamu-I alleles detected in this
study was much less than that of Mamu-B alleles, which is
consistent with the results in a previous report (Urvater et
al. 2000).

@ Springer

In conclusion, we characterized the diversity of Mamu
class I genes in the Burmese macaques, which showed,
only in part, a similarity to Chinese- and Indian-origin
macaques. Because the Mamu-A1 gene is responsible for
exerting the classical antigen presentation function (Chu et
al. 2007; Sidney et al. 2000), characterization of the Mamu-
A and Mamu-B alleles in Burmese-origin macaques will
provide us with essential information in designing the
vaccination experiments against SIV.
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