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number) were surrogated as an index and chronologically  and 36.1% in 48 h after each cotransfection (Fig. 3g). There
compared between HAPI1/ataxin-3Q27 and HAP1/ataxin-  was no significant difference between HA3(Q27-CAF and
3Q79-cotransfected cells. The HA3-CAF ratios for ataxin-  HA3Q79-CAF ratios. Coimmunoprecipitation tests were
30Q27 and ataxin-3Q79 (HA3Q27-CAF and HA3Q79-CAF  carried out to obtain biochemical evidence for the interac-
ratios) were approximately 33.7 and 34.8% in 24 h and 34.1 tion of HAP1 with ataxin-3Q27 or ataxin-3Q79 (Fig. 3h—j).
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immunocytochemistry for ataxin-3Q79-transfected cells. (d-f) Fluorescence photomicrographs showing subcellular expression of HAP1 and
ataxin-3Q79. Note that merged images show colocalization of HAP1 and ataxin-3Q79 (f) (bars=10pm). (g) Bar graph comparing HAP1/ataxin-3
double-labeled cytoplasmic aggregation formation ratios between ataxin-3Q27 and ataxin-3Q79 in time course (24 and 48 h) after the cotransfection
into cells (ns, not significant). (h and i) Coimmunoprecipitation analysis of protein lysates from HAP1/ataxin-3Q27-cotransfected and HAP1/ataxin-

3Q79-cotransfected cells. Inputs are the control of proteins exogenously expressed. () Quantification of the each immunoprecipitated HAP1 protein
normalized to ataxin-3Q27 and ataxin-3Q79.
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In cells coexpressing HAP1 and ataxin-3Q27, or ataxin-3Q79,
HAP1 was coprecipitated. There was no significant dif-
ference in immunoprecipitated HAP1 relative amounts
between ataxin-3Q27 and ataxin-3Q79.

Discussion

In this study, the most striking finding is that HAP1/STB
are closely associated with normal ataxin-3Q27 and
mutant ataxin-3Q79 derived from a SCA3 patient.
Furthermore, even the Josephin domain alone coex-
pressed with HAP1 in Neuro2a cells clearly showed
intimate association with HAP1/STB, whereas Josephin-
deleted mutant ataxin-3 coexpressed with HAP1 turned
diffuse and irrelevant to HAP1/STB in cytoplasm. Data
for immunoprecipitation assay also supported the im-
munocytochemical results, confirming that HAP1/STB
can interact with normal and mutant ataxin-3 through its
Josephin domain.

The Josephin domain, which is located at the N-terminus
of ataxin-3, has a cysteine protease sequence, which
suggests potential ubiquitin protease activity [15].
Josephin domain also represses histone acetylation and
transcription by binding to histone and transcriptional
coactivator [16]. As HAP1/STB is intracellularly asso-
ciated with ataxin-3 through its Josephin domain, it might
partially modify the function of the putative ubiquitin
protease or transcriptional repressor of ataxin-3. Interest-
ingly, ataxin-3 was reported to be a typical deubiquitinat-
ing enzyme [17]. Our earlier immunohistochemical study
in the rat brain showed no association between STB and
ubiquitin [4], showing that HAP1/STB is a nonubiquiti-
nated inclusion under normal conditions. Thus, it might
be possible that a deubiquitinating enzyme or deubiqui-
tination activity is present in STBs with HAP1 and
ataxin-3, which might explain why STBs are spared from
ubiquitination under physiological conditions.

The representative CAG-triplet-repeat disease, SCA3, is
also known as Machado—Joseph disease, which is an
autosomal dominant neurodegenerative disease caused by
abnormal expansion of the polyQ tract [14]. It is of
importance to note that HAP1/STB could also interact
with abnormal polyQ-expanded ataxin3 as well as normal
ataxin-3, suggesting that HAP1/STB could directly or
indirectly bind to it and modify its pathophysiological
involvement in SCA3. HAP1/STB also interacts with
polyQ-expanded huntingtin and AR and suppresses their
nuclear translocation in polyQ-dependent manner [9,10].
Thus, it could more efficiently neutralize the toxicity of
the polyQ-expanded mutant forms in pathogenesis of
Huntington’s disease and SBMA and protect against the
cell death. In SCA17 and Joubert syndrome, the affinities
of HAP1/STB with pathological mutants of TATA-binding
protein and Abelson helper integration site 1 are less
strong than normal forms [11,12]. Nevertheless, HAP1/
STB could serve as a cytoplasmic neuroprotective
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component interfering with ‘gain-of-toxic function’ of
their pathological mutants [11,12]. HAP1/STB expres-
sion might raise the threshold of vulnerability for cell
death and render more beneficial stability to cells with
HAP1/STB than without it, as the ‘HAP1/STB protection
hypothesis’ predicts [7]. Thus, in this study, although
HAP1/STB seems to interact with ataxin-3 in polyQ-
independent manner, it might be possible that HAP1/
STB plays an important role in modification on physio-
logical functions of normal ataxin-3 and on SCA3
pathogenesis attributable to ataxin-3Q79.

Conclusion

Normal ataxin-3 was identified as a new HAP1/STB
interactor. In addition, polyQ-expanded ataxin-3 derived
from SCA3 was closely associated with HAP1/STB
through its Josephin domain as well. The findings suggest
that HAP1/STB could modify the physiological function
of normal ataxin-3 and pathogenesis of SCA3 attributable
to the mutant ataxin-3.
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