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aggregate was Dil-negative, although some single CM-Dil /Kit*
cells were observed (data not shown). It is possible that not all
allantoic cells were CM-Dil-tagged and that non-tagged cells gave
rise to single Kit" cells, given the technical difficulty of tagging all
cells. We injected CM-Dil into the basal part of allantois, implying
that HC clusters are originated from this part. It is also possible that
chorionic cells per se may give rise to Kit" cells: chorion reportedly
has a potential to generate myeloid and definitive erythroid cells
(Corbel et al., 2007; Zeigler et al., 2006). Thus, although some HC
clusters may have been derived from chorion, it is more likely that
the mouse placenta does autonomously generate HSCs and that the
allantois is at least a major source of placental HSCs. As shown in
Fig. 4A, HC clusters first form cell aggregates. Although several
reports suggest that HC clusters in the AGM region are derived
from endothelial cells expressing VE-cadherin (Dzierzak and
Speck, 2008), the HC clusters in the placenta probably did not
originate from endothelial cells. Interestingly, Fraser et al.
demonstrated that VE-cadherin is also expressed in HC clusters in
the AGM region, indicating that VE-cadherin is not a specific
marker of endothelial cells (Fraser et al., 2003). It may be further
necessary to evaluate the origin of HC clusters both in the AGM
region and the placenta in the future.

Niche regulation of placental HSCs

HSC:s are regulated by niche cells surrounding HSCs. However, it
remains unclear how embryonic HSCs are regulated by niche cells.
In the bone marrow, expression of niche cell markers such as N-
cadherin and CXCL12 enables their isolation by flow cytometry
and has contributed greatly to an understanding of niche regulation
(Arai and Suda, 2007; Sugiyama et al., 2006). Conversely,
investigation of the placental niche has been impeded by a lack of
markers for placental niche cells. To address this issue, we isolated
niche cells surrounding HC clusters in placenta by LCM. Using
this system, we obtained niche cells despite the lack of markers.
HC clusters were found inside blood vessels, suggesting that niche
cells are mostly composed of endothelial cells. In addition, we
sorted out both endothelial and mesenchymal cells, and performed
real-time PCR with SCF gene (Fig. 6). Our gene expression
analysis revealed that SCF is predominantly expressed in niche
cells, and protein expression analysis suggested that SCF is
predominantly expressed in niche endothelial cells. In agreement,
we found that SCF is predominantly expressed in endothelial cells,
in particular cells surrounding HC clusters by immunostaining.
Interestingly, SCF was expressed in clusters as well as in
endothelial cells, implying an autocrine mechanism. It would be of
interest to investigate whether SCF plays a role in specification as
well as niche development. To understand the role of the SCE/Kit
signal in regulating placental HSCs, we performed a loss-of-
function experiment in vivo to inhibit SCF/Kit signaling in the
mouse placenta using a WEC system with 10.25 dpc embryos — a
stage suitable for manipulation. SCL is not required for HSC
development once commitment to hematopoietic lineages has
occurred (D’Souza et al., 2005; Mikkola et al., 2003b; Robb et al.,
1995; Shivdasani et al., 1995). However, Gata2 is crucial for
definitive hematopoiesis and functions in the generation and
expansion of HSCs in the AGM region (Ling et al., 2004 Lugus et
al., 2007; Tsai et al., 1994). Our study confirmed that expression of
Runx 1, Myb and Gata2 was significantly downregulated compared
with control samples in Kit loss-of-function analyses but SCL
expression was not altered. Kit receptor activation plays a major
role in regulating survival, proliferation and self-renewal of HSC
phenotypes (Kent et al., 2008), but how SCF/Kit signal regulates

Runx1, Myb and Gata2 remains unclear. In addition to SCF/Kit
signaling, other signals may regulate HC clusters. SCF secreted by
niche cells may modulate proliferation of CD31*/CD34"/Kit" cells
between 10.5 and 12.5 dpc, as shown in Fig. 5, although this
proliferation might be due to an accumulation of the hematopoietic
cells in the placental vasculature as this organ increases in size.
Decrease of Ki-67 positive cells might be due to the
downregulation of SCF by niche cells.

IL.3 reportedly increases the number of HSCs in the AGM region
(Robin et al., 2006). However, these authors demonstrated that IL3
has no effect on HSC activity in the placenta at 10.5 dpc, an
observation compatible with our data showing that IL3 is not
expressed in placental niche cells (Fig. 6A). Hedgehog, BMP4,
bFGF and VEGF signals from the surrounding micro-environment
are required for mesodermal cells to commit to hematopoietic cells
(Dzierzak and Speck, 2008). In the AGM region, location plays a
role in regulating HSC generation: ventral tissues induce AGM
HSCs, whereas dorsal tissues suppress them (Peeters et al., 2009).
Hedgehog protein(s) have been identified as positive effectors that
increase the number of AGM HSCs (Peeters et al., 2009).
Moreover, there is greater expansion of placental HSCs from 11.5
dpc to 12.5 dpc than of hematopoietic progenitors at this site,
suggesting that other signals in the placental niche probably inhibit
HSC differentiation (Gekas et al., 2005).

This is the first report to identify and examine the function of
cytokine signals regulating HSCs in the mouse placenta. Our study
is also evidence that LCM is a useful tool with which to study
molecular mechanisms in specific cell aggregates. Recently, it was
demonstrated that human placenta contains HSCs and that stromal
cells (derived from human placenta) could support hematopoiesis
(Robin et al., 2009). Clarifying how the niche regulates HSCs in
the placenta could lead to an understanding of how to manipulate
HSC generation from ES/iPS cells and, thus, be applicable to future
clinical applications.
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