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Cyclophilin A
— Promising New Target in Cardiovascular Therapy —
Kimio Satoh, MD, PhD; Hiroaki Shimokawa, MD, PhD; Bradford C. Berk, MD, PhD

Cyclophilin A (CyPA) has been studied as a multifunctional protein that is upregulated in a variety of inflammatory
conditions, such as rheumatoid arthritis, autoimmune disease, and cancer. CyPA has been classified as an immu-
nophilin and has a variety of intracellular functions, including intracellular signaling, protein trafficking, and the
regulation of other proteins activity. Besides its intracellular functions, CyPA is a secreted molecule that has a
physiological and pathological role in cardiovascular diseases, making it a potential biomarker and mediator in car-
diovascular diseases, such as vascular stenosis, atherosclerosis, and abdominal aortic aneurysms. (Circ J 2010;

74: 2249-2256)
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vascular smooth muscle cells (VSMCs) plays an

important role in regulating vascular integrity. ECs
secrete a variety of vasoactive substances, including nitric
oxide (NO) and prostacyclin, which protect against vascular
remodeling.!? VSMCs contain numerous sources of reac-
tive oxygen species (ROS; ie, H202, Oz, and "OH), includ-
ing NADPH oxidases, xanthine oxidase, the mitochondrial
respiratory chain, lipoxygenases and NO synthases.

Oxidative stress, generated by excessive ROS, promotes
cardiovascular disease. However, the precise mechanism of
the deterioration in vascular function and promotion of vas-
cular remodeling by ROS in vivo has not been clearly eluci-
dated. VSMCs are among the most plastic of all cells in their
ability to respond to different stimuli. Autocrine/paracrine
growth factors from VSMCs have been mentioned for a long
time as important mechanisms that mediate the varying cel-
lular responses in vascular remodeling.3- It has now become
clear that almost all VSMC growth factors elicit auto/para-
crine growth pathways. Recent evidence suggests that many
other stimuli that modulate VSMC function, including ROS,
promote VSMC growth by inducing auto/paracrine growth
mechanisms (as reviewed by Taniyama and Griendling®). ROS
increase cell proliferation, mediate agonist-induced hypertro-
phy, and also induce apoptosis in a concentration-dependent
manner.”

Cyclophilin A (CyPA) is a 20-kD chaperone protein
secreted from VSMCs in response to ROS, and it stimulates
VSMC proliferation and inflammatory cell migration in vitro
and in vivo. The major topics that will be addressed in this

T he interaction between endothelial cells (ECs) and

review are a series of projects that were performed in our
laboratory. Does ROS-induced secreted CyPA actually con-
tribute to several cardiovascular diseases in vivo? To answer
this question, we used several genetic interventions, includ-
ing the CyPA knockout mouse and the CyPA overexpress-
ing transgenic mouse (VSMC-Tg). Thus, we elucidated that
CyPA mediates a variety of cardiovascular diseases, includ-
ing vascular stenosis, atherosclerosis, and abdominal aortic
aneurysm (AAA). In this review we will discuss these
recently revealed roles of CyPA in cardiovascular disease.

Intracellular CyPA as a Multifunctional Chaperone

In 1984, CyPA was identified as the main target for the immu-
nosuppressive drug cyclosporine A (CsA).8!! Cyclophilins
are a family of highly conserved and ubiquitous proteins,
termed immunophilins.!? The most abundant cyclophilin is
CyPA,3 which is widely distributed in almost all tissues in
prokaryotes and eukaryotes. In humans, CyPA has been
found in all organs and the CyPA concentration may account
for as much as 0.1-0.4% of the total protein in a cell.!4-16
CyPA is abundant in the cytosolic extract from lymphocytes
and has a high affinity for CsA.# CyPA was also shown to
be a part of a cytosolic heat-shock protein—immunophilin
chaperone complex that includes caveolin and cholesterol.'”
Because of its enzymatic properties, cellular localization, and
role in protein folding, CyPA belongs to a diverse set of pro-
teins known as molecular chaperones. Because CyPA cata-
lyzes the cis-trans isomerization of the peptidyl-prolyl bonds
of certain proteins (PPlase activity), CyPA acts as accelera-
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Figure 1. ROS-induced secretion of cyclophilin A (CyPA) synergistically augments ROS production. ROS inducers, such as
angiotensin Il (Angll), mechanical stress, and environmental factors, promote CyPA secretion from vascular smooth muscle
cells (VSMC). Secreted CyPA activates ERK1/2 and promotes reactive oxygen species (ROS) production, thus augmenting it.
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tion factor in protein folding and assembly. The first demon-
stration of this activity in vitro was delaying the matura-
tion of collagen by blocking PPIase activity with CsA.!8 In
addition to its role in protein folding, the PPIase activity of
CyPA has recently been demonstrated to have other roles,
including intracellular trafficking,! signal transduction, and
transcription regulation.?® Following the identification of
CyPA, several other cyclophilins were cloned and character-
ized. Cyclophilin B (CyPB),?! cyclophilin C (CyPC),?? and
cyclophilin D (CyPD)? were found to be less abundant and
localized not only in the cytosol but also in membranes and
subcellular organelles because of the presence of a hydropho-
bic N-terminal as well as C-terminal extensions. Human CyPB
and murine CyPC are localized to the endoplasmic reticu-
lum.2* CyPD is localized to mitochondria and is an integral
part of the mitochondrial permeability transition complex and
plays a crucial role in apoptosis** and the pathogenesis of
Alzheimer’s disease.?® A more detailed classification of the
different cyclophilins has been reviewed recently.!3.26

ROS in the Pathogenesis of Cardiovascular Disease

Production of intracellular ROS has been implicated in the
pathogenesis of cardiovascular disease, in part by the promot-
ing of VSMC proliferation.?’-?* Changes in vascular redox
state are a common pathway involved in the pathogenesis of
atherosclerosis, aortic aneurysms, and vascular restenosis
after angioplasty. ROS target cellular biomolecules and cause
severe damage, such as lipid peroxidation, protein oxidation/
inactivation, and DNA damage/mutation. Although high
levels of ROS might be hazardous to cells and their contents,
controlled ROS levels (ie, physiological) are important in
the regulation of cell functions and cell fate (proliferation/
death). For example, H20 has also been implicated as impor-
tant for EC function and vascular relaxation at very low con-
centrations. 33! In the vascular wall, ROS are generated by
several mechanisms, including NADPH oxidases, xanthine
oxidase, the mitochondrial respiratory chain, lipoxygenases
and NO synthases.?? Vascular ROS formation can be stimu-
lated by mechanical stretch, pressure, shear stress, environ-

mental factors such as hypoxia, and secreted factors such as
angiotensin II (Angll).*® We have demonstrated that ROS
stimulate cultured VSMC proliferation and activate intra-
cellular kinases such as ERK1/2 which is associated with
cell growth. 293

CyPA as a Secreted Oxidative Stress-Induced
Factor (SOXF)

We found that activation of ERK1/2 by a ROS generator,
napthoquinolinedione (LY83583), was biphasic (early and
delayed activation). One explanation for the delayed ERK1/2
activation was the response to SOXF, which show autocrine/
paracrine signals. In order to identify the presence of SOXF,
we evaluated the ability of conditioned medium for ERK1/2
activation. The phosphorylation of ERK1/2 was significantly
increased by conditioned medium from VSMCs treated with
LY83583. Therefore, we analyzed the proteins released into
the medium in response to LY83583 and finally found that
CyPA is a major SOXF.* Furthermore, human recombinant
CyPA stimulated ERK1/2 activity and DNA synthesis in
VSMCs in a concentration-dependent manner.3 Thus, we
concluded that CyPA is a novel VSMC growth factor that
contributes to the growth promoting activity of ROS in
VSMCs.

Mechanism of CyPA-Induced VSMC Growth

Identification of the extracellular CyPA receptors is almost
completely unexplored. We believe that further knowledge
of the role played by extracellular CyPA receptors on vas-
cular cell responses will help in designing therapeutics
targeting inflammatory and cardiovascular diseases. In ECs,
CyPA largely activates proinflammatory pathways, includ-
ing increased expression of vascular cell adhesion molecule
(VCAM)-1and E-selectin.’” In VSMCs, ROS such as super-
oxide activate a pathway containing vesicles that results in
secretion of CyPA.3® Secreted extracellular CyPA stimulates
ERK1/2, Akt and JAK in VSMCs, which contributes to ROS
production again (Figure 1).36 Despite the mounting evidence
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Figure2. Cyclophilin A (CyPA) is a
novel growth factor that mediates
growth of vascular smooth muscle
cells (VSMC) under oxidative stress.
Decreased blood flow increases the
generation of reactive oxygen spe-
cies (ROS), which induces secretion
of CyPA from VSMC. Secreted CyPA
VSMC proliferation, endothelial cell
(EC) adhesion molecule expres-

that cyclophilins serve multiple intracellular and extracellular
functions, surprisingly little is known regarding their effect
on specific receptors. Several molecules have been proposed
as potential extracellular receptors for CyPA, including extra-
cellular matrix metalloproteinase inducer (EMMPRIN). 34

Mechanism of CyPA Secretion

It has been revealed that several growth factors are secreted
from VSMCs in response to various stimuli.# CyPA is
secreted from VSMCs via a highly regulated pathway that
involves vesicle transport and plasma membrane binding.
Rho GTPases, including RhoA, Cdc42, and Racl, are key
regulators in signaling pathways linked to actin cytoskeletal
rearrangement.*> The Rho GTPases plays a central role in
vesicular trafficking pathways by controlling the organiza-
tion of the actin cytoskeleton. It has been reported that active
participation of Rho GTPases is required for secretion of
CyPA. We have shown consistently that the expression of
dominant-negative mutants of RhoA and Cdc42 inhibited
ROS-induced CyPA secretion, suggesting that both RhoA-
and Cdc42-dependent signaling events regulate CyPA secre-
tion.3® Myosin II is involved in secretory mechanisms as a
motor for vesicle transport.** Rho-kinase, a downstream effec-
tor of RhoA, mediates myosin II activation via phosphoryla-
tion and inactivation of myosin II light chain phosphatase.*
We also demonstrated that a Rho-kinase inhibitor reduced
ROS-induced CyPA secretion.345 These results suggest that
myosin II-mediated vesicle transport is required for CyPA
secretion from VSMCs. CyPA is transported to the plasma
membrane and colocalizes with VAMP in response to ROS
stimulation. Therefore, CyPA is secreted from VSMCs
through a process requiring ROS production and vesicle for-
mation.

CyPA Promotes Intimal Thickness In Vivo

Increases in ROS represent a pathogenic mechanism for vascu-
lar disease.*47 ROS have been implicated in the pathogenesis
of neointima formation, in part by promoting VSMC growth,?3¢
as well as by stimulating proinflammatory events.®-5! We
demonstrated that extracellular CyPA stimulates proinflam-
matory signals in ECs, including expression of E-selectin and
VCAM-1.% In addition to the effects on vascular cells, CyPA
has been shown to be a direct chemoattractant for inflam-
matory cells®>*? and to promote matrix metalloproteinases
(MMPs) activation.5*55 Therefore, CyPA is a key mediator
that affects ECs, VSMCs and inflammatory cell functions in
vivo.

To confirm the role of CyPA in vascular remodeling, we
observed the time course and distribution of its expression in
carotid arteries after ligation.5 We found that CyPA expres-
sion dramatically increased over a time course that paral-
leled neointimal formation, suggesting an important role for
CyPA in the cellular response to oxidative stress induced by
vascular injury. In parallel with CyPA expression, carotid
ligation induced phosphorylation of ERK1/2 in wild-type
carotids, which was significantly less in CyPA~/- carotids,
consistent with the reduced number of Ki67* cells in ligated
CyPA-- carotids. The distribution of Ki67+ cells closely over-
lapped with the areas of highest CyPA expression, especially
in rapidly proliferating neointimal cells in WT mice. Colo-
calization of CyPA, a-smooth muscle actin (¢SMA), and
Masson-Trichrome staining revealed that CyPA expression
was especially elevated in VSMCs. To prove further the con-
tribution of VSMC-derived CyPA to vascular remodeling, we
prepared VSMC-specific CyPA transgenic mice (VSMC-Tg).
The observation that VSMC-specific CyPA overexpression
not only increased the medial area but also the intimal area
suggests that VSMC-derived extracellular CyPA promotes
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Figure3. Proposed mechanisms for angiotensin Il (Angll)-induced reactive oxygen species (ROS) production, cyclophilin A
(CyPA) secretion, metalloproteinase (MMP) activation, and abdominal aorta aneurysm (AAA) formation. Secreted extracellular
CyPA activates ERK1/2, Akt, and JAK in an autocrine/paracrine manner, which promotes proliferation and migration of vascular
smooth muscle cells (VSMCs), MMP activation, and inflammatory cell migration.

M M P acti'vation

the proliferation and migration of VSMCs via a paracrine
manner. CyPA is expressed by all cell types participating in
vascular pathology.5” Additionally, extracellular CyPA has
recently been found to induce interleukin (IL)-6 release in
inflammatory cells.® Moreover, investigating CyPA func-
tion in monocyte/macrophage cell lines revealed that CyPA
induces the expression of cytokines/chemokines such as
tumor-necrosis factor «, monocyte chemotactic protein-1,
IL-8, IL-1/3 and MMP-9 through a pathway that is dependent
on nuclear factor-«B activation. In our carotid ligation model,
we observed significant accumulation of CD45* inflamma-
tory cells in the intima of ligated CyPA~- carotids and the
VSMC-specific overexpression of CyPA (VSMC-Tg) further
enhanced the accumulation of inflammatory cells in the
ligated carotids, supporting the important role of CyPA in
mediating the recruitment of inflammatory cells (Figure 2).56

We propose that ROS generated locally by inflammatory
cells cause VSMCs to release CyPA, which would then pro-
mote recruitment of inflammatory cells that release several
proinflammatory cytokines. In addition, CyPA regulates the
proteolytic activity necessary for the migration of inflamma-
tory cells, through its activation of MMPs. Our study revealed
3 important pathologic consequences of CyPA activity in
vivo. First, VSMC-derived secreted CyPA is mitogenic by
virtue of its ability to promote VSMC proliferation. Second,
secreted extracellular CyPA is proinflammatory because it
stimulates the recruitment of inflammatory cells. Third,
secreted CyPA promoted the pathological setting that exac-
erbated the generation of intracellular ROS in VSMC derived
from mouse aorta (Figure 2).

CyPA Augments ROS Production and MMP Activation
As we have discussed, ROS stimulate secretion of CyPA

from VSMCs, and that extracellular CyPA stimulates VSMC
migration and proliferation (Figure 1).33 Extracellular
CyPA also stimulates EC adhesion molecule expression,
and is a chemoattractant for inflammatory cells.36-3¥5% Fur-
thermore, CyPA is upregulated in patients with rheumatoid
arthritis and implicated because of its crucial role in MMP
activation.®> Angll infusion into ApoE~- mice for 4 weeks
promotes AAA formation.®$! In animal models of AAA,
genetic and pharmacological inhibition of both ROS pro-
duction®63 and MMPs64%5 suppressed development of aneu-
rysms. In that animal model, the Angll type 1 (AT1) receptor
in the vascular wall, but not in inflammatory cells, is required
for the initiation of Angll-induced AAAs.% Furthermore,
treatment with an AT receptor blocker significantly sup-
pressed aneurysm formation in ApoE~ mice.¢” Therefore,
we hypothesize that VSMC-derived CyPA augments Angll-
induced ROS production, MMP activation, and inflamma-
tory cell recruitment into the aortic VSMCs, contributing to
AAA formation and progression.

CyPA Promotes AAA Formation and Aortic Rupture

In the cardiovascular system, AAA formation results from
chronic inflammation of the aortic wall, associated with de-
creased medial VSMCs, and progressive destruction of
structural components, particularly the elastic lamina.%® Key
mechanisms include VSMC senescence, oxidative stress,546
increased local production of proinflammatory cytokines?
and increased activities of MMPs that degrade extracellular
matrix.”72 As expected, AAA formation in the Angll-in-
duced ApoE-- model was completely prevented against a
CyPA~- background.* We also demonstrated that CyPA is
highly expressed in the aorta of patients with AAA, and
colocalizes with active forms of MMPs. Based on these find-
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ings, we demonstrated that Angll induces ROS and MMP
activation via a CyPA-dependent pathway, a novel mecha-
nism for induction of AAA formation by Angll.

Our data suggest that extracellular CyPA and its signaling
pathways are novel targets for AAA therapy and, potentially,
other cardiovascular diseases associated with inflammation.
In addition, extracellular CyPA induces ROS production in
VSMCs, which is consistent with our previous report that
extracellular CyPA stimulates at least 3 signaling pathways
(ERK1/2, Akt and JAK) in VSMCs,3 which has been shown
to be important for ROS production.64 All these data are
proof-of-concept that CyPA plays a crucial role in VSMCs
through ROS generation. Angll induces the generation of
ROS and promotes the secretion of CyPA. ROS-induced
CyPA secretion augments ROS production synergistically
(Figure 1). Subsequently, secreted CyPA, acting as a pro-
inflammatory cytokine, synergistically augments Angll-medi-
ated ROS production, contributing to the onset of vascular
inflammatory cell migration and AAA formation (Figure 3).62

CyPA as a Potential Atherogenic Cytokine

Numerous basic and clinical studies have clearly identified
that ROS have a major role in endothelial damage and the
development of atherosclerosis.”>’S However, we still do
not have a strong therapeutic strategy for the clinical benefits
of antioxidant administration. One potential reason for this
could be the crucial role of ROS (especially H202) at very
low concentration in intracellular signaling pathways that
are also important for vascular functions. 17677 CyPA (both
intracellular and extracellular) contributes to atherosclerosis
by promoting EC apoptosis and EC expression of leukocyte
adhesion molecules, stimulating inflammatory cell migra-
tion, enhancing ROS production, increasing proliferation of
macrophages and VSMCs, and increasing proinflammatory
signal transduction in VSMCs.”™ In the context of athero-
sclerosis, CyPA can be regarded as a proinflammatory and
proatherogenic molecule. CyPA is highly expressed at sites
of unstable atherosclerotic plaques, especially those asso-
ciated with macrophages and foam cells. However, CyPA
expression and its regulatory molecular mechanisms during
the process of plaque destabilization remain elusive and
further research into the role of CyPA in the progression of
atherosclerosis is needed to identify potential CyPA-related
therapeutic targets.

CyPA as a Potential Promoter
of Cardiac Hypertrophy

Angll plays a key role in many physiological and patho-
logical processes in cardiac cells, including cardiac hyper-
trophy.® Therefore, understanding the molecular mechanisms
responsible for Angll-mediated myocardial pathophysiology
is critical to the development of new therapies for cardiac
dysfunction.®! One important mechanism now recognized as
involved in Angll-induced cardiac hypertrophy is ROS pro-
duction, 3283 but the precise mechanism by which ROS cause
hypertrophy remains unknown.? Our recent study provides
strong mechanistic evidence of synergy between CyPA and
Angll to increase ROS generation.*s Because ROS stimulate
myocardial hypertrophy, matrix remodeling, and cellular
dysfunction,® CyPA will potentially enhance Angll-induced
cardiac hypertrophy.

CyPA as a Potential Promoter of Hypoxia-Induced
Pulmonary Arterial Hypertension (PAH)

PAH is associated with hypoxic exposure, enhanced ROS,
and proliferation of VSMCs. Erythropoietin (Epo) has long
been regarded as a hypoxia-induced hormone that acts ex-
clusively in the proliferation and differentiation of erythroid
progenitors. However, recent studies have demonstrated
expression of the Epo receptor (EpoR) in the cardiovascular
system,% and the therapeutic potential of Epo has been noted
in a variety of disorders, including cerebral infarction, myo-
cardial ischemia—reperfusion, and congestive heart failure.
Recently, we demonstrated that the endogenous Epo/EpoR
system plays an important protective role against the devel-
opment of hypoxia-induced PAH.#” For this purpose, we used
EpoR~--rescued mice that express EpoR only in the erythroid
lineage, but not in th ecardiovascular system.36 Moreover,
we demonstrated the important role of the endogenous Epo/
EpoR system in ischemia-induced regeneration and angio-
genesis.®

Considering the role of CyPA in augmentation of ROS
and VSMC proliferation and migration in vivo and in vitro,
CyPA may potentially promote hypoxia-induced PAH. We
have reported that Rho-kinase is activated in patients with
PAH.# In addition, the secretion of CyPA is regulated by the
Rho/Rho-kinase system.3:45 Therefore, we tested the hypoth-
esis that CyPA contributes to Rho-kinase activation and pul-
monary vascular remodeling in PAH patients.”® A key aspect
of the study that deserves comment is the strong CyPA
expression on aSMA-positive cells in the lungs of patients
with idiopathic PAH. It is reported that bone marrow-derived
aSMA-positive cells contribute to the development of PAH*!
and promote atherosclerotic plaque stability.*?> Additionally,
we have reported that statins and a Rho-kinase inhibitor
reduced the secretion of CyPA from VSMCs,*¥4 and dem-
onstrated that pravastatin ameliorates hypoxia-induced PAH
in mice.”® Based on this, inhibition of CyPA secretion by
statins®® or Rho-kinase inhibitor®*s may contribute to the
therapeutic effect of these drugs in PAH patients.

Conclusions

The identification of CyPA as a mediator of tissue damage
associated with inflammation and oxidative stress provides
insight into the mechanisms of several therapies. For ex-
ample, the Rho-kinase inhibitor, Y27632, and simvastatin
significantly reduced CyPA secretion from VSMCs. Rho-
kinase is an important therapeutic target in cardiovascular
disease® and Rho-kinase inhibition has been reported to
reduce Angll-induced AAA formation,?” atherosclerosis, and
cardiac hypertrophy.* Moreover, AT 1a receptor blockers and
angiotensin-converting enzyme inhibitors have been shown
to prevent cardiovascular diseases,%67* and reduced CyPA
secretion may partially contribute to the therapeutic effect of
these drugs on AAA, atherosclerosis, and cardiac hyper-
trophy.* EMMPRIN, a putative CyPA receptor, was iden-
tified as a tumor cell membrane protein that is expressed in
VSMCs, activated by ROS and stimulates MMP produc-
tion.!% A recent study demonstrated ROS-dependent increases
in EMMPRIN, ! which may be activated by binding of ex-
tracellular CyPA.192 Moreover, it has been demonstrated that
EMMPRIN is strongly expressed in human AAA lesions!®?
and in cardiomyocytes.!™ Therefore, it is logical to propose
that agents that prevent CyPA binding to its receptors may
have therapeutic potential (Figure 1). Because inflammation
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and oxidative stress contribute to tissue damage in several
situations, such as ischemia—reperfusion injury in the brain,
heart and kidney, future studies of CyPA-mediated function
in appropriate models may reveal its significant role in other
diseases. By blocking the vicious cycle that augments ROS
production through the CyPA autocrine/paracrine signaling
pathway, we may have a novel therapeutic tool for control-
ling cardiovascular diseases in the near future.
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