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Bio-luminescent imaging and characterization of organ-specific
metastasis of human cancer in NOD/SCID mice

Nicole A.L. Chun * & Takashi Murakami**
“ Division of Bioimaging Sciences, Center for Molecular Medicine, Jichi Medical University,
Tochigi, Japan 329-0498

ABSTRACT

Many clinical evidences demonstrate that the sites of distant metastasis are not random and certain malignant tumors
show a tendency to develop metastases in specific organs (e.g., brain, liver, and lungs). However, an appropriate animal
model to characterize the metastatic nature of transplantable human cancer cell lines has not been reported well. Recent
advances in bio-luminescent imaging (BLI) technologies have facilitated the quantitative analysis of various cellular
processes in vivo. To visualize the fate of tumor progression in the living mice, we are constructing a luciferase-
expressing human cancer cell library (including melanoma, colon, breast, and prostate cancer). Herein we demonstrate
that the BLI technology in couple with a fine ultrasonic guidance realizes cancer cell-type dependent metastasis to the
specific organs. For example, some melanoma cell lines showed frequent metastasis to brain, lungs, and lymph nodes in
the mouse model. Notably, reflecting the clinical features of melanoma, breast, and prostate cancer, some of the cell lines
showed preferential metastasis to the brain. Moreover, these cellular resources for BLI allow a high throughput screening
for potential anti-cancer drugs. Thus, this BLI-mediated additional strategy with the luciferase-expressing cancer cell
resources should promote many translational studies for human cancer therapy.

Keywords: Cancer metastasis, human cancer cell line, luciferase, ultrasound, luminescent imaging, cardiac injection

1. INTRODUCTION

The metastasis of tumor cells represents the primary source of clinical morbidity and mortality in the large majority of
solid tumors. Appropriately, the word "metastasis" (from the Greek for "change in position") refers to cell movement: the
migration of cancer cells to body parts distant from the primary tumor. Clinicians and pathologists have long known that
this process is not random (1, 2). Metastasis occurs in certain organs more than to others depending on the origin of the
primary tumor. For example, melanoma shows preferential metastasis to the brain, lung, liver, and skin, while prostate
cancer cells tend to metastasize to bone, lung, liver, and brain. It is thought that organ selectivity of metastasis is
determined by anatomic considerations of blood flow, by cell intrinsic properties (e.g., expression of specific receptors or
altered cytoskeletal states that facilitate metastasis), and by organ intrinsic properties (e.g., local production of tumor
enhancing growth factors). However, appropriate small animal models to characterize the metastatic nature of
transplantable human cancer cell lines have not been reported well.

Small animals (mice, rats) provide the most common animal models used in studies of cancer metastasis (2, 3). In most
studies involving small animals, cell injection has been conducted through the tail vein of small animals. Alternatively, a
model of left thoracotomy with cardiac injection under direct visualization was employed (4). The former route is not an
advantageous method for the true systemic delivery because most of the injected cells are trapped in the capillaries of the
lung. The latter case is invasive and carries 10—15% mortality and the actual delivery site is not visualized (4). Thus, less
invasive delivery methods to the whole body are needed and should likely play a significant role in optimization of
future studies for cancer metastasis.

High-resolution ultrasonography (US) has been developed specifically for small animal imaging (5). This new US
employs higher frequencies (25 to 40 MHz), which result in increased spatial resolution, allowing clear identification of
areas of interest within the myocardial wall of small animals and permitting precise and site-directed cell injection.
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Recent advances in imaging strategies that reveal cellular and molecular biological events in real-time facilitate our
understanding of biological processes occurring in living animals. The development of molecular tags such as green
fluorescent protein (GFP) from the jellyfish (dequorea victoria) and luciferase from the firefly (Photinus pyralis) has
precipitated a revolution over the past decade, allowing complex biochemical processes to be associated with the
functioning of proteins in living cells (2, 6, 7). In particular, luminescence imaging offers important opportunities for the
investigation of a variety of biological processes in living cells (7): bioluminescent reporters have significantly greater
signal-to-noise ratios in mammalian tissues, and emitted light signals can be quantified in the context of intact animal
using non-invasive assays.

Herein we will highlight that high-resolution US guidance can be used for accurate and reproducible cardiac cell
injection and that metastatic fate of transplanted tumor cells can be followed non-invasively with optical
bioluminescence imaging.

2. MATERIALS AND METHODS
2.1 Cells and animals

Male and Female NOD C.B-17-Prkdc*/J (NOD/SCID) mice (8-12 wks old) were purchased from Charles River Japan.
All experiments in this study were performed in accordance with the Jichi Medical University Guide for Laboratory
Animals.

Cancer cell lines were obtained from the American Type Culture Collection (Rockville, MD) and the Health Science
Research Resources Bank (Sennan, Osaka, Japan). Depending on the cell line, cells were maintained in either
Dulbecco’s modified Eagle’s medium (DMEM, GIBCO, Gaithersburg, MD) with 10% heat-inactivated fetal calf serum
(FCS) and supplements (8) or RPMI-1640 (GIBCO) with 10% FCS and supplements. The cultures were kept in a 5%
CO; and 95% air humidified atmosphere at 37°C.

2.2 Establishment of luciferase-expressing cells

Firefly (Photinus pyralis) luciferase cDNA from pGL3 basic (Promega, Madison, WI) was inserted into the pMSCVpuro
retroviral vector (Clonetech), generating pMSCV-luciferase. GP2-293 packaging cells (Clontech) were cotransfected
with pMSCV-luciferase and pVSV-G (Clontech), a plasmid encoding the viral envelope glycoprotein (VSV-G) of
vesicular stomatitis virus, using Lipofectamine 2000 (Invitrogen). Supernatants from transfected GP2-293 were
incubated with ~50% cells in the presence of Polybrene (8 mg/ml final concentration; Sigma-Aldrich). Transduced cells
were propagated in medium containing puromycin (Sigma-Aldrich) at 15 mg/ml (Figure 1A). Established cells were
listed on Figure 1B.

A B Cell lines Photon levels
Gastric cancer
. . MKN-45 good
Retroviral transduction MKN-1 poor
Katolll poor
@ NUGC-3 very good
Breast cancer
MDA-MB-231 very good
HSS78T very good
BT-549 good
MCF? good
T-47D very good
. Melanoma
W SK-MEL-2 very good
SK-MEL-28 very good
COLO 679 very good
Mewo very good
MM-RU very good
Colon cancer
! HT-29 very good
. KM12 very good
1 ” 1 SW620 very good
Luciferase-expressing cells o i L
COLO205 poor
DLD-1 good
LoVo on going
Prostate cancer
DU-145 very good
PC3 verygood

Figure 1. Construction of firefly luciferase-expressing human cancer cell lines.
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2.3 Xenogeneic cardiac tumor injection

Luciferase (luc)-expressing cells in the exponential growth phase were harvested by trypsinization and washed twice in
phosphate-buffered saline (PBS) before injection. Luc-expressing cells (5 x 10° in 0.2 ml of PBS) were inoculated into
the left cardiac ventricle of NOD/SCID mice under a fine ultrasonography (US) guidance. Briefly mice were
anesthetized by inhalation of 1.5% isoflurane. The mice were then fixed in the supine position on a custom-built mold
designed and their natural body shape was maintained (Figure 2A). The chest of the mice were shaved and further
cleaned with a chemical hair remover to minimize ultrasound attenuation. Short-axis echocardiography was
accomplished with a Vevo770 system (VisualSonics Inc., Toronto) in B mode with the use of a 700 series real-time
micro-visualization (RMV) scan head probe (Model RMV 707B). Ultrasound gel was spread over the precordial region
to visualize the left ventricle (Figure 2B). When the vertical-section with the largest left-ventricular chamber dimension
was located, a cell suspension was loaded into a syringe fitted with a sterile disposable 30-gauge needle. The synringe
was secured in a micromanipulator, and the needle and the RMV scanhead probe were aligned before the injection
procedure (the needle angle was at ~ 45 degree to the table surface; see Figure 2A). Under the real-time image guidance,
the needle was inserted into the left ventricle. The injection can be monitored on the ultrasound screen and documented
as video clips on the Vevo770 computer.

Figure 2. The use of a high-resolution ultrasound
(25-75 MHz) allows accurate cardiac cell injection.

2.4 Histological examination

Removed specimens were fixed with 10% paraformaldehyde and embedded in paraffin. Sections were then stained with
hematoxylin-eosin.

2.5 Invivo luminescent imaging

In vivo tumor progression was monitored using the non-invasive bioimaging system IVIS™ (Xenogen, Alameda, CA).
Tumor-injected mice were anesthetized with Isoflurane (Abbott Laboratories, North Chicago, IL), and D-luciferin
(potassium salt; Biosynth, Postfach, Switzerland) was injected into the peritoneal cavity (3 mg/body). Mice were
immediately followed by the measurement of luciferase activity. The imaging system consisted of a cooled, back-thinned
charge-coupled device (CCD) camera to capture both a visible light photograph of the animal taken with light-emitting
diodes and the luminescent image. After acquiring photographic images of each mouse, luminescent images were
acquired with a 1 min exposure time (9, 10). Images were obtained with a 25-cm field of view (FOV), a binning
(resolution) factor of 8, 1/f stop, and an open filter. The resulting gray scale photographic and pseudo-color luminescent
images were automatically superimposed using software to facilitate identification of any optical signal and location on
the mouse. Optical images were displayed and analyzed using Igor (WaveMetrics, Lake Oswego, OR) and IVIS Living
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Image (Xenogen) software packages. The signal from tumors was quantified as photons flux in units of
photons/sec/cm?/steradian.

2.6 Ex vivo luminescent imaging inspection

For the inspection of metastasized organs, various organs of the mice were removed onto culture dishes and tumor-
derived photons were examined for micro-metastases in the presence of D-luciferin (250 ug/mL). The following
representative organs of mice were evaluated for the metastases: the lung, liver, brain, spine, paraaortic lymph nodes, gut
and omentum, peritoneum, retroperitoneum, spleen and bladder.

3. RESULTS
3.1 Photon emission from luciferase-expressing cancer cells are correlated with viable cell number

Recent advances in luminescent imaging technologies have facilitated the quantitative analysis of cellular processes in
vivo. Human cancer cell lines were transduced with firefly luciferase in an effort to visualize the fate of tumor
progression in the living animals. The advantages associated with the use of luciferase as a marker includes its sensitivity
(as few as 100 luciferase-transduced cells can be detected over the background in vitro) and its linear dose-dependent
output of light in the presence of D-luciferin (data not shown).

We have previously shown that depsipeptide induces apoptotic cell death in human melanoma cell lines (11, 12). We
examined whether photon emission from luciferase-expressing tumor cells was correlated with viable cell number. A
sublethal dose of depsipeptide on murine B16/F10 melanoma cells (Figure 3A) revealed that depsipeptide decreased
tumor-derived photons in a dose-dependent manner. Furthermore, caspase-3/7 activity in unmanipulated B16/F10 cells
also increased linearly after a 24 hr exposure to 1-10 nM depsipeptide (Figure 3B), with the median dose of depsipeptide
(EDsp) being 5.34 nM. Thus, these data indicate that tumor-derived photons were correlated well with viable cell
number.
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Figure 3. Photon emission from luciferase-expressing cancer cells are correlated with viable cell
number. (A) Luc-B16/F10 cells (1 x 10%) were plated onto 48-well plates at the indicated number
and exposed to depsipeptide at the indicated concentration for 16 hr. Luciferase activity (photon
counts) was then evaluated in the presence of D-luciferin. (B) Caspase-3/7 activity was quantified
for 16 hr following treatment at the indicated concentration of depsipeptide in B16/F10 cells (2
x10%). The Caspase-GloTM 3/7 Assay system (Promega, Madison, WI) was used according to the
manufacturer’s instructions. The background luminescence associated with the cell culture and
assay reagent (blank reaction) was subtracted from experimental values.
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3.2 Organ-specific metastasis of human cancer cells in NOD/SCID mice

Luciferase-expressing cells were inoculated into the left cardiac ventricle of NOD/SCID mice under fine US guidance.
BLI was conducted per cell line and representative organs (e.g. brain, liver, lungs, lymph nodes, bones and
gastrointestinal tract) were followed by ex vivo inspection. In the case of human melanoma cell lines, their metastatic
potential was dependent on the cell line (Figure 4A). For example, SK-MEL-2 cells showed a low metastatic phenotype,
and SK-MEL-28 and Mewo cells had a moderate metastatic phenotype. Colo679 cells showed the most aggressive
metastatic phenotype among the cell lines. SK-MEL-28, Mewo and Colo679 cells tend to metastasize to the brain, lungs,
liver and lymph nodes of NOD/SCID mice (Figure 4B). These data indicate that metastatic potentials of melanoma to

specific organs depend on the cell line.

1=
Mewo  SK-MEL-28 SK-MEL2 2

Dorsal Images

Colo679

Figure 4A. Melanoma cell lines - in vivo luciferase imaging

Brain  Lung Liver  Kidney GI LNs

SK-MEL-2

Mewo SK-MEL-28

Colo679

Figure 4B. Ex vivoluminescent inspection

We further investigated other cell lines. While human colon cancer HT-29 cells accumulated significantly in the liver of
mice (Figure 5), breast cancer MDA-MB-231 cells showed bone metastasis in addition to metastasis to the brain, lungs
and lymph nodes (Figure 6). These profiling data of hematogenous metastasis suggest that human cancer cell lines
conserve their own favorite metastatic sites even in mice (beyond the species). Notably, reflecting the clinical features of
melanoma and breast cancer, some of the cell lines showed preferential metastasis to the brain of NOD/SCID mice.

In vivo image Ex vivo image

Brain

Liver

Lymph nodes = Gastro-
[ ™) intestinal
& y tract

Others -

Spleen

In vivo image

at 25 days

Figure 5. Metastatic fate of luc-HT29 colon cancer cells

Ex vivo image

at 30-38 days

Figure 6. Metastatic fate of luc-MDA-MB-231 breast cancer cells
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4. DISCUSSION

4.1 BLI for Cancer stem cells

There appear to be characteristics common to both tumor cells and normal stem cells, referred to as stemmness. The
hallmark traits of stem cells—self-renewal and differentiation capacity—are reflected by the high proliferative capacity
and phenotypic plasticity of tumor cells (13). Since the initial concept of cancer stem cells in solid tumor was established
using NOD/SCID mice, we had to employ the animals to apply the luciferase-expressing cell resources to the theory of
cancer stem cells. Our recent BLI-based experimentation suggested that a subpopulation of cancer stem cells is essential
for organ-selective cancer metastasis (Figure 7).

Melanoma

Figure 7. Cancer cells appear to have their own favorite organs for metastasis

4.2 Organ-specific cancer metastasis and chemokies

Approximately 10-20% of all systemic malignancies will eventually metastasize to the brain (14). Despite the high
frequency of metastatic brain tumors, there is no accepted paradigm for effective treatment. Accumulating clinical data
suggest that the interaction between chemokines and their receptors is a critical component for regulation of tumor
progression and metastasis in many cancer types (8, 15), and that the CXCR4/CXCLI2 pathway is involved in the
metastatic process (15). However, the pathophysiology in brain metastasis is not fully understood due to the difficulty of
creating appropriate animal models. Therefore, BLI in conjunction with high-frequency US imaging should allow
various preclinical studies at tumor-normal brain interfaces.

5. CONCLUSIONS

High-frequency ultrasound imaging can guide the injection of human cancer cells accurately into the left ventricle of
mice, and applications of this technique for bio-luminescent imaging will elucidate the nature of hematogenous cancer
metastasis. Combining cell resources with an appropriate animal model will promote a better and profound
understanding of human cancer cell biology. However, progress always involves an innovative process. Therefore,
advances in optical imaging should provide a new platform to accelerate development of therapeutic strategies for human
cancer.
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Summary

Visualization and quantification of the dynamics of protein-protein interactions in living cells can be used to explore the macromolecular
events involved in signal transduction processes. In this study, functional molecular imaging using a luciferase-based complementation
method demonstrated how the integrin-linked kinase (ILK)-mediated protein complex controls downstream signals. The luciferase
complementation assay showed that Aktl preferentially binds to B-parvin rather than to ILK within the complex. Moreover, photon
flux from the interaction between B-parvin and Aktl increased following serum stimulation, and the B-parvin—Akt] interaction was
dependent on phosphoinositide 3-kinase. Intriguingly, small interfering (si)RNA-mediated B-parvin knockdown increased photon flux
from the interaction between ILK and Aktl, leading to stabilization of hypoxia-inducible factor-1ct and increased expression of vascular
endothelial growth factor-A. These data from functional molecular imaging demonstrated that B-parvin plays a regulatory role in the
ILK-mediated Akt (also called protein kinase B) signaling cascades, suggesting that B-parvin might be a crucial modulator of cell

survival.

Key words: B-parvin, Molecular imaging, Integrin-linked kinase, Hypoxia-inducible factor, Luciferase

Introduction

Extracellular signaling is commonly mediated through mechanisms
that rely on protein-protein interactions and protein phosphorylation.
The dynamics of protein-protein interactions are often dependent
on the activation of a particular signal transduction pathway. Even
a single protein can affect various cellular functions by interacting
with different partners in response to extracellular stimuli.

Recent advances in the development of molecular probes have
enabled the visualization of many cellular processes and the
detection of protein-protein interactions in living cells, advances
typified by the fluorescence resonance energy transfer (FRET)
system (Forster, 1959), in addition to complementary methods using
fluorescence (Hu et al., 2002) or luminescence (Luker et al., 2004).
These complementary methods designed to visualize protein-
protein interactions have recently been employed in the screening
of interaction partners and the potential semi-high-throughput
analysis of small modulator molecules in protein complexes
(Kerppola, 2006a; Kerppola, 2006b). In particular, luciferase-based
complementation imaging enables sensitive real-time monitoring
and quantitative analysis of protein interactions under various
cellular conditions (Luker et al., 2004).

Integrins and their associated proteins mediate various
intracellular signaling pathways involved in cytoskeletal remodeling
and cellular processes such as cell proliferation, survival and
differentiation. Integrin-linked kinase (ILK), PINCH and parvin(s)
form heterotrimeric complexes that function as important regulators
of integrin-mediated signaling. The complex comprising ILK,
PINCH and parvins has been implicated in mediating intracellular

signaling pathways through phosphorylation of the leading
downstream molecule Akt (also known as protein kinase B; PKB)
(Legate et al., 2006). [LK-dependent target phosphorylation is
largely regulated by phosphoinositide 3-kinase (PI3K). Akt/PKB
activation requires phosphorylation of Thr308 by PI3K-dependent
kinase-1 (PDK1) (Alessi et al., 1997; Williams et al., 2000) and
Ser473 by PDK2 [which is also known as hydrophobic motifkinase
(HMK)] (Feng et al., 2004; Troussard et al., 2003). ILK is capable
of controlling vascular endothelial growth factor (VEGF)
transcription through Akt/PKB phosphorylation (Tan et al., 2004).
ILK kinase activity is also stimulated by VEGF and other growth
factors, as well as by cell adhesion to the extracellular matrix
(Attwell et al., 2003).

Parvins are a family of proteins involved in linking integrins and
their associated proteins with intracellular pathways that regulate
actin  cytoskeletal dynamics and cell survival. It includes
actopaxin/CH-ILKBP/o-parvin (ParvA), affixin/B-parvin (ParvB)
and y-parvin (ParvG). ParvB localizes to focal adhesions and is
involved in cell adhesion, spreading, motility and survival through
interactions with its partners. ParvB accumulates and co-localizes
with ILK in heart and skeletal muscle (Bendig et al., 2006; Yamaji
etal., 2001). It can inhibit ILK activity and reverse some oncogenic
effects in cancer cells (Mongroo et al., 2004). Furthermore, the
physiological interaction of ILK with ParvB is thought to be
essential in maintaining cardiac contractility (Bendig et al., 2006).
Nonetheless, the precise role of ParvB and the mechanism
controlling the association of ILK and ParvB remain to be
delineated.
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Herein, we demonstrate that luciferase complementation imaging
provides a useful strategy for the instantaneous monitoring of
protein-protein interactions under serum stimulation. Employment
of this system enabled the detection of limited protein-protein
interactions, showing that ParvB preferentially interacts with Aktl,
and inhibits the interaction between ILK and Aktl under normal
cell culture conditions. ParvB knockdown using small interfering
(si)RNA increased VEGF expression, with concomitant stabilized
expression of hypoxia-inducible factor 1-oe (HIF-10r). Based on these
findings, we propose that ParvB functions as an upstream modulator
of Akt/PKB through ILK, Akt/PKB and HIF-1a signaling.

Results

Fluorescence complementation assay for protein-protein
interactions involving ILK and associated proteins

It has been demonstrated that ILK protein complexes play a crucial
role in regulating gene transcription and cell-cell adhesion. Molecular
complementation methods were employed in an effort to detect real-
time protein-protein interactions of ILK protein complexes with
ParvB, PINCH1 and Aktl (Fig. 1A). A fluorescent (or luminescent)
probe was split into N-terminal and C-terminal probe fragments, each
of which was attached to the N terminus or C terminus of the target
protein using a linker. The optimal combination for each target protein-
protein interaction leads to integration of the N-terminal and C-
terminal probe fragments and light is emitted (Fig. 1A, right panel).
To determine the optimal pairs of plasmids, four expression plasmids
were constructed for each target protein fused with fluorescent
(monomeric Kusabira-Green: mKG) or luminescent (firefly
luciferase: Luc) N-terminal or C-terminal probe fragments using a
linker (Fig. 1B). Protein interactions were investigated for structural
conformations comprising ILK and ParvB, ILK and PINCHI1, ILK
and Aktl, ParvB and Aktl, and PINCH1 and Aktl. As shown in Fig.
1C, eight combinations per pair were tested to determine the optimal
conformation in the living cell. The appropriate pairs of constructed
plasmids were then co-transfected into 293T cells, which were then
inspected using a fluorescent microscope under excitation light. One
optimal pair with respect to target protein interactions was selected
from among the eight combinations based on signal intensity. The
optimal pairs for an mKG probe were N-ILK-linker-mKGC and N-
ParvB-linker-mKGN (Fig. 1B: construct type 2 for ILK and construct
type 1 for ParvB), mKGC-linker-ILK-C and mKGN-linker-PINCH1-
C (construct type 4 for ILK and construct type 3 for PINCH1), N-
ILK-linker-mKGN and N-Akt1-linker-mKGC (construct type 1 for
ILK and construct type 2 for Aktl), N-ParvB-linker-mKGC and
mKGN-linker-Akt1-C (construct type 2 for ParvB and construct type
3 for Aktl). The numbers represent the same four types of plasmids
as in Fig. 1B. The plasmids encoded an unrelated protein and single
plasmids did not show substantial fluorescent signals (Fig. 1D, lower
six panels). Whereas the combination of ILK with ParvB or PINCH1
gave steady fluorescent signals in the cytosol (Fig. 1D, upper left
panels), the combination of ParvB with Aktl yielded stronger
fluorescent signals than those yielded by the combination of ILK
with Aktl (Fig. D, upper right panels). The combination of PINCH1
with Aktl did not generate substantial fluorescent signals in this assay
(data not shown). In an effort to confirm the interaction between ParvB
and Aktl, we performed a GST pull-down assay. Although a direct
interaction between ParvB and Akt had not been reported before this
study, the GST pull-down assay demonstrated that ParvB interacts
directly with Aktl (Fig. 1E). These results suggest that ParvB
preferentially interacts with Aktl and that ParvB might serve as a
connecting molecule for ILK-mediated Akt/PKB signal transduction.

Luminescence complementation assay for protein-protein
interactions involving ILK and associated proteins
Although a variety of methodologies have been developed for the
investigation of protein interactions (Kerppola, 2006a; Kerppola,
2006b), the luciferase-based complementation assay system
potentially enables straightforward and real-time quantitative
analysis in living cells (Luker et al., 2004; Paulmurugan et al., 2002).
As with the fluorescence complementation assay, polypeptide ends,
which can adopt a broad range of intermolecular orientations, might
be problematic in terms of luciferase complementation imaging
(Kerppola, 2006a; Kerppola, 2006b). Optimal luciferase
complementation was investigated based on results derived from
fluorescence complementation assays (see Fig. 1). The optimal N-
and C-terminal fragments of firefly luciferase cDNA (NLuc and
CLuc, respectively) were isolated by PCR, in which NLuc and CLuc
correspond to firefly luciferase amino acids 2-416 and 398-550,
respectively (Luker et al., 2004). Four fusion constructs were
generated for each target protein using the NLuc and CLuc ¢cDNA
fragments (see Fig. 1B). Luciferase activity was then investigated
by examining target protein-protein interactions. Expression plasmid
pairs were transiently transfected into 293T cells. For the control
transfection, only NLuc or CLuc was employed. To.determine which
pair generated optimal luminescent signals, the relative luciferase
activity for each target protein interaction was examined. As shown
in Fig. 2A-D, the optimal pairs were as follows: NLuc-linker-ILK-
C and CLuc-linker-ParvB-C (construct type 3 for ILK and construct
type 4 for ParvB), CLuc-linker-ILK-C and NLuc-linker-PINCH1-
C (construct type 4 for ILK and construct type 3 for PINCHI),
NLuc-linker-ILK-C and N-Akt1-linker-CLuc (construct type 3 for
ILK and construct type 2 for Akt1), and NLuc-linker-ParvB-C and
CLuc-linker-Akt1-C (construct type 3 for ParvB and construct type
4 for Akt1). Numbers represent the same four types of plasmids as
in Fig. 1B. Single plasmids fused with only NLuc or CLuc ¢cDNA
did not show substantial luminescent signals. In order to validate
actual expression levels of ParvB and Aktl protein, 2 ug of the
constructed plasmid DNA was transfected into 293T cells seeded
in 12-well plates. ParvB and Akt protein expression levels were
analyzed by western blotting (supplementary material Fig. S1). N-
terminally fused forms of Aktl protein, NLuc-linker-Akt1-C and
CLuc-linker-Akt1-C, were detected in two cleaved fragments, It
has been demonstrated that Akt can be cleaved by recombinant
caspase 3 at aspartic acid residues 108 and 119, resulting in the
generation of a 44 kDa pleckstrin-homology (PH) domain deficient
fragment (Bachelder et al., 2001; Rokudai et al., 2000). One
fragment appeared to be the PH domain of Akt fused with a split-
luciferase probe, which was detectable using anti-luciferase
antibody, and the other seemed to be the kinase domain of Aktl.
These data indicated that the appropriate plasmid pair exclusively
provided optimal luminescent signals.

Real-time quantitative analysis of protein-protein
interactions using a luciferase-based luminescent
complementation assay

In an effort to determine the kinetic pattern of the ILK-ParvB and
ILK-PINCH1 interactions, each optimal pair of plasmids was
transfected into 293T cells in a 24-well plate. Emitted photons were
measured for 30 minutes at 30 second intervals in the presence of
D-luciferin using a NightOwl charge-coupled device camera.
Maximal luminescence emitted from each well was observed at five
to ten minutes. The photon count derived from the association of
ILK with ParvB displayed a larger increase than that derived from
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