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Figure 6 TGF-B decreases the SP fraction of OCUM-2MLN cells. (a) OCUM-2MLN cells were treated with TGF-p (I ng/ml) or
BMP-4 (30ng/ml) for 72h. Cells were stained with Hoechst 33342 and analyzed by flow cytometry. Red numbers, SP percentage of
entire viable cell population. (b) Diffuse-type gastric carcinoma cells were treated with TGF-B (1 ng/ml) for 72h. Cells were stained
with Hoechst 33342 and analyzed by flow cytometry. Red numbers, SP percentage of entire viable cell population. (c) OCUM-2MLN
cells were cultured with TGF-B (1 ng/ml) in soft agar, and the colony-forming ability was assessed. Representative photographs (upper
panels) and numbers of colonies were (lower panel) indicated. Columns, mean of triplicate determinations; bars, s.d. (d) OCUM-2MLN
cells were treated with TGF-B (1 ng/ml) for 72h, and 1 x 10* cells were xenografted. Representative photographs (left panels) and
tumor volumes (right panel) were indicated. Points, mean; bars, s.d.
not the other types of cells examined, exhibited expressed ABCG2 at high levels, correlated with the
tumorigenic ability (Figure 7d). These findings suggested  presence of SP cells and tumor-forming ability of cancer
that cancer cells originating from metastatic lesions  cells.
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Figure 7 Highly metastatic cancer cells include more SP fractions. (a) Schematic representation of the in vivo process of selection of
diffuse-type gastric carcinoma cells. (b) Diffuse-type gastric carcinoma cells were stained with Hoechst 33342 in the absence or presence
of fumitremorgin C (FTC) and analyzed by flow cytometry. Red numbers, SP percentage of entire viable cell population. (¢) Diffuse-
type gastric carcinoma cells were treated with TGF-B (1 ng/ml) for 48 h. Expression of ABCG2 mRNA was examined by quantitative
real-time RT-PCR. Columns, mean; bars, s.d. (d) A total of 3 x 10* diffuse-type gastric carcinoma cells were xenografted. Representative
photographs (left panels) and tumor volumes (right panel) were indicated. Columns, mean; bars, s.d.
Discussion 1981 (Laboisse et al., 1981). Recently, a number of
markers have proved useful for isolation of the subsets
CICs are enriched in SP cells in diffuse-type gastric enriched in CICs in multiple cancers (Visvader and
carcinoma Lindeman, 2008). Some gastric cancer cells include
The existence of CICs within human gastric carcinoma  subpopulations of CD44+ cells, which exhibited tumori-
was first detected by in vitro colony formation assay in  genic ability (Takaishi ez al., 2009). However, no specific
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marker for the diffuse-type gastric carcinoma-initiating
cells has yet been established. In this study, we provide
evidence that CICs are present in diffuse-type gastric
carcinoma cells, and that the SP cells in OCUM-2MLN
cells possessed repopulating capacity and high tumor-
forming ability in vivo.

SP cells were initially identified in mouse bone
marrow as long-term repopulating cells (Goodell ef al.,
1997). This original discovery was followed by other
reports on a wide variety of tissues (Zhou et al., 2001).
High expression of ABCG2 in hematopoietic stem cells
was also reported (Scharenberg et al., 2002). Moreover,
recent studies have revealed that not only stem cells in
normal tissues but also CICs are enriched in SP cells in
many types of cancers (Wu and Alman, 2008). Our
findings suggest that CICs in diffuse-type gastric
carcinoma are enriched in SP fraction, and that
expression of ABCG2 might serve as a marker for
diffuse-type gastric cancer-initiating cells. As SP cells are
estimated to be present at proportions between 0 and
20% of total cell population in many types of cancers
(Dean et al., 2005, Wu and Alman, 2008), it is
reasonable that diffuse-type gastric cancer cells include
SP cells in the range of 0-4% to total cancer cells.

Population of CICs is decreased by TGF-B: a novel
mechanism of tumor suppression
TGF-B acts as tumor suppressors in many types of
cancer. In gastrointestinal tumors, genetic and epige-
netic inactivation of TGFBR2, TGFBRI, SMAD4/
MADH4 and SMAD2/MADH?2 has been found (Hahn
et al., 1996; Markowitz and Roberts, 1996; Grady and
Markowitz, 2008). Consistent with these findings, we
have shown that overexpression of dnTBRII in OCUM-
2MLN cells caused the accelerated tumor formation
in vivo in a mouse xenograft model (Figure 1d).
However, under in vitro condition, phosphorylation of
Smad? in those cells was not detected in the absence of
exogenous TGF-B, and detected only after the treatment
of exogenous TGF-B (Figure la). Thus, TGF-p may be
supplied from tumor microenvironment, for example,
cancer-associated fibroblasts (Mizoi er al., 1993), and
have an influence on tumorigenicity of cancer cells.

Interestingly, TGF-B altered the percentage of CICs
within diffuse-type gastric carcinomas. As TGF-B
suppressed the expression of ABCG2 in other types of
cancer cells (Figure 4), it is possible that the percentages
of CICs in other types of cancers are also decreased by
TGF-B. However, contrary to the present findings for
diffuse-type gastric carcinomas, TGF-B was reported to
maintain the ‘stemness’ of glioblastoma-initiating cells
(Tkushima et al., 2009; Pefiuelas et al., 2009). TGF-B
also maintains the stem-cell-like properties of leukemia-
initiating cells in chronic myeloid leukemia through
regulation of AKT activation and FOXO3a localization
(Naka et al., 2010). TGF-B might thus have different,
tissue-dependent regulatory effects on CICs.

We also examined the effect of BMP-4, another
member of TGF-B family, on the expression of ABCG2
and the maintenance of SP cells within diffuse-type
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gastric carcinoma. In several types of cancers, BMP
ligands are estimated as a novel therapeutic agent, which
can induce ‘differentiation’ of cancer stem cells, attenuate
the tumor-forming ability of cancer, and may be used to
prevent growth and recurrence of cancers (Piccirillo ez al.,
2006; Sneddon et al., 2006; Lee et al., 2008). However,
BMP-4 reduced neither the expression of ABCG2 in
OCUM-2MLN cells nor population of SP cells in these
cells (Figure 3a, b and 6a).

TGF-P regulates the expression of ABCG2 and drug
efflux ability

ABCG?2, also termed BCRP, is a 72kDa half-transpor-
ter containing six putative transmembrane o-helices
(Velamakanni et al., 2007; Gradhand and Kim, 2008),
and is a member of subfamily G of the ABC
transporters, expressed in various types of cancers.
ABCG2? is known to be responsible for the efflux of
chemotherapeutic drugs. Thus, pharmacological inhibi-
tion of ABCG2 activity with selective inhibitors was
tested in an attempt to overcome ABCG2-mediated
drug resistance. In addition, siRNA targeting ABCG2
expression in cancer cells was also designed. However,
the mechanism of regulation of ABCG2 expression in
cancer cells have yet to be fully understood. Here, we
found that ABCG?2 expression was repressed by TGF-p
in several types of cancers, including diffuse-type gastric
carcinoma. These findings are in agreement with the
observations using human breast cancer MCF7 cells
(Yin et al., 2008). TGF-B appears to directly regulate the
expression of ABCG?2 in diffuse-type gastric carcinoma
cells. Moreover, we have demonstrated that Smad
complex directly binds to ABCG2 promoter/enhancer
in OCUM-2MLN cells and that TGF-B negatively
regulates the transcription of ABCG2 in these cells
(Figure 3e). This is consistent with our recent chromatin
immunoprecipitation-chip analysis data, which indi-
cated that Smad2/3 complex directly binds to the
transcription start point of the 4BCG2 locus in the
genome of human normal keratinocyte, HaCaT cells
(Koinuma et al., 2009 and our unpublished data).

Metastasis of diffuse-type gastric carcinoma might
depend on a distinct population of tumor cells

Recent findings have suggested that in some cancers
metastasis arises directly from CICs. Pancreatic cancer
stem cells, profiled as CD133* CXCR4*, exhibited
significantly stronger migratory activity in vitro (Her-
mann et al., 2007). Furthermore, CD44+ CD24-"° cells,
a cancer-initiating subset of breast cancer, are readily
detectable in pleural effusions in breast cancer patients
(Al-Hajj et al., 2003). Moreover, peritoneal metastasis of
diffuse-type gastric carcinoma depends on the adhesive
ability of cancer cells, and the adhesive ability of SP cells
was reported to be significantly higher than that of
parental cells (Nishii ez al., 2009). This study demon-
strated that OCUM-2MLN and OCUM-2MD?3 cells,
both of which were isolated from metastasis arising in
OCUM-2M cell-xenografted mice, expressed higher
levels of ABCG2 and included more SP cells than
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parental OCUM-2M cells. When equal numbers of
OCUM-2M or OCUM-2MLN cells were orthotopically
injected, lymph node metastases were only observed in
the OCUM-2MLN-injected mice (Fujihara et al., 1998).
Intraperitoneal inoculation of OCUM-2MD3 cells
caused peritoneal metastases in all treated mice, whereas
that of OCUM-2M cells failed to induce peritoneal
metastasis (Yashiro et al., 1996). Taken together, these
findings suggest that OCUM-2MLN and OCUM-
2MD3 cells, which may include relatively large SP
populations, have stronger metastatic ability than
OCUM-2M cells. Metastasis of diffuse-type gastric
carcinoma might be derived from a minority of tumor
cells, and complete eradication of this minor population
may be necessary for the effective treatment of cancer.
Alternatively, induction of differentiation of the CICs
by activation of TGF-B signaling pathway may be
another possibility for eradication of this minor
population.

Diffuse-type gastric carcinoma is characterized by its
thick stromal fibrosis, thus, also known as linitis
plastica. Although TGF-B produced by cancer cells
and/or by cancer-associated fibroblasts enhances the
fibrosis, the role of TGF-B in the development of
diffuse-type gastric carcinoma still remains controversial
(Mizoi et al., 1993; Mishra et al., 2005). Either increased
or decreased survival in diffuse-type carcinoma patients
were reported to correlate with the expression of TGF-B
(Kinugasa er al., 1998; Vagenas et al., 2007). However,
our present findings suggest that TGF-B suppresses the
progression of tumor by induction of the differentiation
of CICs of this type of cancer. Study of the interaction
between CICs and the tumor microenvironment
mediated through TGF-B signaling should provide
additional insights into the management of cancer.

Materials and methods

Cell culture

Human diffuse-type gastric carcinoma cells were cultured as
shown in Supplementary Table S1 (Takemura et al., 2004;
Yashiro et al., 2009; Yanagihara et al, 1993). Lentivirus
vectors were used to generate 2MLN-dnTbRII and control
2MLN-GFP cells as described (Komuro ef al., 2009). A human
keratinocyte cells, HaCaT, and a human breast cancer cells,
MDA-MB-231, were cultured as described (Ehata er al., 2007a).
Human non-small-cell lung carcinoma cells, A549, human hepato-
cellular carcinoma cells, HuH7, and human cervical carcinoma
cells, HeLa, were cultured in Dulbecco’s modified Eagle’s medium
containing 10% fetal bovine serum, penicillin/streptomycin.

SiRNA

siRNA duplex oligoribonucleotides against human Smad4 (Stealth
RNAi VHS41118) or control siRNA (Stealth RNAi 12935-200)
were synthesized by Invitrogen (Carlsbad, CA, USA). OCUM-
2MLN cells were transfected in the presence of 125 pmol of either
siRNA/Smad4 or control siRNA in a 500 pl volume with 8 pl
Lipofectamine 2000 (Invitrogen) per well of a 6-well plate
according to the manufacturer’s protocols. To confirm knock-
down of Smad4, cells were harvested 24h after siRNA
transfection and subjected to quantitative real-time RT-PCR.
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RT-PCR

Quantitative real-time RT-PCR was performed as described
(Ehata et al., 2007b). Values were normalized to hypoxanthine
guanine phosphoribosyl transferase 1 (HPRT1). All samples
were run in duplicate. The primer sequences were listed in
Supplementary Table S2.

Immunoblotting

Immunoblotting was performed as described (Ehata et al.,
2007b; Komuro er al., 2009). Anti-phospho-phosphorylated
RB antibody was obtained from BD Pharmingen (San Jose,
CA, USA). Anti-ABCG2/BCRP antibody was obtained from
Millipore (Billerica, MA, USA). LAS-4000 Image Analyzer
(Fuji Photo Film, Kanagawa, Japan) was used for the detection
of immunoblotted proteins.

Chromatin immunoprecipitation

Chromatin immunoprecipitation was performed as described
(Koinuma ez al., 2009). Whole-cell extracts were incubated at
4°C for 8h with Dynabeads sheep anti-mouse IgG (Invitro-
gen) that had been preincubated with 10ug of anti-Smad2/3
antibody (Cell Signaling Technology, Beverly, MA, USA)
in phosphate-buffered saline/0.5% bovine serum albumin.
Genomic DNA was then extracted with a PCR Purification
Kit (Qiagen, Valencia, CA, USA), eluted in 100pul of Tris-
EDTA, and used for quantitative real-time PCR. Hemoglobin
beta (HBB) and plasminogen activator inhibitor type 1 (PAI-1)
were used for negative and positive control, respectively. The
primer sequences were listed in Supplementary Table S2.

Cell proliferation assay

Cell proliferation assay was performed as described (Ehata et al.,
2007a). Briefly, HaCaT and OCUM-2MLN cells were seeded in
duplicate at a density of 2.5 x 10° cells per well in 24-well plates.
On the following day, cells were treated with TGF- (1 ng/ml) for
4 days. Cells were trypsinized and counted with hemocytometer.

Colony formation assay in soft agar

Agar (Nacalai Tesque, Kyoto, Japan) was dissolved in culture
medium to 0.5% and plated in 6-well plates (bottom layer). Then,
cells were seeded at 1-2 x 10 cells per well in 0.3% agar (top
layer) over bottom layer. Cells were covered with liquid growth

" media containing TGF-, and cultured for 3 weeks. Cell viability

was measured using Cell Count Reagent SF (Nacalai Tesque).

Flow cytometric analysis and sorting ‘
Flow cytometric analysis and sorting were performed as described
(Katayama et al., 2009). Briefly, cells were resuspended at a concen-
tration of 1 x 10 cells per ml in ice-cold Hank’s balanced salt
solution supplemented with 2% fetal bovine serum and 25mm
4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid. These cells were
treated with 1-12 pg/ml Hoechst33342 (Invitrogen) for 60 min
at 37°C either alone or in the presence of inhibitors. After
washing with phosphate-buffered saline, 3 x 10 cells were analyzed
using a FACS Vantage SE flow cytometer (BD Biosciences,
San Jose, CA, USA). Hoechst 33342 was excited with the UV
laser at 350 nm and fluorescence emission was measured with
405/BP30 (Hoechst blue) and 570/BP20 (Hoechst red) optical
filters. SP gate was defined as diminished region in the presence
of reserpine or fumitremorgin C. Analysis was done using
Flow Jo software (Treestar, Ashland, OR, USA).

Mouse xenograft model and in vivo gene expression analysis
Animal experiments using a mouse xenograft model were
performed (Komuro et al., 2009). For the xenografts of sorted
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cells, Matrigel (BD Bioscience) was used. The significance of
differences was determined by repeated-measures analysis of
variance test, with P-values less than 0.05 considered significant.
In vivo gene expression analysis was performed as described
(Komuro et al., 2009). Briefly, tissue samples from subcutaneous
2MLN-GFP or 2MLN-dnTBRII tumors were digested with
collagenase and trypsinized. The resulting single-cell suspension
was subjected to magnetic cell sorting with magnetic microbeads
conjugated to CD326 antibody (Miltenyi Biotec, Sunnyvale, CA,
USA) to separate CD326-positive human cancer cells from
CD326-negative mouse stromal cells. Total RNAs were purified
with the RNeasy Mini Kit (QIAGEN) and used for oligonucleo-
tide microarray, GeneChip Human Genome U133 Plus2.0
(Affymetrix, Inc. (Santa Clara, CA, USA)). MultiExperiment
Viewer Version 4.6 software (Institute for Genomic Research)
was used for the statistical analysis.
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Arkadia is a positive regulator of transforming
growth factor-B (TGF-B) signalling, which induces ubi-
quitylation and proteasome-dependent degradation of
negative regulators of the TGF-B signalling pathway,
i.e. Smad7, c-Ski and SnoN. In the present study, we
examined the roles of Arkadia in human cancer cells.
We first examined the expression of Arkadia in 20
cancer cell lines and 2 non-cancerous cell lines, and
found that it was expressed ubiquitously at both the
mRNA and protein levels. Interestingly, levels of
expression of c-Ski protein, one of the substrates of
Arkadia, were not correlated with those of c-Ski
mRNA. Arkadia induced down-regulation of c-Ski pro-
tein expression in many cell lines examined, but did not
in certain cell lines with high levels of expression of
c-Ski protein. We also found that knockdown of
Arkadia attenuated the induction of TGF-§ target
genes, whereas ectopically expressed Arkadia enhanced
it. Notably, over-expression of Arkadia inhibited the
growth of HepG2 cells in the presence as well as the
absence of TGF-p stimulation. Arkadia thus regulates
the levels of expression of c¢-Ski protein in cell-type-
dependent fashion, and exhibits a tumour suppressor
function by inhibiting tumour cell growth.

Keywords: cancer/degradation/Ski/TGF-B/ubiquitin
ligase.

Abbreviations: CBP, CREB-binding protein; E3,
ubiquitin-protein isopeptide ligase; GAPDH,
glyceraldehyde-3-phosphate dehydrogenase; HA,
haemagglutinin; HDACs, histone deacetylases; MCS,
multi-cloning site; MEF: mouse embryonic fibroblast;
PCR, polymerase chain reaction; PAI-1, plasminogen
activator inhibitor-1; RT, reverse transcription; Sno,
Ski-related novel gene; TGF-B, transforming growth
factor-p.

Transforming growth factor-B (TGF-B) has a diverse
array of activities, including growth inhibition,

regulation of motility, extracellular matrix production,
differentiation and apoptosis, in various target cells
(I). TGF-p signalling must be tightly controlled,
since its abnormality has been reported to cause pro-
gression of various diseases, including cancer and
fibrosis (2). TGF-B plays dual roles in the progression
of cancer (3, 4). In the early stages of carcinogenesis,
TGF-B acts as a tumour suppressor by inhibiting cell
growth. In contrast, TGF-B exerts tumour-promoting
effects by inducing invasion and metastasis in
advanced stages of cancer. Levels of expression of
TGF-P are positively correlated with clinical stage in
certain tumours.

TGF-B signal is transduced through two distinct ser-
ine—threonine kinase receptors, termed type I and type
II (5—8). Upon binding of TGF-B to type II receptor,
type I receptor is recruited to the ligand—receptor com-
plex and is phosphorylated by the constitutively active
type II receptor kinase. Type I receptor is then acti-
vated, and phosphorylates receptor-regulated Smads
(R-Smads), Smad2 and Smad3. Phosphorylated
Smad2 and Smad3 form complexes with Smad4, a
common-mediator Smad (co-Smad), and translocate
into the nucleus. The activated Smad complexes then
bind to promoter regions of target genes either directly
or together with other transcription factors, and regu-
late their transcription in collaboration with transcrip-
tional co-activators and co-repressors (7, 9).

Arkadia was originally identified by gene-trap muta-
genesis in mice as a factor required for induction of the
mammalian node in extraembryonic lineages (10),
and was found to induce mesendoderm by enhancing
nodal-related signalling (17). Arkadia is a nuclear pro-
tein with 989 amino acid residues, including a charac-
teristic RING domain at its C-terminus. We previously
found that Arkadia is an E3 ubiquitin ligase that
enhances TGF-P signalling by targeting negative regu-
lators, i.e. c-Ski/SnoN and Smad7 (12, 13).

¢-Ski and SnoN are members of the Ski family of
oncoproteins (9, I4). Ski was originally identified as
the transforming protein (v-Ski) of the avian retrovirus
that induces oncogenic transformation of chicken
embryo cells (15). The Ski family of nuclear oncopro-
teins represses TGF-B signalling principally through
interaction with Smad proteins (/6, 17). c-Ski and
SnoN interact with Smad2/3 and Smad4 in activated
Smad complexes (I8, 19). They also bind directly to
mSin3A and N-CoR and form a complex containing

histone deacetylases (HDACs), thus repressing tran- -

scription (20). In addition, c-Ski and SnoN have been
shown to compete with transcriptional co-activator
p300 and/or CREB-binding protein (CBP) for binding
to Smad complexes (18, 19, 21) and to stabilize inactive
Smad complex on the promoter regions of target genes
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(22). In contrast, Smad7, an inhibitory Smad (I-Smad),
competitively inhibits phosphorylation of Smad2 and
Smad3 through binding to activated type I receptor
kinase of TGF-B in the cytoplasm (23, 24).

Misexpression of these negative regulators has
been implicated in various pathological conditions.
Increased expression of Smad7 has been found in
inflammatory bowel disease (25) and pancreatic
cancer (26). Reduction of Smad7 protein has been
reported in human fibroblasts of patients with sclero-
derma (27) and in tissues with renal fibrosis in mice
(28). Increased expression of SnoN or c-Ski has been
implicated in the progression of oesophageal squa-
mous cell carcinomas (29, 30), melanomas (31),
estrogen-receptor-positive breast carcinomas (32) and
colorectal carcinomas (33). Some of these cancers exhi-
bit gene amplification of ¢-Ski or SnoN (29, 33, 34).
Since increased expression of c-Ski or SnoN has
been reported to be associated with poor prognosis,
overactivity of SnoN and c-Ski may cause cancer. In
contrast, systemic deletion of one copy of the Sno or
Ski gene causes increased susceptibility to chemical
carcinogens (35, 36). Control of the levels of expression
of these negative regulators within appropriate ranges
thus appears to be important.

Arkadia appears to play important roles in cancers
through regulation of the protein expression of c-Ski/
‘SnoN and TGF-B signalling. However, the roles
played by Arkadia in tumours have yet to be fully
determined. We describe here the relationship between
expression of Arkadia and that of c-Ski/SnoN, as well
as the roles played by Arkadia in tumour cells.

Materials and Methods

Cell culture
Cells were cultured in the medium shown in Supplementary Table I,
in a 5% CO,-humidified atmosphere at 37°C.

Lentiviral production and infection

Lentivirus expression vectors (37) for Arkadia and multi-cloning site
(MCS) were constructed as previously described (38). Briefly, hae-
magglutinin (HA)-tagged mouse Arkadia or MCS was inserted into
pENTR vectors (Invitrogen), and then transferred to pCSII-EF-RfA
vectors using LR clonase (Invitrogen). 293FT cells (6 x 10° cells;
Invitrogen) were transfected using Lipofectamine 2000 (Invitrogen)
with pCSII-EF-RfA containing Arkadia or MCS, pCAG-HIVgp
and pCMV-VSV-G-RSV-Rev. The culture supernatants were col-
lected 72 h after transfection and used for transduction of HepG2
and OCUM-2MLN cells. HepG?2 cells were infected with the lenti-
virus twice.

RNA interference

RNA interference using siRNA oligonucleotides was performed as
described below. Sequences of RNA oligonucleotides used to knock
down human Arkadia, human c¢-Ski and human SnoN were as fol-
lows: siArkadia RNF111-HSS123238 (forward, 5-UAACACUUC
UCGUUUCUUCCUCUGC-3; reverse, 5-GCAGAGGAAGAAA
CGAGAAGUGUUA-3), siArkadia RNF111-HSS123240 (for-
ward, 5-AACACAAUUCUGCACAUACGAAGGG-3'; reverse,
5-CCCUUCGUAUGUGCAGAAUUGUGUU-3'), sic-Ski SKI-
HSS109772 (forward, 5-UUGUGCGAGUGCACCACGAACUU
GU-3'; reverse, 5-ACAAGUUCGUGGUGCACUCGCACAA-3)
and siSnoN SKIL-HSS109774 (forward, S-AAUAAACCCUGAC
AUUUGCCUAGGC-3'; reverse, 5-GCCUAGGCAAAUGUCAG
GGUUUAUU-3). For knockdown of Arkadia, RNFI11-
HSS123238 or RNF111-HSS123240 was used. Similar knock-down
efficiency was confirmed with these two siRNAs. Pre-annealed
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oligonucleotides (Stealth RNAi oligonucleotides) were obtained
from Invitrogen. Oligonucleotides for negative controls were also
purchased from Invitrogen. Transfection of these oligonucleotides
was performed using HiPerFect transfection reagent (Qiagen) at
the same time as seeding of cells. Oligonucleotides were used at
final concentrations of 50 nM or 100 nM for silencing of Arkadia
expression, with 50 nM used for SnoN expression and 100 nM for
¢-Ski expression. Cells were cultured 40 or 60h (for MKN45 cells)
before analysis.

Immunoblotting

MDA-MB-231 cells and mouse embryonic fibroblasts (MEFs) (39)
were treated with 1ng/ml TGF-B (TGF-B1, R & D Systems) before
analysis, where indicated. Cells were lysed with a buffer containing
1% Nonidet P-40, 20mM Tris—HCI, pH 7.4, 150 mM NaCl, 1mM
phenylmethylsulphonyl fluoride, 1% Trasyrol, 50 pM MGI132
(Peptide Institute) and SmM EDTA. Cleared cell lysates were sepa-
rated by SDS—PAGE and transferred to Fluoro Trans W membrane
(Pall). Immunoblotting was performed as described previously (13)
using the following antibodies: anti-Arkadia 3AP4 (13) for simulta-
neous detection of both endogenous human Arkadia and exogenous
mouse Arkadia, anti-RNF111 (Abnova) for immunoblotting of
endogenous Arkadia in human cell lines, anti-c-Ski (Millipore) for
detection of endogenous c-Ski in human cell lines and in MEFs,
anti-SnoN H-317 (Santa Cruz Biotechnology) for immunoblotting
of endogenous SnoN, and anti-tubulin DM 1A (SIGMA). Bands of
immunoblotting were quantified using Quantity One 1-D Analysis
software (Bio-Rad Laboratories).

Semi-quantitative RT-PCR )

Total RNAs from wild-type and Arkadia™~ MEFs were extracted
using the RNeasy Mini Kit (Qiagen). Reverse transcription and
semi-quantitative RT-PCR was performed as described previously
(13). The primer sequences used for detection of mouse c-Ski were:
forward, - GAGGGTGCCCCGGGTCTCAG-3'; reverse, 5- AC
GGTGGTGCAGGGTGGACT-3'.

Real-time RT-PCR

Total RNA from HEK293, HaCaT, and 20 tumour cell lines was
prepared using the RNeasy Mini Kit. cDNA synthesis was per-
formed as described previously (73). Quantitative RT—PCR was per-
formed using Power SYBR Green PCR Master Mix (Applied
Biosystems) or FastStart Universal SYBR Green Master [Rox]
(Roche) and a 7500 Fast Real-Time PCR System (Applied
Biosystems). The primer sequences used were as follows: human
SnoN (forward, 5-CTGTGTTGGAAGGGGAATCT-3'; reverse,
- TTTGCTGGAGTGTAAATTCTCG-3) and human p157K4®
(forward, 5-GCCGCCCACAACGACTTTAT-3'; reverse, 5-GCT
TGCAGGCTTACAGGCTTTC-3'). Primers for human Arkadia,
human Smad7, and human GAPDH were previously described
(12). Primers for human c-Ski, human plasminogen activator
inhibitor-1 (PAI-1), and human p2I™AY were also previously
described (40).

Results

Accumulation of c-Ski protein by knockdown

of Arkadia

We previously reported that ectopic expression of
Arkadia induces ubiquitylation and proteasome-
dependent degradation of c-Ski (/3). To determine
whether endogenous Arkadia affects expression of
c-Ski protein, we compared the levels of expression
of ¢-Ski protein in Arkadia-knocked-down and control
MDA-MB-231 cells. Since c-Ski has been reported to
undergo degradation in response to TGF-B stimula-
tion (47), we also compared the time courses of protein
expression of c-Ski after TGF-f stimulation. As shown
in Fig. 1A, c-Ski protein accumulated in Arkadia-
silenced cells in the absence of TGF- stimulation, sug-
gesting that Arkadia induces c-Ski degradation under
resting conditions. Upon stimulation with TGF-B,
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Fig. 1 Arkadia contributes to degradation of ¢-Ski protein. (A) Knockdown of Arkadia was performed by siRNA. MDA-MB-231 cells were
transfected with siArkadia oligonucleotide or negative control oligonucleotide at the same time as seeding. Cells were treated with 1 ng/ml
TGF-P and harvested at the indicated time points. Cell lysates were subjected to SDS—PAGE, followed by immunoblotting using anti-c-Ski
antibody (top panel), anti-RNF111 (Arkadia) antibody (middle panel) and anti-tubulin antibody (bottom panel). Asterisk denotes non-specific
bands. The specific bands of c-Ski and Arkadia were quantified and normalized to those of tubulin. Values shown at the bottom of corre-
sponding panels were relative to those of negative control at Omin. (B) Wild-type (WT) MEF cell line (WTF1) and Arkadia™~ MEF cell lines
(FAKC and FAKD) were treated with 1ng/ml TGF-B and harvested at the indicated time points. Time courses of expression of ¢-Ski protein
upon TGE-B stimulation were examined (top panel). Asterisk denotes non-specific bands. The specific bands of c-Ski were quantified and
normalized to those of tubulin. Values shown at the bottom of top panel were relative to that of WT MEF at 0 min. Expression of Arkadia and

c-Ski mRNA are shown at the bottom.

c-Ski protein was degraded within 15min in the con-
trol cells, consistent with previous reports (41).
TGF-B-induced degradation was not abrogated in
Arkadia-knocked-down cells, suggesting the possibility
of involvement of E3 ubiquitin ligases other than
Arkadia. We also performed a similar experiment
using Arkadia~'~ and wild-type MEFs, and obtained
similar results (Fig. 1B). c-Ski protein was hardly
detected in wild-type MEFs, but accumulated in
Arkadia™~ MEFs, whereas expression levels of c-Ski
mRNA were similar between WT and Arkadia™~
MEFs. c-Ski protein was significantly reduced 15 min
after TGF-B stimulation in Arkadia~'~ MEFs. These
findings suggest that Arkadia is involved in the degra-
dation of c-Ski protein in the absence of TGF-f stim-
ulation. Although Arkadia may also play a role in
TGF-B-induced degradation of c-Ski, other ubiquitin
ligases may also play a role in it.

Broadexpression of Arkadiain various cancercelllines
TGF-p has two opposing effects on the progression
of cancer. Since Arkadia enhances TGF-P signalling
(12), we hypothesized that Arkadia may affect cancer
progression via enhancement of TGF-B signalling. We
first examined Arkadia expression in 20 cancer cell
lines. As shown in Fig. 2A, the levels of expression
of Arkadia mRNA in these cell lines were not very
different (3-fold at a maximum; top panel).
Expression of Arkadia protein was also observed
widely in these cell lines, although the levels of expres-
sion were different when the intensities of the immu-
noblot bands were compared (7-fold at a maximum;
second panel).

We then examined the levels of expression of c-Ski
and SnoN. Increased expression of c-Ski and SnoN has
been reported in several human cancers (30—32),
although in some cases this was accompanied by
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Fig. 2 mRNA and protein expressions of Arkadia, c-Ski and SnoN in various tumour cell lines. (A—C) Levels of mRNA expression of Arkadia (A),
c-Ski (B) and SnoN (C) were compared among 20 tumour cell lines and two non-cancerous cell lines (top panels). Vertical axis shows relative
expressions of human Arkadia (A), c-Ski (B) or SnoN (C) normalized to human GAPDH determined by real-time RT—PCR. Cell lysates were
obtained in parallel with RNA preparation from the 20 tumour cell lines and two non-cancerous cell lines. The lysates were subjected to

SDS—PAGE followed by immunoblotting with anti-RNF111 (A), anti--Ski (B) or anti-SnoN (C) (middle panels). Bands for each protein were
confirmed with siRNA of Arkadia (siAkd) in HeLa cells, that of c-Ski (siSki) in MDA-MB-231 cells, and that of SnoN (siSno) in HepG2 cells
(right two lanes in each panel). NC denotes negative control oligonucleotide-transfected cells. Asterisks denote non-specific bands. The specific
bands of Arkadia (A), c-Ski (B) and SnoN (C) were quantified and normalized to those of tubulin. Values shown at the bottom of corresponding
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Fig. 3 Effect of knockdown of Arkadia on c-Ski protein expression. (A and B) Expression of endogenous Arkadia was knocked down by
transfection of siArkadia oligonucleotide into the indicated tumour cell lines. Lysates from non-transfected cells (nt), control
oligonucleotide-transfected cells (NC) and Arkadia-knocked down cells (siAkd) were subjected to SDS—PAGE followed by immunoblotting
with anti-c-Ski (top panels). Bands of c-Ski were confirmed by siRNA of c-Ski in MKN28/74 cells (right two lanes in the right top panel of A).
Knockdown of Arkadia was confirmed by immunoblotting with anti-RNF111 (middle panels). Asterisks denote non-specific bands.

gene amplification of c-Ski or SnoN (29, 33, 34). As
shown in Fig. 2B and C, mRNA levels of ¢-Ski and
SnoN varied markedly among the cell lines tested.
Levels of c-Ski mRNA differed nearly 8-fold between
EBC-1 and MKN?7 (Fig. 2B, top panel), and levels of
SnoN mRNA differed nearly 10-fold between
KATOIII and MCF7 (Fig. 2C, top panel). Levels of
expression of c-Ski/SnoN proteins were also varied
markedly among these cancer cell lines. When
bands of immunoblotting were quantified, the
levels of expression of c-Ski protein differed 14-fold
between A549 and OCUM-2M (Fig. 2B, second
panel), and those of SnoN protein differed >30-fold
between EBC-1 and OCUM-2MD3 (Fig. 2C, second
panel).

In some cell lines, the levels of expression of c-Ski
were high at the mRNA but low at the protein level
(MKN7 and MKN28/74), whereas in other cell lines
they were low at the mRNA level but high at the pro-
tein level (OCUM-2M, OCUM-2D, OCUM-2MLN,
KATOIII, MKN45 and A375). Similar results were
obtained for SnoN (Fig. 2C; A549 and MCF7).

Arkadia was thus ubiquitously expressed in various
cancer cell lines at both the mRNA and protein levels,
whereas in some cell lines levels of expression of c-Ski
and SnoN varied at both mRNA and protein levels
and levels of expression of mRNA and protein were
not correlated.

Dysfunction of Arkadia in degradation of c-Ski in
some cancer cell lines

Since Arkadia was expressed in all the 22 cell lines
tested, we examined whether Arkadia functions as an
E3 ubiquitin ligase in these cell lines. We knocked
down Arkadia and determined protein expression of
c-Ski. c-Ski protein accumulated in MDA-MB-231
(Fig. 1A), HeLa, PC-3u, U373MG and MKN28/74

cells upon knockdown of Arkadia (Fig. 3A), indicating
that Arkadia down-regulates c-Ski in these types of
cells. However, as shown in Fig. 3B, accumulation of
¢-Ski protein was not observed in OCUM-2MLN and
MKN45 cell lines upon silencing of Arkadia. These
findings suggest that Arkadia does not degrade c-Ski
in some cancer cell lines. The high levels of expression
of ¢c-Ski protein in these cell lines can be attributed to
dysfunction of Arkadia.

Enhancement of TGF-f target gene expression

by endogenous Arkadia

We next examined mRNA expression of TGF- target
genes upon knockdown of Arkadia. HeLa cells were
transfected with siRNA oligonucleotide and treated
with TGF-p for the indicated periods of time. SnoN
is one of the target genes of TGF-B (42), and, as shown
in Fig. 4A, induction of SnoN mRNA was reduced
(left panel) when expression of Arkadia was silenced
(right panel), suggesting that endogenous Arkadia con-
tributes to enhancement of TGF-p signalling. We also
used OCUM-2MLN cells in which c-Ski protein did
not accumulate upon knockdown of Arkadia. As
shown in Fig. 4B, induction of target genes including
SnoN (left top panel), PAI-1 (left bottom panel) and
Smad7 (right bottom panel) was attenuated when
Arkadia was silenced (right top panel). These findings
suggest that Arkadia functions as an enhancer of
TGF-B signalling in OCUM-2MLN cells, although it
does not function as an E3 ubiquitin ligase for c-Ski.

Reduction of c-Ski protein expression by

exogenous Arkadia

We further performed gain-of-function experiments,
and examined the effects of exogenous Arkadia on
c-Ski protein expression. HepG2 cells were used since
the levels of expression of c-Ski and SnoN proteins
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Fig. 4 Knockdown of Arkadia attenuates induction of TGF-§ target genes. (A and B) HeLa cells (A) and OCUM-2MLN cells (B) were transfected
with siArkadia oligonucleotide (siAkd) for silencing of endogenous Arkadia expression, or control oligonucleotide (NC), or remained untreated
(nt). Cells were treated with 1 ng/ml TGF-p and harvested at the indicated time points. mRNA expression of SnoN, Arkadia, PAI-1 and Smad7
was determined by real-time RT—PCR. Vertical axis shows relative expressions of these genes normalized to human GAPDH.

were high and that of Arkadia was low in them
(Fig. 2). OCUM-2MLN cells were also used since
endogenous Arkadia did not contribute to degradation
of endogenous c-Ski protein in them (Fig. 3B). Wild-
type Arkadia (WT) or a RING finger domain-deleted
mutant of Arkadia (AC) was expressed in these cells
using a lentivirus vector expression system. Expression
of Arkadia was confirmed using anti-Arkadia anti-
body. As shown in Fig. 5 (top panels), expression
of exogenous Arkadia was higher than that of endo-
genous Arkadia in control cells. In both cell lines
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examined, c-Ski protein was down-regulated in cells
expressing Arkadia-WT but up-regulated in those
expressing Arkadia-AC. These findings showed that
exogenous Arkadia induced degradation of endogen-
ous c-Ski in these cells through its ubiquitin ligase
activity.

Inhibition of growth of HepG2 cells by Arkadia in

the presence and absence of TGF-$ stimulation

To examine the effects of Arkadia in cancer cells,
growth assay was performed using cells that express
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Regulation of expression of ¢c-Ski protein by Arkadia

Arkadia-WT or Arkadia-AC. We used HepG2 cells,
since OCUM-2MLN cells do not respond to TGF-f
for growth inhibition (38). As previously reported (43),
growth of HepG?2 cells was inhibited by treatment with
TGF-B (Fig. 6A MCS). Cell growth was inhibited by
expression of Arkadia-WT but not by Arkadia-AC in
the absence of ligand. In addition, Arkadia-WT, but
not Arkadia-AC, enhanced TGF-B-induced growth
inhibition. These findings suggest that Arkadia
represses HepG2 cell growth in the presence as well
as the absence of TGF-B.

We then examined mRNA expression of TGF-B
target genes in Arkadia-expressing HepG2 cells.
Control cells (MCS), wild-type Arkadia-expressing
cells (WT) and Arkadia-AC-expressing cells (AC)
were treated with TGF-B for the indicated periods of
time. Arkadia-WT, but not AC, enhanced induction of
target genes of TGF-B, including SnoN and Smad7
(Fig. 6B, top panels), suggesting that ectopic Arkadia
enhanced TGF-B signalling through its C-terminal
RING domain. Since TGF-B has been reported to
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Fig. 6 Arkadia inhibits HepG2 cell growth. (A) Cell growth assay was performed as previously described (43). Numbers of HepG2 cells

expressing Arkadia-WT (WT) or Arkadia-AC (AC) and control cells (MCS) were counted at day 4 with or without treatment with 0.5 ng/ml
TGF-B. (B) HepG?2 cells expressing Arkadia-WT (WT) or Arkadia-AC (AC) or control cells (MCS) were treated with 0.5 ng/m! TGF-B for the
indicated periods of time. mRNA expressions of p21, p15, SnoN and Smad7 were determined by real-time RT—PCR. Vertical axis shows relative

expressions of these genes normalized to human GAPDH.
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inhibit cell growth by regulating expressmn of cell cw:le
regulators (44), we examined the expression of pZI
and pl 15'"5% " As shown in Fig. 6B, expression of
p21" 47 was up-regulated in WT cells but not in AC
cells, in the presence as well as the absence of TG JS
stimulation (left bottom panel). Expression of p/5 b
was also up-regulated in WT cells but not in AC cells
in the presence of TGF-p stimulation (right bottom
panel). These findings suggest that Arkadia inhibits
HepG2 cell growth at least in part through induction
of p21™4F and p15™VE#®

Discussion

c-Ski has been reported to undergo degradation in
response to TGF- stimulation (47). The E3 ubiquitin
ligases involved in this process have yet to be fully
determined. Recently, Le Scolan et al. (45) reported
that knockdown of Arkadia abrogated TGF-B-
induced degradation of c-Ski, suggesting that
Arkadia is responsible for the degradation of c-Ski.
In our study, however, knockdown of Arkadia in
MDA-MB-231 cells failed to attenuate the decrease
in c-Ski protein upon TGF-B stimulation (Fig. 1A).
We also found that TGF-B-stimulation resulted
in down-regulation of c-Ski in Arkadia~'~ MEFs
(Fig. 1B), although the down-regulation was incom-
plete. These findings suggest that ubiquitin ligase(s)
other than Arkadia are involved in TGF-B-induced
degradation of c-Ski protein, at least under some
experimental conditions. The differential effects of E3
ubiquitin ligases may depend on cell type or cellular
context.

Arkadia was expressed broadly in various cancer cell
lines. In contrast, the levels of expression of c-Ski/
SnoN protein varied markedly among these cancer
cells (Fig. 2). Interestingly, in some cancer cell lines
examined, levels of expression of c-Ski/SnoN at the
mRNA and protein levels were not correlated. These
findings suggest that c-Ski and SnoN are regulated at
the post-transcriptional level in these cancer cells. The
lack of correlation between expressions of c-Ski/SnoN
at the mRNA and protein levels may be due in part to
dysfunction of Arkadia, since Arkadia did not degrade
c-Ski protein in some of these cancer cell lines.
Regulation by ubiquitin ligases other than Arkadia
or regulation at translational level may also account
for this lack of correlation.

In OCUM-2MLN cells, Arkadia degrades neither
c-Ski protein (Fig. 3B) nor SnoN protein (our unpub-
lished data), but does enhance TGF-B signalling
(Fig. 4B). These findings indicate that endogenous
Arkadia enhances TGF-p signalling through ubiquity-
lation of substrates other than c-Ski or SnoN. In
HepG2 cells, c-Ski, SnoN and Smad7 are important
substrates of Arkadia in maximal enhancement of
TGF-p signalling (/3). It remains to be determined
whether Arkadia degrades Smad7 in OCUM-2MLN
cells, since Smad7 protein was not detected by immu-
noblotting in the present study (data not shown). Thus,
the possibility cannot be excluded that substrate(s) of
Arkadia other than c¢-Ski, SnoN, or Smad7 are
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involved in the negative regulation of TGF-f signalling
in OCUM-2MLN cells.

The question why Arkadia does not degrade c-Ski in
OCUM-2MNL cells remains to be addressed.
Expression of c-Ski protein was reduced when
Arkadia was ectopically expressed in OCUM-2MLN
cells (Fig. 5). Endogenous c-Ski in these cells is thus
sensitive to degradation by Arkadia. We detected no
mutations in the RING finger domain of endogenous
Arkadia in OCUM-2MLN cells (data not shown), con-
sistent with the finding that Arkadia still enhances
TGF-B signalling in these cells. It is possible that in
OCUM-2MLN cells Arkadia harbors mutation(s)
in its c-Ski/SnoN-interacting region. Alternatively,
endogenous Arkadia in these cells may be post-
translationally modified and thereby lose its effects
on c-Ski/SnoN. Investigation of the mutations and
intracellular modifications of Arkadia is of importance
for further understanding of the regulation of TGF-$
signalling in cancer cells.

Overexpression of Arkadia inhibited basal growth of
HepG2 cells. We found that expression of p21"4F was
higher in HepG2 cells overexpressing Arkadia-WT
than in control cells or cells overexpressing Arkadia-
AC in the absence of TGF-B stimulation (Fig. 6B).
It remains to be determined how Arkadia enhances
the expression of p27"“4¥ in the absence of TGF-B
stimulation. Arkadia may have substrates other than
c-Ski, SnoN or Smad7 when it inhibits the basal
growth of HepG2 cells, although overexpression of
Arkadia may exhibit non-physiological effects.

In the present study, we have shown that endogen-
ous as well as exogenous Arkadia positively regulates
the expression of TGF-p target genes in Hela,
OCUM-2MLN and HepG2 cells. In addition, we
found that Arkadia inhibits the growth of HepG2
cells in the presence of TGF-§ stimulation. Arkadia
may function as a tumor suppressor by inhibiting
the growth of tumour cells that are sensitive to
TGF-B-induced cytostasis. Examination of the roles
of Arkadia in late-stage cancer will also be needed in
the near future. Further analysis will reveal how
Arkadia regulates the dual effects of TGF-p on
tumourigenesis and cancer development.

Supplementary Data

Supplementary data are available at JB online.
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CASE REPORT

Successful Treatment with Pemetrexed in a Patient with
Mucinous Bronchioloalveolar Carcinoma

Long-Term Response Duration with Mild Toxicity

Chiyuki Okuda, MD,* Young Hak Kim, MD,* Kengo Takeuchi, MD, PhD,} Yosuke Togashi, MD,*
Katsuhiro Masago, MD, PhD,* Yuichi Sakamori, MD,* Tadashi Mio, MD, PhD,*
and Michiaki Mishima, MD, PhD*

36-year-old female former smoker presented with a

productive cough. One year after visiting our hospital
in February 2008, chest computed tomography (CT) re-
vealed diffuse bilateral pulmonary nodules combined with
a consolidation shadow (Figure 14). A definite diagnosis
could not be made by bronchofiberscopic examination;
however, CT-guided needle biopsy specimens revealed
bronchioloalveolar carcinoma (BAC) of mucinous subtype
(Figure 2). Her clinical stage was T4AN2MIla according to
the seventh edition of the tumor, node, metastasis classi-
fication. Activating epidermal growth factor receptor
(EGFR) gene mutations were not detected in her biopsy
specimens. She received chemotherapy with gemcitabine
and carboplatin as her first-line chemotherapy; however,
her disease progressed after four cycles of chemotherapy.
She then received further chemotherapy with docetaxel,
erlotinib, paclitaxel, and irinotecan; however, neither reg-
imen was effective, and her symptoms worsened. In May
2009, pemetrexed was approved for non-small cell lung
cancer in Japan and was chosen as her sixth-line regimen
and started in June 2009. The initial dose of pemetrexed
was 500 mg/m” with vitamin B,, and folic acid supple-
mentation. Chest CT after the two cycles of chemotherapy
showed a radiographic response, and her symptoms also
improved. The dose of pemetrexed was reduced to 400
mg/m? from the fourth cycle because of grade 3 liver
dysfunction (Common Terminology Criteria for Adverse
Events, version 3). Other adverse events were urticaria,
skin hyperpigmentation, and general fatigue; however,
they were all generally mild. Chest CT showed continuous
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improvement (Figure 1B, C), and her liver function has
been stable since the dose reduction. Pemetrexed is cur-
rently being administered for its 20th cycle, and she is
doing very well.

DISCUSSION

BAC is a distinctive form of lung adenocarcinoma
and is further divided into two subtypes: mucinous and
nonmucinous.! Although approximately 20% of adenocar-
cinomas have BAC features, “pure” BAC represents less
than 5% of adenocarcinomas.2 Historically, BAC was
believed to be rather refractory to cytotoxic chemotherapy,
and it is still debatable whether cytotoxic chemotherapy is
equally effective in BAC and other types of adenocarci-
noma.2 Recently, it became widely known that the fre-
quency of activating mutations of EGFR, the strongest
predictive factor of a response to EGFR tyrosine kinase
inhibitors, such as gefitinib and erlotinib, is significantly
higher in BAC3; however, the frequency of EGFR muta-
tions is significantly lower in the mucinous subtype than in
the nonmucinous subtype.*

Our patient presented with BAC of the mucinous
subtype, and her tumor did not express activating EGFR
mutations. She received multiple lines of chemotherapy,
including platinum based, docetaxel, and erlotinib; how-
ever, only pemetrexed was effective.

Pemetrexed is a multitargeted antifolate agent and
has been approved as standard first-line (combination with
platinum) and second-line chemotherapy for non-small
cell lung cancer, and more recently, maintenance chemo-
therapy with pemetrexed has been under debate. Interest-
ingly, pemetrexed is significantly more effective for
nonsquamous than squamous histology.5 One possible ex-
planation is that the expression of thymidylate synthase,
one of the molecular targets of pemetrexed, is generally
higher in squamous than nonsquamous histology; however,
it needs further confirmation.

We performed immunohistochemical examination to
detect the echinoderm microtubule-associated protein-like
4 gene and the anaplastic lymphoma kinase gene, fusion
gene, using the intercalating antibody-enhanced polymer
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FIGURE 1. Computed tomogra-
phy (CT) of the chest showed dif-
fuse bilateral pulmonary nodules
combined with consolidation
shadow before pemetrexed treat-
ment (A). CT after 12 cycles (B) and
18 cycles (C) showed continuous
improvement of the shadow.

performance status. This may also indicate the usefulness
of pemetrexed as maintenance chemotherapy. Further in-
vestigations of pemetrexed are needed in patients with
BAC.
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