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The class II genes of the swine major histocompatibility com-
plex (Mhc:SLA) are involved in the genetic control of immune
responses to foreign antigens. The swine leukocyte antigen
(SLA)-DRBI and -DQBI class II genes are highly polymor-
phic and variable within the SLA genomic region. Namely, the
IPD-MHC SLA database (http://www.ebi.ac.uk/ipd/mhc/sla)
currently contains 82 DRB1, 44 DQBI1, 20 DQA, and
13 DRA alleles with 21 haplotypes that have been designated
by the International Animal Genetics (ISAG) SLA Nomen-
clature Committee (1, 2). The study of allelic variation at the
SLA-DRBI and -DQBI1 loci is important for understanding
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A simple and novel genotyping method was developed to detect alleles at the
swine leukocyte antigen (SLA)-DRB1 and -DQBI class II loci by using polymerase
chain reaction (PCR)-fluorescently labeled sequence-specific oligonucleotide probes
(SSOPs) and Luminex 100 xMAP detection. The PCR-SSOP—Luminex method
exhibited accuracy of 95% for both SLA-DRB1 and -DQBI1 in 6 homozygous and
16 heterozygous pig samples as confirmed by sequencing the PCR products of the
same samples. In addition, 12 low-resolution SLA class II haplotypes consisting of
7 and 9 DRB1 and DQBI alleles were identified, respectively, in one population
of 283 Landrace pigs. This genotyping method facilitates the rapid and accurate
identification of two- or four-digit alleles at the SLA-DRB1 and -DQB1 loci.

the role of these loci variants in disease resistance and vaccine
efficacy. (3—5). To identify the SLA class I and II alleles, a
number of DNA-based SLA typing methods using polymerase
chain reaction (PCR)-amplificd DNA were developed such
as PCR-sequence-based typing (PCR-SBT), PCR-sequence-
specific primers (PCR-SSP), or PCR-restriction fragment
length polymorphism (PCR-RFLP) (6-8). Recently, PCR and
the Luminex microbeads system for the simultaneous mul-
tiplex assay of amplicons hybridized to SSOPs in a single
detection solution was described or sold commercially for
high-throughput single nucleotide polymorphism typing of
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human leukocyte antigens (HLAs), disease genes, or detection
of microorganisms (9-18). For example, the PCR-SSOP-
Luminex genotyping method was applied to analyze the
association of certain HLA-A and/or -B, and -DRB1 alle-
les with Behcet’s disease, ankylosing spondylitis or lep-
rosy (13—15). In this paper, we describe the use of the PCR
amplification—~SSOP protocol with Luminex technology as
a new, rapid, and simple SLA class II DNA-based typing
method to genotype alleles (at least two digits and up to
four digits or more in some cases) at the two highly poly-
morphic SLA class II loci, DRB1 and DQBI. This new
PCR-SSOP-Luminex genotyping method was used to exam-
ine the SLA-DRBI and -DQBI allele diversity in a reference
set of 22 animals representing 8 pig breeds and an outbred
population of 283 Landrace pigs. ‘

SLA genotyping and measurement of the analytes were per-
formed according to the HLA genotyping protocol described
previously for the PCR-SSOP-Luminex method (12) with
slight modification to the PCR annealing temperature (60°C),
reaction temperature (54°C) and hybridization time (25 min),
and modification of the strepavidin—phycoerythrin (SA—PE)
reaction temperature (54°C) and time (15 min). Seven allele-
group-specific PCR primer pairs (four for SLA-DRB1 and
three for SLA-DQBI loci) were used for the PCR (Table S1,
Supporting Information) performed on the genomic DNA
samples of 22 pigs representing 8 breeds [6 Landrace pigs,
1 Landrace x Yorkshire crossbred pig, 2 Large white pigs,
3 Duroc pigs, 2 Géttingen miniature pigs, 4 Mexican hair-
less miniature pigs, 1 Nippon Institute for Biological Sci-
ence (NIBS) miniature pig, and 3 Clawn miniature pigs].
Nucleotide sequence analysis of the PCR products identified
one (homozygous) or two (heterozygous) allelic sequences in
each of the DRB1 and DQBI1 loci from a single individual,
ensuring that each primer pair could specifically amplify the
respective single locus (Tables 1 and 2).

Fourteen specific oligoprobes were designed for genotyp-
ing 11 SLA-DRBI allelic groups from DRBI*01 to DRBI*11
and DRBI1*13 and 13 specific oligoprobes were designed for
genotyping 9 SLA-DQB1 allelic groups from DQB1*01 to
DQB1*9 (Table S2; Figures S1 and S2, Supporting Informa-
tion). These oligonucleotide probes were covalently coupled to
different sets of polystyrene carboxylated microbeads (Multi-
Analyte Microsphere Carboxylated; Luminex, Austin, TX)
using a carbodiimide method with slight modification (10, 12).
Recently, three DRBI*wi2XX alleles of the DRBI*wI2 group
and two new DRBI alleles, DRBI*1301 and *I1401 were
reported and designated as novel alleles by the ISAG Nomen-
clature Committee (2). However, the sequence of the 5 and
3" end regions of exon 2 for the three DRBI*wI2XX alle-
les, *wl2ka02, *w12ka05, and *wl2kal2, were not reported
previously. Thus, the sequence homology between the three
DRBI*wl12XX alleles and five DRB1-specific PCR primers
used for the SBT method and the PCR-SSOP-Luminex
method could not be confirmed, whereas the allelic sequences
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of DRBI*1301 and *140] were 100% homologous with
the exon 2 sequences of the DRB-1F/DRB-2R primer pair.
Furthermore, the DRBI*01XX and DRBI*1301 alleles have
identical sequences for hybridization with the RO1 probe. Nev-
ertheless, the three DRB1*wI2XX alleles, and the DRB1*1301
and DRBI*1401 allelic sequences were not found by
the SBT method in any of the 22 samples from the
8 breeds. In addition, a single base mismatch was found
between the 3’ end region of the R02 probe and the target
sequences of DRB1%02du0l or DRB1*02ka08. The two alle-
les, DRBI*02du01 and DRBI*02ka08, were not detected by
the RO2 probe as shown in Figure S1 and their absence in the
22 samples was confirmed by PCR-SBT. Three probes, Q021,
Q022, and Q023, were designed for the detection of seven
DQBI#02XX alleles, but no specific probe was prepared for
the detection of the DQBI*0204 allele.

After PCR with biotin-labeled primers and the hybridization
of PCR products with the complementary DNA probes
coupled to microbeads, the hybridized amplicons with the
attached microbeads were labeled with the fluorescent reporter
molecule, SA-PE (12). Reactions were then analyzed on
the flow cytometer Luminex 100 (Luminex) to identify the
fluorescence intensity of PE on each bead. The expected
reactivity of the oligobead probes with 11 and 9 allelic groups
of SLA-DRB1 and -DQBI alleles is shown in Figures S1 and
S2, respectively. To assign the genotypes of SLA-DRB1 and
-DQBI alleles, the correct combinations of allele names and
oligobead numbers were programmed into the GENOSEARCH
HLA-typing software (Medical & Biological Laboratories Co.
Ltd., Nagoya, Japan).

Typing accuracy of the PCR-SSOP-Luminex method as a
two-digit allele typing system was verified to be high at 95%
for SLA-DRBI1 and -DQB1 when the results of the 22 samples
were compared with the SLA genotype information obtained
with the same samples by the SBT method after subcloning
the PCR products into a plasmid sequencing vector.

Ambiguities remained for the identification of DQB1 alle-
les by the PCR—SSOP-Luminex analysis of the homozygous
sample D-120 (Table 2). The Q01 and QO3 probes could
not differentiate between DQB1*01XX/*0302 or DQBI*0303
and DQBI1*0302 or DQBI*0303, respectively. Thus, the pos-
sibility of heterozygous alleles in sample D-120 could not
be ruled out by the PCR—SSOP-Luminex method, although
D-120 was assigned only as DQOBI*0303 by the PCR-SBT
method. Also, the Q03 probe could not differentiate between
the DQBI1*0302 and *0303 alleles, as the two DQB1 alleles
showed identical exon 2 sequences located between DQB-2F
and DQB-3R primers. On the other hand, the Q08 probe,
which was designed for the identification of the DQBI*08XX
allelic group, could not differentiate between DQBI*08XX,
DQBI1*01Lu01 and DQOBI*01sh01. High fluorescence detec-
tion intensity was obtained with the Q08 probe in six samples,
which included two Landrace pigs, L-147 and L-d6, one Lan-
drace/Yorkshire pig, L-7br, and three Mexican hairless pigs,
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MH-8106, MH-9, and MH-7 (Figure S2; Table S2). Because
no high detection intensity was obtained in these six samples
with the Q01 probe, which was designed for the detection of
DQB1*01XX (and DQBI*0302 or DQBI*0303), the possi-
bility of finding DQBI*01Lu01 or DQBI1*0Ish01 in the six
samples with the Q08 probe was ruled out. The absence of
DQBI*01Lu01 or DQBI1*01sh0! in these six samples was
confirmed by PCR-SBT (Table 2).

The DRBI*05XX and DRBI*02zs13 alleles have identical
sequences for hybridization with the RO5 probe, which could
result in ambiguous typing using the PCR—SSOP-Luminex
method. In fact, in the case of the MH-8106 sample, the
RO5 probe could not differentiate between DRBI*02zs13/-,
DRBI*02z5s13/05XX and DRBI*02XX/05XX, whereas the
sample was assigned as DRB1*0201/0501 by the PCR-SBT
method (Figure S1; Table S1). Therefore, the sequences of
DRB1%*02zs13 were presumed to be a mixture of the DRB1*02
and DRB1*05 alleles. It is possible that the exon 2 region of
DRBI*02zs13 has the sequences in the 5’ half similar to those
of the DRBI*02 subgroup and the RO2 probe, whereas the
sequences in the 3’ half are similar to those of the DRB1*05
subgroup and the RO5 probe. To obtain reliable results with
the PCR—SSOP-Luminex method, it is important to design
allele-specific probes based on known gene sequence differ-
ences. However, further sequence information will be needed
for several alleles including DRBI*02zs13, and especially
for the allele sequences for which two-digit allele group
names were assigned and for the provisional alphanumeric
allele names containing the two lower-case letters such as
DRB1*02ka08 and DQBI*04sk51. Nevertheless, as an over-
all result, genotypes were determined correctly for 24 samples
at the SLA-DRBI locus and for 22 samples at the SLA-DQB1
locus, as confirmed by the sequencing results for each DNA
sample.

One population of Landrace pigs was used to evaluate
the PCR—-SSOP-Luminex method for the detection of SLA-
DRBI1 and -DQBI allele diversity at the haplotype level. This
population, designated as Miyagino L2, consisted of 283 ani-
mals that were selected by three criteria, daily weight gain
from 30 to 105 kg body weight, backfat thickness measured
by ultrasound technology in animals weighing 105 kg, and the
area of mycoplasma pneumonic lesion measured in slaugh-
tered sib pigs for five generations at the Miyagi Livestock
Experimental Station from 2003 to 2008. Average popula-
tion size of each generation was 14 boars and 39 gilts. These
pigs were included in another multi-institutional study on the
analyses of immunological and economical traits (19, Suzuki
et al., unpublished data). Seven and nine variations of alle-
les in the SLA-DRBI1 and -DQB1 genes were observed,
respectively, making a total of 44 unique class II genotypes
(Table S3, Supporting Information). There was an ambigu-
ity in the SLA-DQB1 locus for five samples with positive
signals obtained for the Q01 and QO3 probes, which could
not differentiate between DQBI*01XX/*0302 or DQBI1*0303

© 2011 John Wiley & Sons A/S
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and DQBI1*0302 or DOBI*0303. However, the SLA class II
genotype for the five samples was estimated to be genotype 5,
consisting of DRBI*01XX/04XX and DQBI*01XX/0302 or
0303, according to an analysis of the inheritance and segre-
gation of the alleles in their descendents (data not shown).

To evaluate the accuracy of the 44 class Il genotypes
assigned by the PCR-SSOP-Luminex method, the SLA-
DRB1 and -DQB1 alleles of 44 individuals each representing
one of the 44 class II genotypes were analyzed by the PCR-
SBT method. All of the 44 class II genotypes assigned by
the PCR-SSOP-Luminex method in the samples were con-
sistent with the SLA genotype information obtained for these
samples by the SBT method (data not shown). For example,
in one of the five samples with genotype 5, DRBI*0101/0403
and DQB1*0101/0302 or 0303, the PCR-SBT assignment was
the same as the results by the PCR—SSOP-Luminex method
and also by the additional analysis of the inheritance and seg-
regation of the alleles in their descendants (data not shown).

An analysis of the inheritance and segregation of the alleles
in descendants of this pig population showed the presence
of 12 low-resolution SLA class II haplotypes including the
novel Lr-0.38 (Table S4, Supporting Information). Six (Lr-
0.1, -0.2, -0.4, -0.12, -0.13, and -0.14) of the 12 haplotypes
have been reported in several breeds including miniature pigs
such as the NIH, Sinclair, Hanford and Korean native pigs as
high-resolution counterparts that were designated by the SLA
Nomenclature Committee (2, 6, 20, 21) and were therefore
numbered accordingly. The Lr-0.23 haplotype that showed the
highest frequency at 33.9% of the total number of SLA class II
haplotypes in the Miyagino L2 was previously detected in
four breeds of outbred pig populations including the Big pig
and Korean native pigs (22, 8) (Ho, personal communication),
Moreover, the novel haplotype, Lr-0.38, was also detected
in the Miyagino L2 population, and showed a relatively low
frequency. Thus, specific SLA class II types may have been
unintentionally selected in this population because of certain
favorable biological traits that are linked to the SLA complex.
The relationship among the SLA class II types and the traits,
including selective breeding by the traits in the Miyagino L2
population, will be presented in a future publication (Suzuki
et al. (19), Ando et al. unpublished data).

In this study, PCR, hybridization and detection by the
PCR-SSOP-Luminex method for SLA-DRBI and -DQBI
typing were performed under the same reaction conditions.
This PCR-SSOP-Luminex method, therefore, has reduced
the number of manual procedures needed for the analysis of
96 samples in a 96-well tray for the two SLA class II loci
by using the GeneAmp 9700 PCR thermal cycler (Applied
Biosystems, Foster City, CA, USA). Furthermore, it will
be important in future to apply the PCR—-SSOP-Luminex
technique for simple and accurate SLA class I genotyping.
However, because of the high sequence homologies among
SLA class I functional genes and pseudogenes, we expect
that it may be more difficult to design allele-specific probes
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for each defined allele of the whole class I functional genes
than it was for the class II functional genes. Nevertheless,
the application of the PCR-SSOP—Luminex method as a
starter for gathering information on the diversity of the SLA
class II alleles at two or four digits will help us to better
understand the role of SLA class II genes in disease-related
phenotypes.

In conclusion, we have developed and performed a rapid
and reliable SLA class II typing method for the detection of
SLA-DRBI and -DQB1 alleles at the two- or four-digit level
in eight different breeds and a selectively bred population of
pigs by using the PCR-SSOP-Luminex genotyping system.
Our results showed that this typing system is a powerful
high-throughput tool for the rapid and accurate multilocus
genotyping of a large number of samples.
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sequences in the reaction matrix.

Table S1. Primer pairs used for amplification of the SLA
class II-DRB1 and DQB1genes.

Table S2. Locus, name and sequences for 30 single
sequence oligonucleotide probes (SSOPs).

Table S3. SLA class II genotypes assigned in a population
of Landrace pigs (Miyagino L2).

Table S4. Low-resolution SLA class II haplotypes identi-
fied in Miyagino L2 pigs.

Please note: Wiley-Blackwell is not responsible for the
content or functionality of any supporting materials supplied
by the authors. Any queries (other than missing material)
should be directed to the corresponding author for the article.



_—

amnis

www.amnis.com

Primordial Linkage of B 2-Microglobulin to the
MHC

Yuko Ohta, Takashi Shiina, Rebecca L. Lohr, Kazuyoshi
- L Hosomichi, Toni I. Pollin, Edward J. Heist, Shingo Suzuki,
g}‘ﬁ;‘;ﬁir‘;‘gi‘f“ is currentas  yjdetoshi Inoko and Martin F. Flajnik

J Immunol 2011;186;3563-3571; Prepublished online 14
February 2011;

doi:10.4049/jimmunol.1003933
http://www.jimmunol.org/content/186/6/3563

Supplementary  http://www.jimmunol.org/content/suppl/2011/02/14/jimmunol.10039
Data  33.DCI1.html

References This article cites 47 articles, 15 of which can be accessed free at;
http://www jimmunol.org/content/186/6/3563.full. html#ref-list-1

Subscriptions  Information about subscribing to The Journal of Immunology is online at
http://www.jimmunol.org/subscriptions

Permissions  Submit copyright permission requests at
http://www.aai.org/ji/copyright.html

Email Alerts  Receive free email-alerts when new articles cite this article. Sign up at
http://www.jimmunol.org/etoc/subscriptions.shtml/

The Journal of Immunology is published twice each month by
The American Association of Immunologists, Inc.,

9650 Rockville Pike, Bethesda, MD 20814-3994.

Copyright ©2011 by The American Association of
Immunologists, Inc. All rights reserved.

Print ISSN: 0022-1767 Online ISSN: 1550-6606.

1102 ‘T Ae]\] uo S10-Jounwwrf MMM WIO1} PAPEOJUMO(]



The Journal of Immunology

Primordial Linkage of 32-Microglobulin to the MHC

Yuko Ohta,*! Takashi Shiina,’t’1 Rebecca L. Lohr,* Kazuyoshi Hosomichi, ™
Toni L. Pollin,® Edward J. Heist,¥ Shingo Suzuki,” Hidetoshi Inoko,
and Martin F. Flajnik*"’

B2-Microglobulin (B2M) is believed to have arisen in a basal jawed vertebrate (gnathostome) and is the essential L chain that
associates with most MHC class I molecules. It contains a distinctive molecular structure called a constant-1 Ig superfamily
domain, which is shared with other adaptive immune molecules including MHC class I and class II. Despite its structural
similarity to class I and class II and its conserved function, B2M is encoded outside the MHC in all examined species from bony
fish to mammals, but it is assumed to have translocated from its original location within the MHC early in gnathostome evolution.
'We screened a nurse shark bacterial artificial chromosome library and isolated clones containing B2M genes. A gene present in the
MHC of all other vertebrates (ring3) was found in the bacterial artificial chromosome clone, and the close linkage of ring3 and
B2M to MHC class I and class II genes was determined by single-strand conformational polymorphism and allele-specific PCR.
This study satisfies the long-held conjecture that $2M was linked to the primordial MHC (Ur MHC); furthermore, the apparent
stability of the shark genome may yield other genes predicted to have had a primordial association with the MHC specifically and

with immunity in general. The Journal of Immunology, 2011, 186: 3563-3571.

abruptly in a jawed vertebrate (gnathostome) ancestor

~500 million years ago. The major players of adaptive
immunity, the rearranging Ag receptors (Ig and TCR), the Ag-
presenting molecules (MHC class I and class II), and molecules
involved in Ag processing (e.g., immunoproteasomes and the
TAPs) are all present in sharks as the oldest extant jawed verte-
brates but absent in all invertebrates and jawless fish (1). The
MHC encodes the class I and class II proteins, which present
foreign peptides to T cells to initiate adaptive immune responses,
as well as the Ag processing molecules and a large number of
other genes involved in various immune functions. The class I and
class II tertiary structures are nearly identical, composed of four

T he adaptive immune system as defined in humans arose
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external domains, the two membrane-proximal domains being
members of the Ig superfamily (IgSF) and the membrane-distal
domains forming a unique structure called the peptide-binding
region (PBR). However, the chain composition differs between
class I and class II molecules: class II molecules are heterodimers
of a- and B-chains each consisting of one half of the PBR, one IgSF
domain, and transmembrane/cytoplasmic regions, whereas class I
molecules are composed of an H or a-chain and the requisite L
chain, B2-microglobulin (B2M), the former comprising the entire
PBR, one IgSF domain, and transmembrane/cytoplasmic regions,
and the latter only one IgSF domain. The remarkable similarity of
the class I and class II structures clearly suggests that they were
generated from a common ancestor, presumably by tandem du-
plication; thus, it has been assumed that class I, 82M, and class II
genes were tightly linked at one point in evolution (1), although it is
debatable whether the ancestor of class I/Il molecule was class I- or
class II-like or an unrecognizable common ancestor (2-5).

In all jawed vertebrates except teleost fish, a taxon having
a highly modified genome correlating with a genome-wide du-
plication early in teleost evolution (6, 7), both MHC class I and II
genes are closely linked within the MHC (8). Although class I
genes are encoded in a region downstream of the class II region
(2-4 Mb) in the MHC of most mammals, a single or low number
of class I genes are found in close proximity to class I processing
and (except teleost fish) class II genes in most nonmammalian
vertebrates, in what is predicted to be the primordial organiza-
tion (9-15). B2M is encoded in diverse regions outside the MHC
in all the species examined to date, including mammals (16), birds
(17), amphibians (18), and bony fish (19), and therefore the lack of
linkage of B2M to the MHC and inconsistent synteny around 82M
have been assumed to be a result of repeated translocations out of
the MHC over evolutionary time or to serial translocations after
the early loss of MHC linkage (20). '

In this study, we characterized the nurse shark (Ginglymostoma
cirratum) single-copy B2M gene and mapped it to the MHC. The
primitive synteny preserved in this extant vertebrate validates
early suppositions regarding MHC evolution and further suggests
that other ancient features of the MHC also may be preserved.
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Materials and Methods

Animals

Genomic DNA was isolated from RBCs for mapping analysis from the nurse
shark family as previously described (21). The procedure of animal use was
reviewed and approved by the Institutional Animal Care and Use Com-
mittee at the University of Maryland.

Bacterial artificial chromosome library screening

The 17 bacterial artificial chromosome (BAC) filters with 11-fold genomic
coverage (22) were screened with radiolabeled full-length B2M or ring3
probes under high-stringency conditions (23). Membranes were exposed to
x-ray film for various lengths of time to obtain positive signals and the
desired background. Putative positive clones were then re-spotted on nylon
membranes for colony hybridization and tested by Southern blotting to
confirm true positives. BAC insert DNA was isolated using the PhasePrep
BAC DNA kit (Sigma-Aldrich), and the sequence was determined by
shotgun sequencing at the sequencing facility at Tokai University with
7.5X coverage.

Sequence alignment and phylogenetic tree

Amino acid sequences of constant-1 (C1)-IgSF domains were aligned using
the ClustalX2 program with minor adjustments. A rooted neighbor-joining
(NJ) bootstrapped (1000 runs) phylogenetic tree (24) was constructed, and
the consensus tree was then viewed with the TreeView program (25).

Database searches

Genome synteny in various species was retrieved and analyzed from
publicly available Web sites as noted. Genes from mouse, chicken, human,
opossum, and zebrafish were retrieved from GenBank (http://www.ncbi.
nlm.nih.gov), and information on other genomes was retrieved from the
following Web sites: elephant shark genome (http://blast.fugu-sg.org/);
Anolis genome (http://genome.ucsc.edu/cgi-bin/hgGateway?db=anoCarl);
Xenopus genome (http:/genome.jgi-psf.org/Xentr4/Xentr4.home.html); and
Fugu genome (http://genome.jgi-psf.org/Takrud/Takru4.home.html).

In-house EST collection

We constructed the cDNA library using the Gateway System (Invitrogen)
from adult nurse shark pancreas. To eliminate Ig genes, we first hybridized
with Ig H and L chain probes under high-stringency conditions. Negative
colonies (~8000) were then manually picked and sequenced from the
vector end. All draft sequences were blastx searched against GenBank
databases, and we obtained ~1150 sequences not specific to the pancreatic
enzymes (Y. Ohta and M.E Flajnik, personal observations).

Single-strand conformation polymorphism analysis

Nurse shark ring3 primers were designed based on the sequence obtained
from BAC GC_614H19 clone. Multiple primers were tried, and we se-
lected the primer set anchoring exons 4 and 5 for the single-strand con-
formation polymorphism (ssCP) analysis. The primers were exon 4
forward, 5'-GTTAACACCTGCACCAAAAT-3’; and exon 5 reverse, 5'-
ATTGGGACCTGAGACACAGT-3'. PCR was performed at 94°C for 4
min, followed by 35 cycles of 94°C for 1 min, 62°C for 1 min, and 72°C for
1 min, with a final extension of 72°C for 10 min using 2-500 ng genomic
DNA as template. The ~1340-bp PCR product was cleaned by gel ex-
traction. The ssCP gel (0.5X MDE gel; Cambrex Bio Science Rockland)
was run at 16°C for 30 h in 0.6X Tris/borate/EDTA buffer with 1 W
constant power.

Allele-specific PCR

Nurse shark B2M sequences were obtained from family 2 with known
MHC haplotypes. PCR was performed using a forward primer in intron 2
(NSB2mint2For: 5'-TTACACATCACCACCACCTC-3') and a reverse pri-
mer designed from the IgSF exon (exon 3) (NSB2mex3Rev: 5'-GATTGA-
TTCAGTAGC-3"). We amplified B2M gene fragments from several ani-
mals carrying different maternal and paternal haplotype combinations to
find allele-specific polymorphisms. After we identified a two-nucleotide
deletion in intron 2 in the paternal haplotype in animals belonging to
groups “i” and “j” (p3), allele-specific primers were designed for each gene
in which deletions are positioned at the third and fourth nucleotide posi-

tions at the 3'-end of primers. PCR was performed using a combination of

allele-specific and NSB2mex3Rev primers at 94°C for 4 min, followed by
35 cycles of 94°C for 1 min, 58°C for 1 min, and 72°C for 1 min, with
a final extension of 72°C for 10 min using 2-500 ng genomic DNA as

LINKAGE ANALYSIS OF B2-MICROGLOBULIN

template. We also found animals with the “CC-deletion” allele in two other
families (1 and 3).

Northern blotting

Total RNA was isolated from various nurse shark tissues by using the TRIzol
reagent (Invitrogen). Twenty micrograms of total RNA was electrophoresed
and blotted onto Optitran Nitrocellulose membrane (Schleicher & Schuell).
The membrane was hybridized with full-length shark probes and washed
under high-stringency conditions (23).

Southern blotting

Genomic DNA (10 pg) was digested with various restriction enzymes to
obtain useful RFLP in unrelated sharks with multiple enzymes. The IgSF
exon was used to determine the number of loci for B2m under high-
stringency conditions (23). Hybridization with MHC class I leader and
al domain probe was performed under low-stringency conditions (23). To
determine the MHC groups in the shark family 2, we digested genomic
DNA with HindIII and hybridized with radiolabeled probe including the
leader—o1 domains of MHC class I under high-stringency conditions.

Sequence analysis of MHC class I alleles and sire designation

MHC class I sequences were obtained from PCR amplification with primers
from a1l domain forward, 5'-GGTCGGTTATGTGGATGATC-3'; and a2
domain reverse, 5'-TTGCAGCCACTCGATACA-3'. PCR amplification
was performed for 4 min at 94°C, followed by 35 cycles of 94°C for 1 min,
56°C for 1~2 min, 72°C for 1 min, and a final extension at 72°C for 10
min. An ~550-bp fragment amplicon was cloned into the pCRII TA
cloning vector (Invitrogen), and individual clones were sequenced. Nurse
shark families 2 and 3 were genotyped using 12 DNA microsatellite
markers and assigned sires (E.J. Heist, J.C. Carrier, H.L. Pratt, and T.C.
Pratt, submitted for publication).

Statistical analysis of linkage

We used parametric linkage analysis to formally assess the evidence for
linkage of B2M to the MHC region in the offspring of deletion-carrying
sires. This approach assesses the odds of the likelihood of obtaining the
observed data set if the two loci are linked versus if the loci are not linked,
showing as a log of the odds (LOD) score. The paternal sibships were
determined based on consolidated data from combination of Southern
blotting, sequencing of MHC class Ia alleles, and microsatellite analyses
(shown in Table I).

The LOD score is calculated as follows when parental phase (linkage
status) is known: LOD =1log10 {[(O)R (1L— (-))NR]/(O.S)R+NR), where 6 is the
recombination fraction, NR is the number of nonrecombinant offspring,
and R is the number of recombinant offspring.

Because the parental phase was unknown in the current study due to
a lack of grandparental genotypes, a phase ambiguous LOD score was first
calculated for each family by taking the log of the average odds for the two
possible phases (1 and 2 in Table I), and the resulting LOD scores were
then summed over the two families to obtain the LOD score at a given
recombination fraction. LOD scores were calculated at recombination
fractions between 0 and 0.5 to obtain the recombination fraction where the
LOD score was maximized (26). The corresponding p value was calculated
using a one-sided x2 test of LOD X2 (log.10) (27).

Results

Characterization of nurse shark 2M

Cartilaginous fish are the oldest living vertebrates having an
adaptive immune system centered upon Ig, TCR, and MHC (1).
When it was suggested that class I and class II genes may have
evolved in separate linkage groups from studies of teleost fish
(28), we demonstrated in family studies that the two MHC classes
were closely linked in two shark species, nurse shark and banded
houndshark (21). To gain further insight into the primordial MHC
organization, we have isolated many shark genes associated with
adaptive immunity, including S2M. The full-length B2M clone was
found in an in-house EST collection (GenBank accession number
HM625831), as well as from a previously published genomic se-
quence (GenBank accession number GQ865623) (29), and the
deduced amino acid sequence was aligned with B2M from other
species (S1). As was noted in previous studies, evolutionarily
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conserved residues are either found in all C1-IgSF (or just IgSF)
domains (29, 30) or are predicted to be at class Ia-chain interac-
tion sites (31). Some cartilaginous fish B2M have potential N-
glycosylation sites that are rare in tetrapods but present in several
bony fish species (32). Consistent with previous studies (33, 34),
phylogenetic tree analysis revealed that cartilaginous fish B2M
clustered with the orthologous proteins and to the IgSF domains of
MHC class IIA/DMA, suggesting that they share the most recent
common ancestor (Fig. 1A). Also consistent with previous studies

3565

Mapping of B2M to the MHC in family studies

Two families of nurse sharks previously were used to map several
genes to the MHC (21, 36, 37). All of these families showed
multiple paternity, at least five fathers in family 1 and seven in
family 2. Southern blotting analysis using many restriction
enzymes demonstrated that S2M is a single-copy gene (five rep-
resentative digestions are shown in Fig. 1C); unfortunately, no
RFLPs were obtained to test the linkage status, and thus we se-
quenced the gene from animals with different MHC haplotypes,

(33), the IgSF domains of class IIB and class Ia shared the most
recent common ancestor. 32M expression pattern seems to co-
incide with MHC class I expression (Fig. 1B).

hoping to find polymorphisms. A two-nucleotide deletion was
detected in one of the paternal S2M alleles “p3” from groups “i”
(p3/m2) and “j,” (p3/m1) from family 2 with 39 members (Fig.
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FIGURE 1. A, Phylogenetic tree analysis of 32M. GenBank accession numbers used for this analysis are as follows. B2M: M17987 (human), X69084
(bovine), NM_009735 (mouse), Y00441 (rat), PO1885 (rabbit), PO1886 (guinea pig), M84767 (chicken), P21612 (turkey), AAM98336 (opossum),
BQ389924 (X. tropicalis), AAF37230 (X. laevis), L05536 (carp), NP_571238 (zebrafish), L63534 (trout), CAA10761 (cod), AAG17535 (salmon),
CABG61324 (Siberian sturgeon), AAN40738 (Japanese flounder), CAD44965 (African barb), 042197 (catfish), CA330181 (Fugu), AAN62852 (skate), and
CX197532 (dogfish). Class Ila: AAF66123 (nurse shark), AAL58430 (X. laevis), AAA59760 (human), AAV40625 (rat), NP_001001762 (chicken),
XP_001376764 (opossum). Class IIb: AAF82681 (nurse shark), AAB86437 (human), NP_001008884 (rat), BAA02845 (X. laevis), NP_001038144
(chicken), AAB68822 (opossum). Class Ia: BAD92354 (human), AAC53397 (rat), AAL59857 (nurse shark), NP_001079241 (X. laevis), AAG28835
(chicken), NP_001165308 (opossum). IgM: AAD21191 (opossum), P01871 (human), AAH92586 (rat). DMB: ABB85336 (X. laevis), NP_002109 (human),
NP_942035 (rat). DMA: NP_006111 (human), NP_942036 (rat), ACY01474 (chicken), XP_001377359 (opossum). The NJ tree was rooted with the fourth
constant IgSF domains of IgM, and bootstrapping analysis was done after 1000 runs. Values are noted at the branch nodes, and the asterisk (*) indicates no
significant value. The scale indicates divergence time (genetic distance). Teleost fish that underwent a third round of genome expansion (“3R”) are omitted
from this analysis because the sequences were more divergent and skewing the tree topology. DM genes have not been identified in any fish. B, Expression
profiles of B2M, class Ia, and ring3 via Northern blotting. Twenty micrograms of total RNA isolated from various nurse shark tissues was loaded onto the
gel, blotted, and hybridized with full-length shark 82M and ring3 probes and washed under high-stringency conditions (23). Nucleoside-diphosphate kinase
(NDPK) (35) was used as a loading control. C, There is only one B2M locus in the nurse shark genome. Genomic Southern blot analysis was performed
under low-stringency conditions (23) using the IgSF exon with three wild sharks (a, b, c) whose DNA was digested with five different restriction enzymes
(from left to right: Bam HI, Eco Rl, Hin dIll, PST 1, and Sac I).
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A —lSE2nInt2For NSB2Mintmom —¥
ml/m2 TTACACATCACCACCACCTCCCTATCAGTTTATCATGGGACAGT TATGATAGGAGAGAGCAATTTAAACAGACCTTGGATTTCAAACCAG
p3(i&j) TTACACATCACCACCACCTCCCTATCAGTTTATCATGGGACAGT TATGATAGGAGAGAGCAATTTAAACAGACCTTGGATTTCAAA. .AG

NSB2Mint2ij —»
ml/m2 CCATTCCCATTTTCCTGCATGTGTATTTAAGCCTGGGTGATAGGTGGGTAGCTGTAAGTTCTGGTCACAGACTAATGCTGTTTTTCTCTG
p3(i&j) CCATTCCCATTTTCCTGCATGTGTATTTAAGCCTGGGTGATAGGTGGGTAGCTGTAAGTTCTGGTCACAGACTAATGCTGTTTTTCTCTG

intron 2 <--|--> exon3
ml/m2 TTTTCGACCACAGATGCCTAC TGTCACTACAGAGGTAAGCCGTGACT CTCAGATGAACAGCAAAGATTACTGAGAGGACATTTCC
p3(i&j) TTTTCGACCACAGATGCCTAC ATGTCACTACAGAGGTAAGCCGTGACTCTCAGATGAARCAGCAAAGATTACTGAGAGGACATTTCC

ml/m2 GGCACAGAATGCAAATCGAACCCCTGTGTTTTTCTCTTTTTTTTGCAGTCACTGAATAACATAGCGAGGCTACTGAATCAATC
P3(i&j) GGCACAGAATGCAAATOGAACCCCI‘GTGTTTTTCTCTTTTTTTTGCAGTCACTGAATAACATAGCGAGGSTACTGAATCAATC
NSB. X3Rev
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FIGURE 2. The shark 32M is linked to the MHC. A, The two-nucleotide (CC) deletion polymorphism was found in intron 2 of 82m sequences in “p3”

paternal allele from siblings belonging to the groups “i” and *j.” Thus, allele-specific primers were designed based on this polymorphism. All primers are
underlined. The ends of coding regions are boxed. The (AG) at the end of intron 2 is underlined. B, PCR was carried out with a combination of allele-
specific and universal NSB2mEx3Rev reverse primers. Presence or absence of the amplicon using the “p3”-specific primers was used for typing (fop gel)
the family 2 with 39 offsprings. Maternal primers were used for the positive control (bottom gel). Forward primers are indicated on the left side of the gels,
and mother and sibling numbers are indicated above the gel along with MHC groups (36). C, Allele-specific PCR in the families 1 and 3. Only two animals
belonging to the MHC groups “h” possessed the “CC-deletion” allele, and two animals belonging to the “g” groups had this allele in family 3. We partially
typed family 3 based on the MHC groups by sequencing of the PBR of the class Ia alleles (maternal and paternal alleles are designated as numbers above
the gel) and by Southern blotting with a probe containing MHC class Ia leader and ol domains (small dot, band for maternal haplotype 1; large dot,
maternal haplotype 2). The “p2” allele of the “g” group is the only haplotype possessing the “CC-deletion” allele of B2M. D, Plot of LOD scores at
corresponding recombination fractions. The sums of the two families were used (Supplemental Table I).
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2A), and allele-specific PCR was performed in all members of the
nurse shark families in our collection (Fig. 2B). Family 1 had two
positive members that shared the same paternal MHC haplotype
(group “h”) (Fig. 2C). In family 2, all seven members of groups
“P” and “j” bearing the paternal MHC haplotype “p3” were pos-
itive as well as one other offspring belonging to the “e"’ group.
Family 3 with 29 offspring, which had not been MHC-typed
previously, was tested, and two members were positive for the
B2M polymorphism (Fig. 2C). Typing of this family by Southern
blotting as well as sequencing of the class Ia alleles in all offspring
showed that these two animals share the same paternal MHC
haplotype (Fig. 2C). Thus, a total of 11 of 12 siblings positive for
the B2M polymorphism in three families showed precise cose-
gregation with certain MHC haplotypes. In addition, 73 of 74
siblings with many other haplotypes lacked this polymorphism,
further strongly indicating that B2M does not segregate in-
dependently of the MHC. The one discordant animal in family 2
(sib 36, group “e’”) was also typed by microsatellite analysis and
shown to have been sired by the same father as offspring in the “1”
and “j” groups; thus this father had the MHC haplotypes “p3” and
“p6” (EJ. Heist et al., submitted for publication), consistent with
a paternal intra-MHC recombination event in sib 36. To quantify
formally the evidence for linkage of B2M to the MHC, we con-
sidered all offspring of the two deletion-carrying sires (found
within families 2 and 3) as assigned by Southern blotting with
class I probes (Fig. 2C) (36), sequences of MHC class I alleles
(Fig. 2C, Table I), and microsatellite analysis (E.J. Heist et al.,
submitted for publication) (Table I). Family 1 sires have not been
microsatellite-characterized, and therefore family 1 was not in-
cluded in the analysis. We performed a parametric linkage anal-
ysis (26) to evaluate the evidence for 2M and MHC synteny and
obtained a maximum LOD score of 3.14 [1378:1 odds of linkage
versus no linkage, equivalentto p =7 X 107% (27)] at a 6 of 0.056
(Supplemental Table I, Fig. 2D). '

B2M is adjacent to MHC-linked Ring3

Ring3 (or BRD?2) is a putative nuclear transcriptional regulator and
a nuclear kinase required for early development (38-41) with no

Table I.  List of sibs used for statistical analysis
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defined immune functions but nevertheless linked to the MHC of
all other gnathostomes and to the “proto-MHC” in lower deuter-
ostomes (42). A portion of ring3 was initially cloned via de-
generate PCR from nurse shark spleen cDNA, and this short
fragment was used as a probe to isolate a full-length cDNA from
a phage library. BLAST searches and phylogenetic tree analysis
confirmed the orthology of nurse shark ring3 to that of other
species (GenBank accession number HM625830) (Fig. 34). The
nurse shark ring3 is ubiquitously expressed (Fig. 1B). To ensure
that the shark ring3 is linked to the MHC as in all other species
examined (8), we performed ssCP analysis using siblings of
family 2 (Fig. 3B). Two distinguishing ring3 bands corresponding
with the maternal MHC allele m2 were found in those siblings
possessing this allele (groups “i” and “d” in Fig. 3) with 100%
fidelity, demonstrating that ring3 is closely linked to the MHC and
further confirming the B2M linkage. We identified other BAC
clones that were either B2M- or ring3-single-positive; unfor-
tunately, none of them was positive for other MHC genes, again
consistent with larger intergenic distances in sharks compared
with those of other species (36). Chen et al. (29) drew a premature
conclusion of non-MHC linkage; however, determining the link-
age status of B2M (or almost any gene) based on a single BAC
sequence is not sufficient for the shark genome, where there are
large intragenic and intergenic distances. Several nurse shark BAC
clones (22) were isolated with the ring3 and B2M probes, and
some of them were positive for both genes. As previously reported
(29), the B2M gene contains at least three exons, having a similar
genomic organization and size to other species. The shark ring3
gene spans ~20 kb and contains 12 exons, which is approximately
twice as large as mammalian ring3 genes (e.g., 12.8 kb and 9.7 kb
for human and mouse, respectively), consistent with a larger gene
size found in most shark MHC genes (36). Sequencing through an
entire BAC clone (GC_614H19) confirmed that the S2M and
ring3 genes were adjacent to each other ~45 kb apart (Fig. 4).

Genetic descent of B2M

The chromosomal location of the B2M gene varies greatly among
vertebrate species (Fig. 5). Genomic synteny is well conserved in

MHC* Haplotypes m-Satellite Phase
Sib No. Old Group New Group MHC Class Ia B2m Sire 1 2
Family 2
15 i i m2/p3 del 4 NR R
30 i i m2/p3 del 4 NR R
21 j j m1/p3 del 4 NR R
25 j j ml/p3 del 4 NR R
31 j j m1/p3 del 4 NR R
33 j] ] ml/p3 del 4 NR R
39 j ] ml/p3 del 4 NR R
20 e’ e’ ml/p6 ins 4 NR R
32 e’ e’ ml/p6 ins 4 NR R
36 e’ e’ ml/p6 del 4 R NR
28 g g m2/p6” ins 4 NR R
13 c g m2/p6° ins 4 NR R
Family 3
8 g m2/p2 del 2 NR R
23 g m2/p2 del 2 NR R
6 d ml/p4 ins 2 NR R
7 d ml/p4 ins 2 NR R
9 d ml/p4 ins 2 NR R
19 d ml/p4 ins 2 NR R

“0ld group is taken from Ref. 28, and new groups are assigned in this study.
PMHC class Ia sequences revealed that sib 13 is further categorized with group g’ in this study.
del, CC-deletion haplotype; NR, nonrecombinant; R, recombinant.
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FIGURE 3. A, Phylogenetic tree analysis of Ring3 and homologues.
GenBank accession numbers used in this analysis are as follows. Ring3
(BRD2): CAM25760 (human), AAY34703 (bovine), CAI11405 (dog),
CAA15819 (mouse), CAE83937 (rat), XP_001369391 (opossum),
CAN13285 (pig), CAA65449 (chicken), BAC82511 (quail), AAI68574 (X.
tropicalis), AAI30180 (X. laevis), CAK04960 (zebrafish-1), CAD54663
(zebrafish-2), ABQ59684 (salmon), BAD93258 (medaka). Additional ac-
cession numbers for Ring3 homologues used for this analysis are the fol-
lowing: BRD3: AAI29055 (X. laevis), NP_031397 (human), NP_075825
(mouse), XP_001365890 (opossum), XP_425330 (Chicken). BRDT:
NP_473395 (mouse), NP_997072 (human), XP_537079 (dog). BRD4:
NP_490597 (human), NP_065254 (mouse), NP_001104751 (zebrafish),
AAH76786 (X. laevis). BRD1: NP_001157300 (horse), XP_698063
(zebrafish), NP_001085846 (X. laevis), CAG30294 (human). Gene names
are noted after species name. BRD1 does not map to an MHC paralogous
region, whereas BRDT, BRD3, and BRD4 are found in the MHC paralogous
regions. The tree was constructed using the NJ method, rooted with BRD1,
and bootstrapping analysis was done with 1000 runs. Values are noted at the
branch nodes, and an asterisk (*) indicates no significant value. The scale
indicates the divergence time. B, The shark ring3 maps to the MHC. Primers
from exons 4 and 5 were used for PCR amplification and ssCP analysis. The
~1440-bp amplicon from the siblings along with mother shark genomic
DNA were loaded on an 0.5X MDE gel. Under these conditions, “m2” was
identified as two distinctive bands indicated as arrows. Mother and sibling
numbers are indicated above the gel along with MHC groups and haplotype
combinations from previous work (36).

the region of chicken B2M relative to humans except for deletions
of certain genes (43), and the same seems to be true for the Anolis
lizard in which the synteny near the B2M gene (GenBank acces-
sion number FG703784, etc.) is conserved (genomic scaffold-670,

LINKAGE ANALYSIS OF B2-MICROGLOBULIN

634,364 bp) (Supplemental Table II). Mouse 82M is linked to the
so-called minor histocompatibility complex on chromosome 2 (16)
and is located within a small region syntenic to human chromo-
some 15 (43). Notably, a smaller syntenic block is embedded with
genes mapping to human chromosome 14q11.2 in a marsupial, the
opossum. Although these regions can be accounted for by block
translocations or syntenic breakpoints, synteny is not conserved in
species from lower vertebrate classes as B2M is surrounded by
genes mapping to various human chromosomes. The amphibian
Xenopus B2M is linked to the genes mapping to human chromo-
somes 16 and 17 (genomic scaffold-673). In zebrafish, B2M
(chromosome 4) is surrounded by genes mapping to human chro-
mosome 12p12, and various locations in the human genome have
syntenic regions on the Fugu scaffold-171 (638,182 bp). As men-
tioned above, the teleost fish experienced a recent genome-wide
duplication (“3R”), and there is another 82M locus in the zebrafish
genome that is ~60% similar to its paralogue at the amino acid
level. Notably, the second B2M locus is found at the telomeric
region of chromosome 8 and is distantly linked to a class IIA gene
and two class Ib genes of the L-lineage (44) (Supplemental Table
II). Although the B2M linkage is not very close (i.e., 6.5 Mbp apart)
in this chromosomal region (considering the rapid reorganization
of syntenic regions in the teleost fish), this linkage group of class II/
class /B2M is likely a vestige of the primordial synteny. Com-
bining all of the evidence, our study in nurse shark demonstrates
that S2M was originally encoded in the MHC, and from extensive
database analysis in many taxa, this gene underwent multiple
translocations in gnathostomes, either stepwise or independently
from the MHC (Fig. 5).

Discussion

Compared with other vertebrate models (e.g., chicken or teleost
fish), the shark genome seems to be stable, first demonstrated with
the linkage of MHC class I and I genes (21), which was lost in
bony fish (28), and later with linkage conservation of genes found
in the mammalian MHC class III region (37). These MHC linkage
data are consistent with global genomic studies in the elephant
shark suggesting that cartilaginous fish have greater preservation
of synteny than is found in any teleost model (45, 46). The B2M
linkage to the shark MHC demonstrated here is likely the pri-
mordial condition, thus further supporting the conservation of the
cartilaginous fish genome. Furthermore, the close proximity of
class I, class II, and B2M is consistent with the theory that they
were derived from a common ancestor by tandem (cis) duplica-
tion. The close linkage of B2M and class I may have regulated
their original coordinated expression and upregulation. Class I and
B2M expression is nearly identical in the nurse shark (Fig. 1B), but
in other vertebrates $2M is made in excess (47). Furthermore, the
number of B2M loci is expanded in rainbow trout (48) and poly-
ploid Xenopus species (18).

Unlike class II genes, class I genes are extraordinarily plastic.
Besides the MHC-linked classical class Ia genes, there are also
many nonclassical class Ib genes with varied functions, some
encoded in the MHC and others not. The majority of class Ib
proteins associates with B2M as well, and it has been speculated
that there was an advantage of translocation of B2M out of the
MHC so that it would not be subject to duplications and deletions
(19), like class I genes in many vertebrates. Consistent with the
idea of maintaining genomic stability, but in contrast to class I and
class II genes, both B2M and ring3 genes are in a very stable part
of the shark MHC, with very few polymorphisms and transposable
elements (Fig. 4); there was no polymorphism detected by using
restriction enzymes/Southern blotting with either the ring3 or
B2M probe. Although there are a few bony fish species in which
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FIGURE 4. Map of BAC clone GC_614H19. Gene orientation is indicated as arrows and exons are shown in boxes. Only one exon for ZFP112-like gene
was identified based on the similarity to other species. The positions of repetitive elements are shown above the map classified into four different categories.
The total interspersed repeats are found in ~5.35% of the sequences, consisting of ~4.74% of LINEs and ~0.63% of simple repeats. Each exon is indicated
as a box, and transcriptional orientations are shown with an arrow in the 5’ to 3" direction. The sequence has been deposited in the DNA Data Bank of Japan

under accession number AB571627.

the number of B2M loci has been expanded (49), and there are two
loci in the tetraploid Xenopus laevis (18), generally these species
are exceptions. There seems to be only one 32M locus in the nurse
shark genome, because genomic Southern blotting with many
restriction enzymes yielded a single band with an exon-specific
probe (Fig. 10).

The primordial linkage of B2M to the MHC does not contribute
to the debate on which gene came first, class I or class II. Among
the various IgSF domains, the C1-type is a rare form, found pri-
marily in molecules associated with adaptive immunity (50).
Therefore, it is reasonable to propose that C1-type IgSF-encoding
genes like B2M were present in the “proto-MHC,” which then
acquired the PBR from another gene family. Furthermore, it has
been speculated that all molecules containing Cl-type IgSF do-
mains arose from a common ancestor, and thus an Ig/TCR pre-
cursor may have originated from the “proto-MHC” (20). Con-
sistent with previous studies dating back almost 30 y (3, 5, 33, 34),
our phylogenetic analysis demonstrated a common origin for the
class IIA/DMB/2M and the class Ia/DMA/class 1IB lineages, and
all of these genes share an ancestral C1 domain-encoding exon
that emerged after the split between Ag receptors and MHC genes
(Fig. 1B). Whereas class IIA, B2M, class 1IB, and class Ia share an
immediate common ancestor that arose by tandem duplication
from the ancestral molecule, each DM gene was apparently gen-
erated by tandem duplications of class IIA and class IIB, perhaps

early after the emergence of tetrapods, as no DM genes have been
found in the teleost or cartilaginous fish; the maximum likelihood
and Bayesian inference trees favor this scenario (S2). The NJ tree
(Fig. 1B), however, suggests that shark class IIA and IIB genes
cluster with class II genes from other species rather than at the
basal position of class II/DM, suggesting that sharks may indeed
possess DM.

An orthologous gene related to the ancestor of ring3 is present
in the urochordate (e.g., amphioxus) “proto-MHC” (42), and thus
the MHC-linkage of ring3 in sharks is not surprising. To determine
the linkage status in other cartilaginous fish species, we examined
the elephant shark genome. Current analyses of the elephant
shark genome (46) has yielded only short (<1 kbp) scaffolds
(AAVX01540028.1) in which we only identified the B2M C1 do-
main. Three scaffolds were found to contain some exons of the ele-
phant shark ring3 gene [AAVX01538535 (754 bp), AAVX01069837
(5232 bp), AAVX01012433 (4324 bp)]; however, the assembly is still
inits early stages. Further progress in this genome project will reveal
the synteny around 82M and all of the other MHC genes and likely
provide insight into the natural history of the adaptive immune system
by revealing other genes that have been translocated out of the
MHC during vertebrate evolution. For example, there is good evi-
dence from various vertebrates that both IgSF- and C-type lectin-
containing NK cell receptor genes (in humans, they are encoded in
leukocyte receptor complex and NK complex, respectively) and the

Shark (ancestral)
MHC

* . 5
anolis/chicken

bony fish ring3 p2M
mammals
3R
amphibian
Opossum &
Zeb':a:ish - Zebrafish F::hr 1 oy &
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B B - N
12ph2 | 12q14 o do 1p36.1-3 16p12  16p11/17q 14q11.2| | 14q11.2
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FIGURE 5. Inconsistent synteny of 82M among vertebrate species. Genomic synteny of B2M is not consistent in bony fish and Xenopus, suggesting that
multiple translocations of B2M occurred over evolutionary time. An asterisk (*) indicates the location of the B2M gene, and brackets indicate the genomic

regions corresponding with the particular human chromosome. The detailed gene assignments can be obtained in Supplemental Table II. IgH and TCRa

loci are marked in opossum chromosome 1.
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MHC were genetically linked at an early point in vertebrate evolution
(20, 51, 52), suggesting that NK receptors co-evolved with MHC
proteins. We have found a fragment of a zinc finger protein (ZFP),
ZFP112-like, in BAC clone GC_614H19, adjacent to 82M (Fig.
5). ZFP112 is found on human chromosome 19q13.2 near FcRn
(19q13.3), a nonclassical class Ib molecule, and the leukocyte re-
ceptor complex (19q13.4). This region had been suggested to be an
MHC paralogous region by pericentric inversion of 19p13.1. Whether
the nurse shark ZNF112 is a pseudogene or divergent from human/
rodent ZFP112 genes, the linkage of ZFP112 suggests that the linkage
of NK receptor(s) and MHC could be preserved in the shark genome.
Furthermore, we found 82M on the same chromosome as TCRa/8 in
horse (chromosome 1), cow (chromosome 10), and both TCRa/6 and
Ig in the opossum genome (Fig. 5, Supplemental Table II). In ad-
dition, Ag receptor loci and other genes involved in immune defense
(e.g., B7 ligands and Fc-like receptors) are linked to genes related to
the Xenopus MHC (Y. Ohta and M.E. Flajnik, manuscripts in prep-
aration), and cathepsins S and L are found on MHC paralogous
regions in mammals (20). Such evidence is consistent with our hy-
pothesis that Ag receptors (TCR, Ig), NK receptors, and other genes
involved in Ag processing and generally in immune function might
have been linked in a “pre-adaptive immune complex” in the an-
cestral configuration.
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NFKBIL1 Confers Resistance to Experimental
Autoimmune Arthritis Through the Regulation
of Dendritic Cell Functions

T. Chiba*', Y. Matsuzakat', T. Waritat, T. Sugoh*, K. Miyashita*, A. Tajimat, M. Nakamuraf,
H. Inokot, T. Sato* & M. Kimurat

Abstract

We and others have reported that human NF-xB inhibitor-like-1 (NFKBIL1)
was a putative susceptible gene for autoimmune diseases such as rheumatoid
arthritis (RA). However, its precise role in the pathogenesis of RA is still lar-
gely unknown. In this study, we generated transgenic mice expressing human
NFKBIL1 (NFKBIL1-Tg) and examined whether NFKBIL1 plays some role(s)
in the development of autoimmune arthritis. In both a collagen-induced
arthritis model and a collagen antibody-induced arthritis model, NFKBIL1-Tg
mice showed resistance to arthritis compared to control mice, indicating that
the gene product of NFKBIL1 was involved in the control of thusly induced
archritis. Total spleen cells of NFKBIL1-Tg mouse showed decreased prolifera-
tion to mitogenic stimuli, consistent with its resistance to arthritis. Unexpect-
edly, purified T cells of NFKBIL1-Tg mouse showed increased proliferation
and cytokine production. This apparent discrepancy was accounted for by the
impaired functions of antigen-presenting cells of NFKBIL1-Tg mouse; both
T/B cell-depleted spleen cells and bone marrow-derived dendritic cells of the
Tg mouse induced less prominent proliferation and IL-2 production of T cells.
Furthermore, dendritic cells (DCs) derived from NFKBIL1-Tg mouse showed
lower expression of co-stimulatory molecules and decreased production of
inflammatory cytokines when they were activated by lipopolysaccharide. Taken
together, these results indicated that NFKBIL1 affected the pathogenesis of
RA at least in part through the regulation of DC functions.
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Introduction

Rheumatoid arthritis (RA) is a chronic inflammatory and
joint-destroying autoimmune disease and is one of the
most serious issues in the field of medicine [1]. Antigen-
presenting cells (APC) such as dendritic cells (DCs) play
pivotal roles for pathological setting of RA. Indeed,
adoptive transfer of type II collagen-pulsed DCs is suffi-
cient for the induction of autoimmune arthritis [2]. DCs
provide cognate interaction, which is crucial for success-
ful activation of T cells. Furthermore, DCs are main cel-
lular source of inflammatory cytokines such as IL-6 and
TNFo. As dysregulation of transcription factor nuclear
factor kB (NF-kB) activity induces excessive production
of inflammatory cytokines, leading to systemic and local
autoimmune disorders such as systemic lupus erythemat-
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osus (SLE) and RA, the control of NF-kB seems essential
for preventing such diseases [3—5].

Genetic polymorphisms are known to affect RA
pathogenesis [6]. We and others revealed that single
nucleotide polymorphism (SNP) in the promoter region
of NFKBIL1 was associated with the pathogenesis of
RA [7, 8]. NKBILL1 gene is located within the MHC
class III region and encodes NFKBIL1 protein also
known as IxkBL. NFKBIL1 has been well conserved
throughout evolution (more than 90% identical amino
acids between human and mouse) and contains the
ankyrin repeat domain, which exhibits high homology
with the IkB family protein, suggesting that NFKBIL1
can modulate NF-xB activity, but its precise role and
contribution to RA development are still to be unrav-
elled [9, 10].
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There are several experimental animal models of
human autoimmune disease. As for RA, collagen-induced
arthritis (CIA) and collagen antibody-induced arthritis
(CAIA) are widely used for the evaluation of responsible
genes. In this study, we generated NFKBIL1-Tg mice
and found that they showed significant resistance to both
CIA and CAIA. In addition, we demonstrated the
impaired function of DCs in the Tg mice. These findings
suggested that NFKBIL1 was involved in the control of
RA pathogenesis via the regulation of innate immune
cell functions.

Materials and methods

Generation of NFKBIL1-Tg mice. Human NFKBIL1
cDNA (BC143671) was cloned into pDRIVE-CAG vec-
tor (InvivoGen, San Diego, CA, USA), which contains
CAG promoter combined with human cytomegalovirus
immediate-early enhancer and a modified chicken f-actin
promoter with the first intron. This construct was used
as a transgene. NFKBIL1-Tg mice were generated by
pronucleus microinjection into BDF1 X CS7BL/6 fertil-
ized eggs. Progeny mice were crossed with DBA/1j mice
(Clea Japan, Inc., Tokyo, Japan) and germline transmis-
sion of NFKBIL1 transgene was confirmed by genomic
PCR with specific primers (sense, 5-ATGAGTAACCCC-
TCCCCCCAG-3'; antisense, 5-CACATCACCAAATCG-
CCAGA-3’). Then, the mice expressing NFKBIL1 were
backcrossed with DBA/1j mice over eight generations.
All animals were bred in specific pathogen-free condition
and used at 4-12 weeks of age. All mouse experiments
were approved by the Animal Experimentation Commit-
tee, Isehara campus (Tokai University, Kanagawa, Japan).

Antibodies  and  reagents. Fluorescein isothiocyanate
(FITC)-conjugated anti-CD19 (1D3), FITC-conjugated
anti-CD44 (IM7), PerCP-Cy5.5-conjugated anti-CD4
antibody (RM4-5) and APC-conjugated anti-CD1lc
antibody (HL3) were purchased from BD Biosciences
(Franklin Lakes, NJ, USA). FITC-conjugated anti-CD80
(16-10A1) and FITC-conjugated Thyl.2 (53-2.1), PE-
labelled anti-CD25 (PC61.5), PE-labelled anti-CD86
(PO.3), APC-labelled anti-CD8 (53-6.7), APC-labelled
anti-IL-2 (JES6-5H4) and purified anti-CD28 antibody
(37.51) were purchased from eBioscience (San Diego, CA,
USA). Anti-mouse CD3¢ antibody (145-2C11) was pre-
pared in our laboratory. Concanavalin A (ConA) (C5275),
phorbol 12-myristate 13-acetate (PMA) (P1585), ionomy-
cin (I0634) and brefeldin A (BFA) (B6542) were pur-
chased from Sigma-Aldrich (St Louis, MO, USA).
Lipopolysaccharide (LPS) for DC stimulation was pur-
chased from Santa Cruz Biotechnology (sc-3535; Santa
Cruz, CA, USA).

Collagen-induced arthritis and collagen antibody-induced
arthritis, NFKBIL1-Tg mice and littermate control mice
with DBA/1j background were immunized with 200 pg

© 2011 The Authors
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of chicken type II collagen (CII; Chondrex, Seattle, WA,
USA) emulsified with complete Freund’s adjuvant (CFA;
Chondrex) intradermally at the base of the tail on day 0.
Three weeks later, mice were immunized again with CII
without CFA. Mice were examined for up to 100 days.
Clinical signs of arthritis were assessed daily and graded:
0, no swelling; 1, paw with single joint; 2, paw with
two joints; 3, paw with multiple joints; 4, severe swell-
ing and joint rigidity. Each limb was graded, giving a
maximum possible score of 12 per mouse. For CAIA
induction, a mixture of anti-CII monoclonal antibodies
(2 mg/500 ul; Chondrex) was administered intraperito-
neally on day 0. Three days later, LPS (50 ug/100 pul;
Chondrex) was injected intraperitoneally. Clinical signs
were assessed daily and graded similarly to CIA, with
brief modification.

Joint histology. Joints were fixed in 10% formaldehyde
and decalcified with 5% formic acid. Fixed joints were
embedded in paraffin, sectioned into 4 um thickness,
stained with haematoxylin and eosin, and examined for
collagen disruption, pannus formation, synovial space
infiltrates and cartilage/bone erosion.

Cell isolation and culture. All cells used in this study
were  maintained in RPMI1640 medium supplemented
with 10%FCS, 2 mM L-glutamine, 50 mM 2-ME,
100 U/ml penicillin, 100 pug/ml streptomycin and 1 mM
sodium pyruvate. Spleen CD4" T cells were isolated by
using mouse CD4 dynabeads and Detacha CD4 according
to the manufacturer’s instructions (Invitrogen/Dynal;
Carlsbad, CA, USA). For naive and memory-phenotype
T cell preparation, enriched CD4" cells were incubated
with FITC-labelled anti-CD44 antibody plus PE-labelled
anti-CD25 and fractionated by FACSAria (BD Bioscienc-
es) according to the CD44/CD25 expressions. Spleen
CD8" T cells were isolated by AutoMACS system (Milte-
nyi Biotec; Bergisch Gladbach, Germany) after staining
with anti-CD8 and anti-rat IgG MACS beads. CD4"
cell-depleted spleen cells were incubated with FITC-
labelled anti-Thyl.2 and CD19, and then, the Thyl.27,
CD19"™ fraction was purified by FACSAria and used as
non-T and non-B cells. Bone marrow cells were cultured
in 10%FCS/RPMI with 5 ng/ml granulocyte-macro-
phage colony-stimulating factor (GM-CSF, AF-315-03;
PeproTech, Rocky Hill, NJ, USA). Half of the culture
medium was replaced by fresh 5 ng/ml GM-CSF in
10%FCS/RPMI after 3 days. Cells were used at 10 or
11 days of culture as bone marrow-derived dendritic cells
(BMDC). In some cases, CD4"* T cells were cultured with
APC at a ratio of 10:1 in the presence of 10 pug/ml anti-
CD3¢ antibody. Splenic CD11c" cells were isolated by
using mouse Pan DC microbeads according to manufac-
turer’s procedure (Miltenyi Biotec).

(*H)-thymidine incorporation. Whole splenocytes, CD4*
T cells, CD8" T cells, CD4" naive T cells and memory-
phenotype T cells were cultured in 96-well plates for 48—
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72 h, with 1 uCi H]-thymidine added to each well for
the last 18 h. Cells were harvested and [*H]-thymidine
uptake was measured by scintillation counter.

Measurement of cytokine production. The amounts of
mouse IL-1f, IL-6, IL-12p70 and TNFu in culture super-
natants were measured by flow cytometric beads array
(CBA; BD Biosciences) according to manufacturer’s
instructions. The data were analysed by FACSCalibur
(BD Biosciences) and FCAP array software (BD Bio-
sciences).

Intracellular cytokine staining and flow cytometric analy-
sis. Purified CD4" T cells were stimulated with
10 pg/ml anti-CD3 and 10 pg/ml anti-CD28 for 48 h.
Cells were collected and stimulated again with 50 ng/ml
PMA and 750 nM ionomycin for 4 h in the presence of
10 ug/ml BFA. Cells were fixed and permeabilized by
Cytofix/Cytoperm  Fixation/Permeabilization  solution
(BD Biosciences; No. 554722) according to the manufac-
turer’s instructions and then stained with APC-anti-IL-2.
BMDC were stimulated with or without 1 pug/ml LPS
for 24 h and stained with FITC-anti-CD80, PE-anti-
CD86 and APC-anti-CD1lc. Cells were analysed by
FACSCalibur and Cell Quest software (BD Biosciences).

Quantitative real-time PCR. RNAs form total spleen
cells, CD4" T cells and CD11c* DCs of hNFKBIL1-Tg
and littermate control mice were prepared using TRIzol
reagent (Invitrogen). Complementary DNA was synthe-
sized by SuperscriptlIl reverse transcriptase (Invitrogen)
with random hexamer primer. Quantitative real-time
PCR was performed using Fast SYBR Green Master Mix
on an ABI Fast 7500 machine (Applied Biosystems,
Carlsbad, CA, USA). Primers for hNFKBIL1 forward, 5’-
TGGAGACAGAAGCTCCAGGGTGA-3" and reverse,
5’- CGGGATCCCTCTGCTTCTCGC-3" and mouse f-
actin forward, 5’- GACGGCCAGGTCATCACTATTG-3
and reverse, 5'- AGGAAGGCTGGAAAAGAGCC-3’ were
used to evaluate the relative gene expression. The data
were analysed by AAC method.

Statistical analyses. Difference between wild-type (WT)
and Tg mice in CIA and CAIA experiments were analy-
sed by Mann-Whitney U-test. Cell proliferation and
cytokine production were compared with Student’s #-test.
All data are represented as mean + SEM or SD where
indicated. Values of P < 0.05 were considered statisti-
cally significant.

Results

NFKBIL1 suppressed the development of collagen-induced
arthritis

To evaluate the role of NFKBIL1, we generated trans-
genic mouse lines expressing human NFKBIL gene under
the control of CMV promoter. We detected transgene-
derived transcripts in total spleen cells, CD4" T cells and
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Figure 1 Reduced susceptibility of collagen-induced arthritis in NFK-
BIL1-Tg mice. (A) Expression of NFKBIL1 transgene in total spleen
cells, CD4" T cells and CD11c" dendritic cells of NFKBIL1-Tg (7 = 3)
and WT litctermates (» = 3) was analysed by quantitative RT-PCR.
N.D., not detected. (B) NFKBIL1-Tg mice (closed circles) (» = 26) and
WT lictermates (open circles) (z = 83) with DBA/1j background were
administered chicken type II collagen emulsified with CFA intrader-
mally at the base of the tail on day 0. Three weeks later, mice were
immunized again with CII/IFA. Severity of arthritis is shown. Similar
results were obtained in two independent experiments, and one of them
is demonstrated. (C—F) Joints of front limb of NFKBIL1-Tg (right) and
WT littermate (left) mice at day 60 after primary immunization. Sec-
tions were stained with H&E. Scale bars represent 200 pm in (C, D)
and 50 um in (E, F). *P < 0.05.

CD11c" DCs of transgenic (Tg) mouse, but not of WT
mouse (Fig. 1A). Endogenous NFKBIL1 was expressed in
all tissues examined (data not shown). We noticed that
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