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Abstract

In mammals, definitive erythropoiesis first occurs in fetal liver (FL), although little is
known about how the process is regulated. FL consists of hepatoblasts, sinusoid
endothelial cells and hematopoictic cells. To determine niche cells for fetal liver
erythropoiesis, we isolated each FL component by flow cytometry. mRNA analysis
suggested that DIk-1-expressing hepatoblasts primarily expressed EPO and SCF, genes
encoding erythropoietic cytokines. EPO protein was detected predominantly in
hepatoblasts, as assessed by ELISA and immunohistochemistry, and was not detected in
sinusoid endothelial cells and hematopoietic cells. To characterize hepatoblast function
in FL, we analyzed Map2k4'/ " mouse embryos, which lack hepatoblasts, and observed
down-regulation of EPO and SCF expression in FL relative to wild-type mice. Our
observations demonstrate that hepatoblasts comprise a niche for erythropoiesis through

cytokine secretion.
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Introduction

Hematopoiesis is the process by which pluripotent hematopoietic stem cells (HSCs)
are generated, differentiate into specific progenitors, and ultimately mature into
numerous blood cell types, including erythrocytes, megakaryocytes, lymphocytes,
neutrophils, and macrophages [1]. In the mouse embryo, HSCs and hematopoietic
progenitors (HPCs) are generated in the aortic region, known as the para-aortic
Splanchnopleura (p-Sp)/Aorta-Gonad-Mesonephros (AGM) region, the yolk sac (YS),
and the placenta [2-9].In mid-gestation, hematopoiesis, particularly erythropoiesis,
occurs in fetal liver (FL) [2,9,10]. Erythropoiesis has been classically described as
occurring in two waves: first primitive and then definitive erythropoiesis [4]. Primitive
erythropoiesis supports a transient wave of embryonic erythropoiesis in the yolk sac,
while definitive erythropoiesis contributes to adult-type erythropoiesis. In mammals,
definitive erythropoiesis occurs first in FL. and then shifts to adult bone marrow (BM)
shortly before birth [11]. There are greater numbers of erythroid progenitors, such as
burst-forming unit-erythroids (BFU-E) and colony-forming unit-erythroids (CFU-E), in
FL than in BM [12]. In addition, in mice, the number of mature erythroid cells in
circulation dramatically increases from 12.5 to 16.5 day post-coitum (dpc), suggesting
that massive expansion of both erythroid progenitors and terminally differentiated
erythroid cells occurs in FL [13]. Erythropoietin (EPO) is a cytokine that regulates
erythroid cell differentiation, maturation, proliferation and survival, and is primarily

produced by adult kidney cells, where production is up-regulated by hypoxia [14].



Terminal proliferation and differentiation of CFU-E is stimulated by EPO, whereas
BFU-E, which are more immature than CFU-E, respond to stem cell factor (SCF),
insulin-like growth factor (IGF)-1, corticosteroids, interleukin (IL)-3 and IL-6, in
addition to EPO [15]. Although FL is the most active organ for erythropoiesis, little is

known about how erythropoiesis is regulated in that tissue.

Here, in order to identify niche cells for erythropoiesis, we used flow cytometry
based on surface molecule expression to separate cells in early FL into hepatoblasts
(HBs), sinusoid endothelial cells (SECs) and hematopoietic cells (HCs), and then

evaluated cytokine expression in each fraction.



Materials and methods

Animals. ICR and CS57BL/6J mice were purchased from Nihon SLC (Hamamatsu,
Japan) and Kyudo (Tosu, Japan), respectively. Map2k4™" mice were provided by
RIKEN BioResource Center (Tsukuba, Japan). Noon of the day of the plug was defined
as 0.5 day post-coitum (dpc). Embryos at 12.5 and 14.5 dpc were dissected in PBS
under a stereomicroscope. Animals were handled according to Guidelines for

Laboratory Animals of Kyushu University.

Flow cytometry. For hepatoblasts and sinusoid endothelial cells, fetal livers at 12.5 and
14.5 dpc were digested in 1mg/mL collagenase (Washington Biochem Co., Freehold,
New Jersey) in alpha-MEM containing 20% FBS, filtered through 40-um nylon mesh,
and washed once with PBS. Cells were stained with a FITC-conjugated anti-mouse
Dlk-1 Ab (MBL, Nagoya, Japan), a PE-conjugated anti-mouse Lyve-1 Ab (MBL), an
APC-conjugated anti-mouse CD31 Ab (Biolegend, San Diego, CA), a
PE-Cy7-conjugated anti-mouse CD45 Ab (eBioscience, San Diego, CA), and a

PE-Cy7-conjugated anti-mouse Ter119 Ab (eBioscience).

Real time-PCR. RNA was extracted from sorted and fetal liver samples using a
RiboPure™ kit (Life Technologies, Carlsbad, CA) and mRNA was reverse transcribed
using a High-Capacity RNA-to-cDNA kit (Life Technologies). cDNA synthesis quality
was evaluated by amplifying mouse p-actin by PCR. Thirty thermal cycles were

employed as follows: denaturation at 95°C for 10 seconds, annealing at 60°C for 20



