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Table 6 Cause-specific mortality fraction estimates when
the first four symptoms are removed

sequentially removed

cause of all 51 fever pale confused wheezing true
death symptoms

HIvV 0.146 0177 0.164 0.185 0.190 0227
Malaria 0.073 0.082 0084 0.091 0.101 0.089
Tuberculosis 0.063 0071 0.086 0.073 0.077 0.035
Infectious 0.058 0.047 0050 0.044 0.044 0.028
diseases

Circulatory 0.225 0215 0.159 0.163 0.160 0.163
diseases

Maternal 0.035 0.026 0.030 0.033 0.032 0.035
diseases

Cancer 0.042 0.033 0033 0.039 0.041 0.092
Respiratory 0.070 0.079 0070 0.073 0.053 0.046
diseases

Injuries 0.039 0034 0.028 0.023 0.031 0.050
Diabetes 0113 0108 0.150 0133 0139 0.053
Other 0.023 0.031 0030 0.027 0.027 0.032
diseases I*

Other 0170 0.164 0173 0.159 0.162 0.149
diseases I

*Note: "other disease 1" includes diseases in residual category that are related
to internal organs

Table 5 indicates that there was a substantial difference
in the prevalence of wheezing between community and
hospital deaths (8.3% and 21.3%, respectively). This
would mean that the wheezing observed in the commu-
nity may be highly biased due to the respondents’ diffi-
culty in understanding the symptom correctly. Other
symptoms which can be considered unbiased, such as
vomiting, difficulty in swallowing, and chest pain, are all
clinically useful in distinguishing the 12 causes of death,
and the difference in prevalence between community
and hospital deaths was much smaller.

0.4 Adjusting for Sample Differences

Suppose the key assumption of the King-Lu method is
violated because of known differences in the hospital
and community samples. For example, it may be that
through outreach efforts of hospital personnel, or
because of sampling choices of the investigators, chil-
dren are overrepresented in the hospital sample. Even if
the key assumption applies within each age group, dis-
eases will present differently on average in the two sam-
ples because of the different age compositions. When it
is not feasible to avoid this problem by desiging a
proper sampling strategy, we can still adjust ex post to
avoid bias, assuming the sample is large enough. The
procedure is to estimate the distribution of symptoms
for each cause of death within each age group sepa-
rately, instead of once overall, and then to weight the
results by the age distribution in the community.
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As Appendix A shows in more detail, this procedure
can also be applied to any other variables with known
distributions in the community, such as sex or educa-
tion. Since variables like these are routinely collected in
verbal autopsy interviews, this adjustment should be
easy and inexpensive, and can be powerful.

Reducing Inefficiencies

We now suppose that the analyst has chosen symptom
questions as best as possible to minimize bias, and study
what can be done to improve statistical efficiency. Effi-
ciency translates directly into our uncertainty estimates
about the CSMR, such as the standard error or confi-
dence interval, and improving efficiency translates
directly into research costs saved. We study efficiency
by simulating a large number of data sets from a fixed
population and measure how much estimates vary. We
then study how efficiency responds to changes in the
number of symptom questions (10, 20, 30, and 50), size
of the hospital sample (500, 1,000, 2,000, 3,000, and
5,000), size of the community sample (1,000, 2,000,
3,000, 5,000, and 10,000), and number of chosen causes
of death (5, 10, and 15). Causes of death in the hospital
are assumed to be constructed via a case-control meth-
ods, with uniform CSMR across causes. The CSMR in
the community for each cause of death has some preva-
lent causes and some rarer causes.

For each combination of symptoms, hospital and com-
munity samples, and number of causes of death, we ran-
domly draw 80 data sets. For each, we compute the
absolute error between the King-Lu estimate and the
truth per cause of death, and finally average over the 80
simulations. This mean absolute error appears on the
vertical axis of the three graphs (for 5, 10, and 15 causes
of death reading from left to right) in Figure 3. The hor-
izontal axis codes both the hospital sample size and,
within categories of hospital sample size, the community
sample size. Each of the top four lines represent differ-
ent numbers of symptoms.

The lower line, labeled “direct sampling,” is based on
an infeasible baseline estimator, where the cause of each
randomly sampled community death is directly ascer-
tained and the results are tabulated. The error for this
direct sampling approach is solely due to sampling
variability and so serves as a useful lower error bound
to our method, which includes both sampling variability
and error due to extrapolation between the hospital and
population samples. No method with the same amount
of available information could ever be expected to do
better than this baseline.

Figure 3 illustrates five key results. First, the mean abso-
lute error of the King-Lu method is never very large. Even
in the top left corner of the figures, with 500 deaths in the
hospital, 1,000 in the community, and only 10 symptom
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Figure 3 Simulation Results for 5 (left graph), 10 (middle), and 15 (right) causes of death.

3000 5000 2000 3000 5000 10000
3000-10000 10000-30000 3000-10000  3000-10000 5000-30000  20000-30000

questions, the average absolute error in the cause-of-death
categories is only about 2 percentage points, and of this
0.86, of a percentage point is due to pure irreducible sam-
pling variability (see the direct sampling line).

Second, increasing the number of symptom questions,
regardless of the hospital and community sample sizes,
reduces the mean absolute error. So more questions are
better. However, the advantage in asking more than
about 20 questions is fairly minor. Asking five times
more questions (going from 10 to 50) reduces the mean
absolute error only by between 15% and 50%. Our simu-
lation is using symptom questions that are statistically
independent, and so more questions would be needed if
different symptoms are closely related; however, addi-
tional benefit from more symptoms would remain small.

Third, the mean absolute error drops with the number
of deaths observed in the community, and can be seen
for each panel separated by vertical dotted lines in each
graph. Within each panel, the slope of each line drops
at first and then continues to drop but at a slower rate.
This pattern reflects the diminishing returns of collect-
ing more community observations, so increasing from
5,000 to 10,000 deaths does not help as much as
increasing the sample size from 1,000 to 3,000.

Fourth, mean absolute error is also reduced by
increasing the hospital sample size. Assuming since data
collection costs will usually keep the community sample
larger than the hospital sample, increasing the hospital
sample size will always help reduce bias. Moreover,
within these constraints, the error reduction for collect-
ing an extra hospital death is greater than that in the
community. The reason for this is that the method esti-
mates only the marginal distribution of symptom profile
prevalences from the community data, whereas it esti-
mates this distribution within each category of deaths in
the hospital data. It is also true that the marginal gain
in the community sample is constrained to a degree by
the sample size in the hospital; the reason is that combi-
nations of symptoms in the community can only be ana-
lyzed if examples of them are found in the hospital.

And finally, looking across the three graphs in Figure
3, we see that the mean absolute error per cause drops
slightly or stays the same as we increase the number of
causes of death. Of course, this also means that with
more causes, the total error is increasing as the number
of causes increase. This is as it should be because esti-
mating more causes is a more difficult inferential task.

The results in this section provide detailed informa-
tion on how to design verbal autopsy studies to reduce
error. Researchers can now pick an acceptable threshold
level for the mean absolute error rate (which will
depend on the needs of their study and what they want
to know) and then choose a set of values for the design
features that meets this level. Since the figure indicates
that different combinations of design features can pro-
duce the same mean absolute error level, researchers
have leeway to choose from among these based on con-
venience and cost-effectiveness. For example, although
the advantage of asking many more symptom questions
is modest, it may be that in some areas extra time spent
with a respondent is less costly than locating and travel-
ing to another family for more interviews, in which case
it may be more cost-effective to ask 50 or more symp-
tom questions and instead reduce the number of inter-
views. Figure 3 provides many other possibilities for
optimizing scarce resources.

Discussion

Despite some earlier attempts at promoting standard
tools [20], which have now been adopted by various
users including demographic surveillance sites under the
INDEPTH Network [19,21,22], little consensus existed
for some time on core verbal autopsy questions and
methods. In order to derive a set of standards and to
achieve a high degree of consistency and comparability
across VA data sets, a recent WHO-led expert group
recently systematically reviewed, debated, and condensed
the accumulated experience and evidence from the most
widely-used and validated procedures. This process
resulted in somewhat more standardized tools, which
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are now adopted by various users, including demo-
graphic surveillance sites.

Verbal autopsy methodologies are still evolving: sev-
eral key areas of active and important research remain.
A research priority must be to carry out state-of-the-art
validation studies of the new survey instruments in mul-
tiple countries with varying mortality burden profiles,
using the methods discussed and proposed here. Such a
validation process would contribute to the other areas
of research, including further optimization of items
included in questionnaires; replicable and valid auto-
mated methods for assigning causes of death from VA
that remove human bias from the cause-of-death assign-
ment process; and such important operational issues as
sampling methods and sizes for implementing VA tools
in research demographic surveillance sites, sample or
sentinel registration, censuses, and household surveys.

With the advice we offer here for writing symptom
questions, weeding out biased questions, and choosing
appropriate hospital and community sample sizes,
researchers should be able to greatly improve their ana-
lyses, reducing bias and research costs. We encourage
other researchers and practitioners to use these tools
and methods, to refine them, and to develop others.
With time, this guidance and experience ought to better
inform the VA users, and enhance the quality, compar-
ability, and consistency of causespecific mortality rates
throughout the developing world.

Appendix A

The King-Lu Method and Extensions

We describe here the method of estimating the CSMR
offered in [10]. We give some notation, the quantities of
interest, a simple decomposition of the data, the estima-
tion strategy, and a procedure for making individual
classifications when useful.

Notation

Hospital deaths may be selected randomly, but the
method also works without modification if they are
selected via case-control methods whereby, for each
cause, a fixed number of deaths are chosen. Case-con-
trol selection can greatly increase the efficiency of data
collection. Deaths in the community need to be chosen
randomly or in some representative fashion. Define an
index i (i = 1,..., n) for each death in a hospital and £
(¢ =1,..., L) for each death in the community. Then
define a set of mutually exclusive and exhaustive causes
of death, 1,.., /, and denote D, as the observed cause for
a death in the hospital and D; as the unobserved cause
for a death in the community. The verbal autopsy sur-
vey instrument typically includes a set of K symptom
questions with dichotomous (0/1) responses, which we
summarize for each decedent in the hospital as a K x 1
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vector S; = {S;1,..., Six} and in the community as §; =
{Selr": S€I<}~

Quantity of Interest

For most public health purposes, primary interest lies
not in the cause of any individual death in the commu-
nity but rather the aggregate proportion of community
deaths that fall into each category: P(D) = {P(D = 1),...,
P(D = J)}, where P(D) is a J x 1 vector and fach element
of which is a pr‘opor'tion: P(D=j)= TZ£=1 1(D£ = i)
where 1(a) = 1 if 2 is true and 0 otherwise. This is an
important distinction because King-Lu gives approxi-
mately unbiased estimates of P(D) even if the percent of
individual deaths correctly classified is very low. (We
also describe below how to use this method to produce
individual classifications, which may of course be of
interest to clinicians.)

Decomposition

For any death, the symptom questions contain 2% possi-
ble responses, each of which we call a symptom profile.
We stack up each of these profiles as the 25 x 1 vector
S and write P(S) as the probability of each profile
occurring (e.g., with K = 3 questions P(S) would contain
the probabilities of each of these (2° = 8) patterns
occurring in the survey responses: 000, 001, 010, 011,
100, 101, 110, and 111). P(S|D) as the probability of
each of the symptom profiles occurring within for a
given cause of death D (columns of P(§]D) correspond-
ing to values of D). Then, by the law of total probabil-
ity, we write

]
P(S=s)= ) P(S=s|D=j)P(D =) (1)

j=1

and, to simplify, we rewrite Equation 1 as an equiva-
lent matrix expression:

P(S) = P(S| D) P(D). @)

2Kx1 2Ky Jx1

where P(D) is a J x 1 vector of the proportion of com-
munity deaths in each category, our quantity of interest.
Equations 1 and 2 hold exactly, without approximations.
Estimation
To estimate P(D) in Equation 2, we only need to esti-
mate the other two factors and then solve algebraically.
We can estimate P(S) without modeling assumptions by
direct tabulation of deaths in the community (using the
proportion of deaths observed to have each symptom
profile). The key issue then is estimating P(S|D), which
is unobserved in the community. We do this by assum-
ing it is the same as in the hospital sample, P*(S|D):

P"(S| D) = P(S| D). (3)
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This assumption is considerably less demanding than
other data-derived methods, which require the full joint
distribution of symptoms and death proportions to be
the same: P*(S, D) = P(S, D). In particular, if either the
symptom profiles (how illnesses that lead to death pre-
sent to caregivers) or the prevalence of the causes of
death differ between the hospital and community — P
(S) = P(S) or P"(D) # P(D)- then other dataderived
methods will fail, but this method can still yield
unbiased estimates. Of course, if Equation 3 is wrong,
estimates from the King-Lu method can be biased, and
so finding ways of validating it can be crucial, which is
the motivation for the methods offered in the text. (Sev-
eral technical estimation issues are also resolved in [10]:
Because 2X can be very large, they use the fact that (2)
also holds for subsets of symptoms to draw multiple
random subsets, solve (2) in each, and average. They
also solve (2) for P(D) by constrained least squares to
ensure that the death proportions are constrained to the
simplex.)

Adjusting for Known Differences Between Hospital and
Community

Let a be an exogneous variable measured in both sam-
ples, such as age or sex. To adjust for differences in a
between the two samples, we replace our usual estimate
of P"(8|D) with a weighted average of the same estima-
tor applied within unique values of a, P*(S,|D,), times
the community distribution, f(a):P;(S|D)=Y, P*(S, P.)f(@),
and where the summation is over all possible values
of a.

Individual Classification

Although the quantity of primary interest in verbal
autopsy studies is the CSMR, researchers are often
interested in classifications of some individual deaths.
As shown in [[10], Section 8], this can be done with an
application of Bayes theorem, if one makes an additional
assumption not necessary for estimating the CSMR.
Thus, if the goal is P(Dg = j|S¢ = s), the probability that
individual £ died of cause j given that he or she suffered
from symptom profile s, we can calculate it by filling in
the three quantities on the right side of this expression:

P(Sg=s|D¢=j)P(Dy=j)

P(D,=j[S, =5)= P(Sg=5)

(4)

First is P(Dy = j), the optimal estimate of the CSMR,
given by the basic King-Lu procedure. The quantity
P(S; = s|Dg = j) can be estimated from the training set,
usually with the addition of a conditional independence
assumption, and P(S, = s;) may be computed without
assumptions from the test set by direct tabulation.
(Bayes theorem has also been used in this field for other
creative purposes [23].)
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A Reaggregation Estimator

A recent article [12] attempts to build on King-Lu by
estimating the CSMR with a particular interpretation of
Equation 4 to produce individual classifications which
they then reaggregate back into a “corrected” CSMR
estimate. Unfortunately, the proposed correction is in
general biased, since it requires two unnecessary and
substantively untenable statistical assumptions. First, it
uses the conditional independence assumption for esti-
mating P(S; = s|Dg = j) ~useful for individual classifica-
tion but unnecessary for estimating the CSMR. And
second, it estimates P(S; = s) from the training set and
so must assume that it is the same as that in the test
set, an assumption which is verifiably false and unneces-
sary since it can be computed directly from the test set
without error [[10], Section 8]. To avoid the bias in this
reaggregation procedure to estimate the CSMR, one can
use the original King-Lu estimator described above.
Reaggregation of appropriate individual classifications
will reproduce the same aggregate estimates.

Appendix B
A Test for Detecting Biased Symptoms
If symptom k, S, is overreported in the community rela-
tive to the hospital for a given cause of death, then we
should expect the predicted prevalence f’(S ) = which
can be produced by but is not needed in the King-Lu
procedure—to be lower than the observed prevalence P
(Sx). Thus, we can view P(Sy) as data point in regression
analysis and the misreported prevalence of the kth
symptom, P(S;) as an outlier. This means that we can
detect symptoms that might bias the analysis by examin-
ing model fit. We describe this procedure here and then
give evidence and examples.
Test Procedure
Let IAD(D) be the estimated community CSMRs via the
King-Lu procedure, and then fit the marginal prevalence
of the kth symptom in the community P S.) (calcu-
lated as P(S,) =Y, P"(S,|D;)P(D;); see Appendix
k k j j

A). Then define the prediction error as the residual in a

regression as ey = f;(sk) —P(Sy)

Under King-Lu, fp(D) is unbiased, and each e is
mean 0 with variance V(e) = z:=1(ek -2)? /(K -1).
Moreover,

ep—e

t;, =
C r o) R

is approximately ¢ distributed with K - 1 degree free-
dom. If, on the other hand, P*(S |D) # P(S|D), we would
expect tx will have an expected value that deviates from
zero.
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Based on above observation, we propose a simple
iterative symptom selection procedure. This procedure
avoids the classic the “multiple testing problem” by
applying a Bonferroni adjustment to symptom selection
at each iteration. At the chosen significance level a, we
can then assess whether a calculated value of # indicates
that the k™ symptom violates our key assumption and
so is biased. Thus:

1. Begin with the set of all symptoms S = (S;,..., Sg),
and those to be deleted, B. Initialize B as the null
set, and the number of symptoms in the estimation,
Ko, as Ky = K.

2. Estimate P(D) using the King-Lu method.

3. For symptom k (k = 1,..., Kj), estimate f;( S.)’ and
calculate ;.

4. Find the critical value associated with level o
under the ¢ distribution with Ky - 1 degree free-
dom, Cig#(8)+1)),(k,-1) - To ensure that the overall
significance of the all symptoms that belong to B
is less than o, use the Bonferroni adjustment for
the significance level (the set of f; test statistics
associated with the symptoms in set B are stochas-
tically independent of each other since the models
are run sequentially). The number of the multiple
independent tests is counted as the number of ele-
ments already in the set B plus the one that is
being tested. (Since the maximum |[#] at each step
of symptom selection tends to decrease as more
“bad” symptoms are removed, it is sufficient to
check whether the maximum || of the current
model is greater or less than the critical value,
Caa(B)1) (5-1) )

5. If the largest value of ||, namely |z, is greater
than the critical value C[a/(#(B)H)},KO—l: remove the
corresponding &’ th symptom. Then set Ky = Kj - 1
and add symptom X’ to set B.

6. Repeat step 2-5 until no new symptoms are
moved from S to B.
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China’s blood-banking system, as detailed by Xuerong Yu
and colleagues.® Production of China’s human resources
depends on professional medical education. As described
by Dong Xu and colleagues,” higher education in China
has several purposes: global academic excellence, training
professionals to service diverse Chinese populations,
and re-engineering the professions to grapple with the
onslaught of non-communicable diseases. How China
harmonises these diverse aims will determine not only
the contributions of its next generation of professionals
but also very probably the success and sustainability of
its ambitious reforms towards universal health coverage.

For these and other studies, more and more Chinese
health data are increasingly accessible, as illustrated by
the wealth of data on child mortality from the internet
in Chinese that was analysed by Rudan and colleagues.*
As reviewed by Yan Guo and colleagues,® the recent
round of health reforms will be monitored by key
indicators, just as the reforms were stimulated in part by
results from earlier health surveys. While it is too early to
draw conclusions, China has rapidly expanded medical
insurance so that the recent national household health-
survey found a dramatic turnaround: 87% of urban and
rural populations reached by 2008.° In view of these
developments, it seems likely that China will achieve
universal insurance coverage well before 2020, albeit
providing only limited benefits.

The Lancet's two China collections, in 2008 and
2010, illustrate the deepening engagement of Chinese

Tracking China’s health reform

In response to growing public concerns over widening
inequalities in health, the Chinese Government officially
launched another round of the national health system
reform plan in early 2009 with a commitment of
¥850 billion (US$125 billion) for the next 3 years.! The
proposed reform has ambitious targets, including 90%
health insurance coverage by the end of 2010 and
universal coverage of essential health-care by 2020. But
how will these reforms be monitored?

Over the past three decades, China’s health information
system has evolved to include national household
surveys of health-care use and expenditures, real-time
surveillance of communicable diseases, and periodic
disease-specific prevalence surveys.? These health metrics

academics in the global health sciences. The recent
appointment of a Lancet Asia editor based in Beijing
augers well for the journal’s future publications on
health in China. Just as China has much to learn from
international science, China also has much to share forthe
mutual benefit of the entire global health community.
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were key factors in the current reforms. With use of the
national health service surveys in 1993 and 1998, the
Development Research Center concluded in 2002-04 that
earlier reforms had not been successful.® The proportion
of health expenditures covered by the government
had dropped from 36% to 15%, funding for prevention
had relatively declined, health insurance coverage had
collapsed to 13% of rural and 40% of urban residents, and
70% of residents from the poorest regions of the country
failed to seek inpatient treatment because of cost. In July,
2005, a newspaper article* about the study in the China
Youth Daily provoked widespread public discussion and
debate that was sustained by a litany of media stories of
human and financial health-system failings.
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Three major metrics challenges must be met to ensure
that the health reform is more successful than previous
efforts. The quality and comprehensiveness of health
metrics need to be gradually improved; the analytical
capacity -for integrating: several types of data. from
national surveys, facility-based routine reporting, and
national disease surveillance needs to be strengthened;

and the traditional top-down process for policy

formulation needs to become increasingly evidence-

based, driven by the commitment of decision makers to

make use of available information. , o
At a conference in Beijing in December, 2009,

China’s Ministry of Health Center for Health Statistics

and Information announced the development of

19 indicators (panel) to track six components of the

health reform: access, quality, cost, financial protection,
patients’ satisfaction, and health improvement.® These
indicators will be constructed by integration of data

from population-based sample surveys, vital events
data, disease-focused populatlon surveys, and facility-

based - admlnlstratxve data. Identification of such
indicators is an important. ﬁrst step but there remain

serious concerns about the quallty, rellablhty, ‘and

validity of some of the data.

Most of the primary data are recorded by government
workers who have been trained for other functaons SO
systematic retraining and supervisionto enforce  rigorous
data collection will be essential. Abundant data from the
existing health-information system sh Uld be sufficient
to monitor changes in insurance coverage, disease
prevalence, and health services, but little information is

available about supply, pricing, dlstnbutlon and use of

drugs—the fourth major subsystem belng addressed
China’s State Food and Drug Admlnlstratlon has not yet
established an effective information system and data
from the pharmaceutical industry are scant. New data
collection systems will be needed here..

A second challenge is. analytlcal capablllty lntegratlon

of the huge volume of data will require a large network
of sophisticated analysts. AIthough not unlque to China,
amajor constraint in China is the lack of qual,lﬁed human
resources and imbalances in the strength of relevant
academic disciplines. Chinese institutions’ :ha\/e, fairly
solid capabilities in statistics, epidemiology, and survey
research. Less well-developed areas include health
economics, policy analysis, sociobeha\)ioural research;
and monitoring and evaluation. Moreover, most. of

www.thelancet.com Vol 375 March 27,2010

China’s institutional strengths are based in government
departments and agencies. Academic centres and
autonomous research institutes that focus on health
metrics are few and underdeveloped.

Finally, as in all countries, improvements in the quality,
comprehensiveness, and analysis of health data will
not necessarily lead to more effective policy making.
Health data are mainly gathered and used by different
government departments, so there are issues about
resolving the inconsistency of data provided by different
governmental sources and, more importantly, of
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providing access to the data to other non-governmental
actors. Although generally moving towards greater
openness and wider access, routes of disseminating
government-collected health data through journals,
reports, websites, press briefings, and other media are
not well established. Provision of full public access to
reports about the progress of the reforms and use of
data monitoring to make continuing adjustments in
reforms will require changes in the traditional process
of decision making by government. The transition will
be difficult for health-care policy makers in China, but
the transparency encouraged during the development
of these reforms must be sustained and expanded to
ensure success.

In health metrics, China has learned much from other
countries and international agencies.® In view of its
growing role in global health, China’s efforts to track
its health reform are likely to generate valuable lessons
for others.
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Unravelling the enigma of health statistics in China

China accounts for 19-6% of the global population,
and is now the power house of the global economic
recovery. However, much health-related information
about China is based on official reporting systems
and few, if any, externally verified surveys. Several of
the UN estimates for health indicators from China are
also based on projections from a limited number of
datasets, with correction factors for under-reporting.!
The available information for China and its health and
nutrition indicators thus varies greatly, with not much
subnational data on inequity and social determinants
of health.?

In The Lancet this week, Igor Rudan and colleagues?
from the Child Health and Epidemiology Reference
Group (CHERG) present information from a
comprehensive analysis of hitherto unexplored Chinese
scientific publications and data from the national
surveillance systems. Rudan and colleagues uncovered
a treasure trove of Chinese language publications
from representative community settings in China, and
analysed the information with standard CHERG methods
to generate information about trends and causes of
neonatal and child mortality rates. The results are striking
and provide robust information about cause-specific

child mortality estimates, trends, and differentials. The
information is important, and although the findings are
broadly similar to those obtained from a recent review
based on the national Maternal and Child Mortality
Surveillance System (MCMS), some aspects differ from
official data.** The mortality denominators are also quite
different. For example, the number of deaths caused
by rotavirus infections in China was estimated to be
about 10400 per year in 2004.° Today's analysis clearly
suggests that, with fewer than 10000 deaths per year
associated with all-cause diarrhoea in China, the previous
estimates were probably three times higher.

Several limitations need to be emphasised in the
approach and analysis by Rudan and colleagues. The data
quality could not be thoroughly assessed, other than the
congruence of the final estimates with available data and
plausibility. Despite peer-reviewed scientific publications
from China increasing by 60-fold since 1981,” opinions
differ about the scientific quality and vetting of such
publications.®® The mortality rates were adjusted from
available MCMS and Gapminder data, but could well be
underestimates because the official neonatal mortality
rate is only calculated for infants after gestations of
28 weeks or longer. Additionally, the mortality data also

www.thelancet.com Vol375 March 27,2010
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Deaths from heart failure: using coarsened exact
matching to correct cause-of-death statistics

Gretchen A Stevens*!, Gary King2 and Keniji Shibuya3

Abstract

time.

mortality rate by 6%.

improving the public health utility of death records.

Background: Incomplete information on death certificates makes recorded cause-of-death data less useful for public
health monitoring and planning. Certifying physicians sometimes list only the mode of death without indicating the
underlying disease or diseases that led to the death. Inconsistent cause-of-death assignment among cardiovascular
causes of death is of particular concern. This can prevent valid epidemiologic comparisons across countries and over

Methods: We propose that coarsened exact matching be used to infer the underlying causes of death where only the
mode of death is known. We focus on the case of heart failure in US, Mexican, and Brazilian death records.

Results: Redistribution algorithms derived using this method assign the largest proportion of heart failure deaths to
ischemic heart disease in all three countries (53%, 26%, and 22% respectively), with larger proportions assigned to
hypertensive heart disease and diabetes in Mexico and Brazil (16% and 23% vs. 7% for hypertensive heart disease, and
13% and 9% vs. 6% for diabetes). Reassigning these heart failure deaths increases the US ischemic heart disease

Conclusions: The frequency with which physicians list heart failure in the causal chain for various underlying causes of
death allows for inference about how physicians use heart failure on the death certificate in different settings. This
easy-to-use method has the potential to reduce bias and increase comparability in cause-of-death data, thereby

S

Background

Effective national and international public health plan-
ning and policymaking requires accurate information on
population health, especially about deaths and their
causes. Death statistics can provide evidence to evaluate
health reforms and to identify poorly served populations
or diseases. In countries with complete or nearly com-
plete vital registration, including most high-income and
some middle-income countries, death statistics are com-
piled from death certificates. However, inaccurately or
incompletely completed death certificates may compro-
mise cause-of-death data in these countries. Physician
practice in filling death certificates may vary over place
and time [1]. This may result in death rates calculated
from death certificate data that are biased or are not com-
parable across regions, countries, or over time. Inconsis-
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Full list of author information is available at the end of the article

tent cause-of-death assignment among cardiovascular
causes of death is particularly important, as cardiovascu-
lar causes are the leading cause of death, causing 29% of
deaths worldwide [2].

Certifying physicians sometimes complete death certif-
icates incorrectly for cardiovascular deaths. Causes such
as heart failure and cardiac arrest are routinely used in
ways that violate standard protocols. For public health
purposes, the underlying cause of death (UCD), as
defined by the World Health Organization, should be "the
disease or injury which initiated the train of morbid
events leading directly to death, or the circumstances of
the accident or violence which produced the fatal injury,”
a definition that is also the most useful for public health
monitoring and planning [3]. The UCD listed on the
death certificate may be incorrect because of 1) an incor-
rect diagnosis, or 2) incomplete cause-of-death informa-
tion. In the second case, the certifying physician often
lists only the mode of dying, such as cardiac or respira-
tory arrest, shock, or heart failure. The World Health

o " ©2010 Stevens et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
g / ﬁm?ﬁ Centra] Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
- any medium, provided the original work is properly cited.
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Organization's International Statistical Classification of
Diseases and Related Health Problems (ICD) specifies
that the mode of death should never be designated as the
UCD if another plausible cause is listed on the death cer-
tificate [3]. Yet certifying physicians regularly list only the
mode of dying due to uncertainty about the UCD or lack
of knowledge or interest in correct procedures for com-
pleting a death certificate [4,5]. Among cardiovascular
deaths in the US, 6% are certified to heart failure and 2%
to cardiac arrest (Table 1). In Mexico, a middle-income
country with a high-quality death registration system, 8%
of cardiovascular deaths are assigned to heart failure; in
Brazil, 10%. Our goal is to redistribute these deaths into
the categories to which they belong.

One way to learn how to redistribute these deaths is to
compare hospital records or autopsy findings to the cause
of death listed on death certificates. Such studies, which
have been carried out in the US [6,7] and elsewhere [8,9],
often find substantial discrepancies between the death
certificate, physician review of hospital records, and
autopsy findings. However, these studies are limited by
financial and practical constraints. Deaths that occur in
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hospitals and those selected for autopsy are likely to sys-
tematically differ from deaths that do not occur in hospi-
tals and those that are not autopsied. Autopsies, which
have been declining in the US and elsewhere [9], may be
more likely in difficult-to-diagnose deaths [7], and there-
fore could be more likely to find less common diseases as
the underlying cause of death.

Statistical methods provide an alternative to the
autopsy for correcting cause-of-death statistics.
Researchers have developed algorithms to redistribute
deaths certified to causes that are unspecified or that can-
not be underlying causes of death (hereafter referred to as
ill-defined causes). Deaths can be reassigned based on
expert knowledge of disease etiology, using an empirical
basis, or by some combination of the two. A variety of
approaches have been taken, including pro-rata redistri-
bution [10], ecological regression analysis [11], and multi-
nomial logistic regression of individual-level data [12].
Aside from pro-rata redistribution, each of these meth-
ods requires expert judgment to select the causes to
which deaths are redistributed (or target causes of death).

Table 1: Frequency of selected cardiovascular and other causes as the underlying cause of death, US, Mexico, and Brazil.

Cause ICD-10 codes US (%) Mexico (%) Brazil (%)
Total number of 14,500,497 920,517 3,033,240
death records
Lower respiratory J10-J18, J20-J22 2.6 3.6 3.6
infections
Cancers C00-C97 229 134 13.8
Diabetes E10-E14 3.0 134 3.9
All Cardiovascular 100-199 38.1 233 27.8
diseases
Ischemic heart 120-125 20.5 10.5 8.4
disease
Cerebrovascular 160-169 6.7 55 8.9
disease
Hypertensive 110113 2.0 3.0 3.0
heart disease
Cardiomyopathy 142-143 1.1 0.2 1.3
Heart failure 150 23 1.9 2.7
Cardiac arrest 146, 147.2,149.0 0.8 0.1 0.1
Other balance of 100-199 4.6 2.1 33
cardiovascular
diseases
Chronic obstructive J40-J44 4.9 39 34
pulmonary disease
(COPD)
Digestive diseases K20-K92 3.5 9.8 4.8
Other diseases 25.0 327 42.8
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Data compiled from death certificates usually contain
both the sequence of conditions that lead to the death
and other contributing conditions, called multiple causes
of death (MCDs). Unlike the previous approaches, which
rely only on underlying cause-of-death data, MCD data
allow for an empirical basis to select redistribution tar-
gets, and have been used to improve geographic compa-
rability in the use of diabetes as an underlying cause of
death using multinomial logistic regression [13]. An
empirical redistribution algorithm may result in targets
that are not expected based on pathophysiology, but may
reflect how modes of death such as heart failure are used
in practice.

Though multinomial regression has been used in the
past, nonparametric methods are ideal for death certifi-
cate data. Multinomial regression requires strong
assumptions about how variables are related, which are
often violated. It also requires that target causes be broad
and distinct (i.e., it limits detailed information about
causes to which ill-defined deaths are redistributed). In
contrast, nonparametric methods require weaker
assumptions and allow for detailed information on target
causes. We propose that coarsened exact matching [14], a
nonparametric method, be used with MCD data to gen-
erate a redistribution algorithm for deaths certified to
heart failure (ICD-10 cause 150). The method is demon-
strated and validated using death records from two mid-
dle-income countries and one high-income country --
Brazil, Mexico, and the US.

Heart failure is a leading ill-defined cardiovascular
cause of death in the US and in many other countries
[11]. Coronary heart disease is the primary cause of heart
failure in the US, but in developing countries, infections
such as Chagas disease can play an important role [15].
Hypertension, diabetes, and overweight increase the risk
of developing heart failure [16]. Determining heart failure
etiology is often complicated by the presence of multiple
co-morbid conditions [15].

Methods

In part 1 of the standard international death certificate,
certifying physicians are asked to indicate the sequence of
conditions leading directly to the death, listing the UCD
last. Part 2 of the death certificate allows the certifier to
list other contributing conditions. The underlying cause
of death is then selected according to ICD-10 selection
rules, typically using linkage tables (in Mexico prior to
2007 and in Brazil) or the automated coding system
developed by the US National Center for Health Statistics
in the US [17]. Heart failure is only selected as the UCD
when no plausible underlying cause is listed in part 1 of
the death certificate (ICD rules consider cancers plausible
UCD:s for this purpose), and neither ischemic heart dis-
ease (IHD) nor Chagas disease are listed on the death cer-
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tificate. Therefore, we treated deaths certified to heart
failure as records for which the UCD is missing and drew
inferences about possible UCDs for these deaths by using
deaths for which heart failure is listed in the causal chain
leading to death (i.e., within part 1 of the death certifi-
cate). For public health purposes, it is not necessary to
assign a unique UCD for each death certified to heart fail-
ure. Instead, each death can be distributed among several
UCDs, as is the practice in the literature [10-13]. Distrib-
uting deaths certified to heart failure among several
causes reflects uncertainty about the true UCD. After
redistribution, new cause-specific death rates were calcu-
lated.

We used coarsened exact matching to generate a distri-
bution of likely causes of death for each death certified to
heart failure. Coarsened exact matching is a powerful
algorithm but simple to use: the variables on which the
match is made are first coarsened (divided into discrete
categories), and then all exact matches are made (Figure
1). Thus, each death record certified to heart failure
(treatment observations) was matched to all death
records where heart failure appeared in part 1 of the
death certificate and also had the same value for sex, age,
and the other variables listed in Table 2 (control observa-
tions). Because the algorithm was not sensitive to how
the variables in Table 2 were coarsened, we coarsened the
variables until most treatment deaths could be matched
to at least one control death. In order to avoid reassigning
deaths certified to heart failure to other modes of death
or ill-defined causes, we eliminated deaths with these
UCDs from the potential control records [18]. In addi-
tion, we assumed that physicians would not miscertify
injuries to heart failure and eliminated injury deaths from
potential matches. Essentially, we matched incomplete
death certificates to properly completed death certificates
(their controls). Finally, we generated redistribution algo-
rithms by assigning each heart failure death proportion-
ally to the underlying causes of death of all controls. We
tested the sensitivity of the method to varying match
variables (Table 1), and show two alternate match algo-
rithms:

Demographic specification: match on age, sex, death
location, region, and urban/rural, and restrict con-
trols to non-Hispanic whites (US only) with the high-
est education level and health insurance (Mexico
only);

Autopsy specification: match on age, sex, death loca-
tion, region, urban/rural, and restrict controls to
those deaths that were autopsied (autopsy specifica-
tion).

Because congestive heart failure (ICD-10 150.0) and left
ventricular heart failure (I50.1) may be used differently
than unspecified heart failure (150.9), we generated redis-
tribution algorithms considering these causes separately,
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1. ldentify deaths
coded to heart failure:

Age: 60
Sex: M 3. Redistribute deaths coded to heart
Race: White failure to their controls:
Place of death: Hospital Age: 60
State of residence: NH Sex: M

: i UCD: Ischemic
UCD: Heart Failure Hoen Do
MCD: None listed MCD: Hoart

Failure

Sex:M
UCD: COPD
MCD: Heart Failure

2. Find all controls (matches) of the same age, sex,

and other match variables: ,
Age: 60

Age: 60 : Sex:M

Sex:M d UCD: Cancer
UCD: Ischemic Heart MCD: Heart Failure
Disease

Age: 60
Sex:M
UCD: COPD

MCD: Heart Failure

MCD: Heart Failure

Age: 60
Sex:M
UCD: Cancer

MCD: Heart Failure

Figure 1 An example of coarsened exact matching. UCD: Underlying cause of death; MCD: multiple cause of death; COPD: chronic obstructive
pulmonary disease. (1) All deaths with heart failure as the underlying cause of death are identified. In this example, a 60-year-old white male who died
in a New Hampshire hospital is identified. (2) All deaths that match the treatment (heart failure) deaths are identified. In this case, all deaths of the same
age and sex, with heart failure listed in the causal chain, are identified. (3) The treatment death identified in step 1'is redistributed to the UCDs of the
control deaths identified in step 2, proportionally to the number of times each UCD appears among the control deaths. Thus, because 60% of the
control deaths identified in step 2 have a UCD of IHD, 60% of the deaths in step 1 are assigned a UCD. The new total of IHD deaths among 60-year-
old menis 6.6.

in addition to generating a redistribution algorithm for all ~ Validation

deaths certified to heart failure.

In this paper, the method was applied to individual
death records from three datasets: US vital registration
death records for the years 1999-2004; Brazilian death
records for the years 2003-2005, as provided to the Pan-
* American Health Organization; and Mexican vital regis-
tration data collected by the Health Ministry for 2004-
2005 [19]. Mahapatra et al. classified both Mexico and the
US as collecting high-quality cause-of-death data, with
full coverage and less than 10% use of ill-defined codes
[1]. Brazil was classified as collecting medium- to low-
quality death statistics due to coverage of approximately
80%, with more than 15% of death records indicating ill-
defined causes of death.

We also tested the performance of this method by drop-
ping the underlying cause of death for specific groups of
US death records that list heart failure among multiple
causes of death. We then used matching to predict UCDs.
Predicted underlying causes were compared to actual
underlying causes using the average relative error (ARE),
calculated as follows:

-
3|csp
jZ1/CsD
ARE =
n
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Table 2: Variables on which death records were matched, base specification,

Page50of9

Variable us Mexico Brazil
Age 10-year intervals from age 20 to 49 10-year intervals from age 20 to 49 10-year intervals from age 20 to 49
5-year intervals from 50-84 5-year intervals from 50-84 5-year intervals from 50-84
Over 85 Over 85 Over 85
Sex Male/Female Male/Female Male/Female

Death Location

In a clinic or hospital

All other locations

In a clinic or hospital

All other locations

In a clinic or hospital

All other locations

Region 9 regions
Urban/rural Urban/Rural
Education Less than high school
At least high school
4-year college or more
Race White
Other
Black
Hispanic Hispanic
Non-Hispanic
Occupation

Health Insurance System

5 regions 5 regions
Urban/Rural Urban/Rural
Less than primary None
At least primary 1-7 years

Secondary or more More than 7 years

Professional/technical
Informal economy
IMSS
Other public or private

Seguro popular/none

IMSS: Mexican Social Security Institute, which provides health insurance to formal-sector workers. Seguro popular: government-subsidized

health insurance scheme for the uninsured.

where n is the number of causes considered, CSD is the
predicted cause-specific number of deaths, and CSD is
the actual cause-specific number of deaths [12]. Because
few studies like this one have been carried out, there is lit-
tle information by which an acceptable ARE can be set a
priori. Therefore, it should be considered a descriptive
indicator only.

We tested the method in the demographic groups for
which heart failure and other ill-defined causes are most
frequently used (i.e., where cause-of-death assignment is
poor): 1) a region (the Southeastern US, which consists of
Alabama, Kentucky, Mississippi, and Kentucky); 2) a
racial/ethnic group (all blacks and Hispanics); 3) all
deaths on which an autopsy was not performed; and 4) all
deaths that occurred out-of-hospital.

The authors had full access to the data and take respon-
sibility for their integrity. All authors have read and agree
to the manuscript as written.

Results
Heart failure (ICD I50) is listed as the underlying cause of
death in 2.3% of US death records, 1.9% of Mexican

records, and 2.7% of Brazilian records. Of those deaths,
32%, 13%, and 33%, respectively, did not contain any
other information on the MCDs; when other causes were
listed, they were primarily other ill-defined causes (i.e.,
cardiac arrest or respiratory failure).

Prior to matching heart failure deaths to other deaths,
records with ill-defined or incomplete cause-of-death
information -- 7% of total matches -- were eliminated. Ili-
defined deaths certified to renal failure (N17-N19), essen-
tial hypertension (110), and general/unspecified athero-
sclerosis (170.9) occurred frequently among the potential
matches that were eliminated (35%, 5.9%, and 15.5%
respectively). A sensitivity analysis was performed, where
potential matches were restricted to records with at least
three causes listed (i.e,, more detailed cause-of-death
information was provided), but this had little effect on the
results.

In the base analysis, US heart failure deaths were
matched to an average of 2,888 death records with men-
tion of heart failure but with another disease as the UCD;
Mexican deaths, to 251 records; and Brazilian deaths, to
985 records. Overall, 0.1% of heart failure deaths were not



Stevens et al. Population Health Metrics 2010, 8:6
http://www.pophealthmetrics.com/content/8/1/6

matched to any non-heart-failure death. The aggregate
percentage of heart failure deaths redistributed to each
underlying cause is shown in Table 3. In all three coun-
tries, the largest proportion of heart failure deaths were
redistributed to IHD (53%, 26%, and 22% respectively in
the US, Mexico, and Brazil). However, a larger proportion
of deaths were redistributed to chronic obstructive pul-
monary disease, diabetes, and hypertensive heart disease
in Mexico and Brazil than in the US. The largest propor-
tion of deaths assigned to cardiomyopathy was in Brazil
(9% vs. 4% in the US and 1% in Mexico). In Brazil, an
additional 3.7% of heart failure deaths were reassigned to
Chagas disease (ICD-10 B57). Because few deaths are cer-
tified to Chagas disease, this resulted in a 20% increase in
the number of deaths certified to Chagas disease.

Redistribution algorithms were generated by sex, age,
and other demographic characteristics. For the US, redis-
tribution algorithms are quite similar across demographic
characteristics (See additional file 1: Table S1), with some
exceptions for race and ethnicity. Heart failure deaths
among blacks were 50% more likely to be redistributed to
diabetes; among Hispanics, they were nearly twice as
likely. A larger proportion of deaths among blacks was
also redistributed to hypertensive heart disease and car-
diomyopathy (14% vs. 6% among whites for hypertensive
heart disease, and 8% vs. 4% for cardiomyopathy). In
Mexico, there was a clear socioeconomic gradient in the
proportion of heart failure deaths redistributed to hyper-
tensive heart disease: the proportion was largest among
women, deaths occurring outside of a hospital, those with
less than primary school completed, and those without
health coverage through their employer (Additional file 1:
Table S2). A similar pattern was apparent in Brazil (Addi-
tional file 1: Table S3).

After redistributing heart failure deaths, IHD death
rates among US adults over age 30 increased from 3.95
per 1,000 to 4.19 per 1,000; hypertensive heart disease
rates increased from 0.38 to 0.41 per 1,000; and cardio-
myopathy death rates increased from 0.20 per 1,000 to
0.22 per 1,000. Both absolute and proportional increases
in death rates were greater for older age groups, when
deaths are more likely to be assigned to heart failure (for
example, adjusted IHD death rates for adults over age 85
were 9.5% higher than unadjusted rates vs. 2.3% for adults
age 60-64). Changes in death rates varied little between
1999 and 2004 (Figure 2).

Several different specifications of the matching algo-
rithm were tested to determine the effect on the resulting
redistribution algorithm (Table 3). For the US data, vary-
ing the matching algorithm did not have a major effect on
the results. When matched only to deaths for which an
autopsy was performed, the percentage of deaths redis-
tributed to digestive diseases and cardiomyopathy
increased, and those to diabetes and stroke decreased.
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However, in these cases, the autopsy results are often not
incorporated into the death records, and it is unclear
what role selection bias (in terms of the characteristics of
deaths that are autopsied) plays.

Results were more sensitive to the specification of the
matching algorithm for Mexico and Brazil. In Mexico,
when matching to autopsied deaths, the proportion of
deaths redistributed to IHD increases (33% vs. 26% in the
base specification), and the proportion redistributed to
cancers decreases (4% vs. 6%). Likewise, for Brazil,
matching only to autopsied deaths results in a substantial
increase in the percentage of deaths redistributed to IHD
(41% vs. 22%); however, unlike in Mexico, it also doubles
the percentage of deaths redistributed to cardiomyopathy
(17% vs. 9%). This may reflect more variable epidemiol-
ogy or quality in cause-of-death assignment in Mexico
and Brazil, where patterns in causes of death recorded
vary more across population subgroups than in the US.

Congestive heart failure and left ventricular heart fail-
ure (ICD-10 150.0 and 150.1) are used far more frequently
than unspecified heart failure (150.9) in the US, with the
pattern reversed in Brazil and Mexico (Additional file 1:
Table S4). However, specified heart failures (congestive
and left ventricular) were associated with the same
underlying causes as unspecified heart failure, and the
redistribution algorithm varied little by heart failure type
in all three countries.

When tested by dropping underlying cause-of-death
information for specific population subgroups in the US,
the method performed well (ARE of 19% when underly-
ing causes of death in Southeastern states were predicted;
ARE of 22% when causes for all non-white deaths were
predicted). However, when the method was used to pre-
dict the cause-of-death distribution for all out-of-hospital
deaths and for all nonautopsied deaths, it performed less
well (ARE of 31% and 35%, respectively).

Discussion
In this paper, we proposed using coarsened exact match-
ing to predict the likely UCD when heart failure was
assigned as the UCD on death certificates. This method
requires individual death certificates with multiple cause-
of-death data. This method assumes that for all causes of
death that a certifying physician lists as heart failure, he
or she is equally likely to omit the underlying cause of
death from the death certificate (regardless of whether
the underlying cause is known). We performed a prelimi-
nary validation of the method. The validation indicated
that even if the underlying cause of death is more likely to
be omitted for certain demographic groups, the method
would work well.

Using a nonparametric method such as matching to
correct cause-of-death data has a number of advantages
over multinomial logistic regression, which has been used
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Table 3: Redistribution algorithm derived under alternate matching algorithms.
USA Mexico Brazil
Base Demographic(%) Autopsy Base(%) Demographic(%) Autopsy(%) Base(%) Demographic  Autopsy (%)
(%) (%) (%)
Lower respiratory 1 1 2 3 2 2 3 3 1
infections
Diabetes 13 15 12 9 9 3
Cancers 4 4 4 6 8 4 3 3 2
Ischemic heart disease 53 54 54 26 28 33 22 24 41
Cerebrovascular 2 2 0 3 3 2 4 4 1
disease
Hypertensive heart 7 6 9 16 16 14 23 22 19
disease
Cardiomyopathy 4 4 6 1 1 1 9 9 17
Other cardiovascular 10 11 12 8 8 11 5 6 6
diseases
Chronic obstructive 5 5 3 1 8 8 9 8 3
pulmonary disease
(COPD)
Digestive diseases 1 1 3 4 3 4 2 2 2
Other diseases 7 7 6 9 8 10 1 9 6

Match variables are shown in Table 2. In addition, potential matches were restricted as follows: Demographic: matches (controls) were selected from demographic
groups that have the best access to health care (US: non-Hispanic white college graduates; Mexico: secondary school graduates covered by a formal health insurance
system; Brazil: individuals with at least seven years of schooling). Autopsy: matches (controls) were selected only from deaths that were autopsied.

elsewhere [12,13]. First, this method is fast compared to
multinomial regression. Second, it does not impose
assumptions about the functional form and therefore,
unlike regression, is unaffected if those assumptions are
wrong. Matching is equivalent to a fully saturated multi-
nomial model, including all pairwise and higher order
interactions, but without assuming that treatment effects
are constant. Using a matching algorithm results in an
algorithm that is insensitive to analysts' choices about
whether to include interactions and higher order terms
[20]. Third, we do not assume parameter constancy (that
all of the predictor variables mean the same thing for all
observations). This assumption may not hold if the varia-
tion in the parameters is related to the relatively small
number of available covariates. If this is the case, the
results would very likely be biased. Fourth, logistic
regression can be biased if its crucial "independence of
irrelevant alternatives” assumption is violated; coarsened
exact matching is not biased whether or not this assump-
tion holds. An implication of this is that the outcome cat-
egories need not be broad and distinct when coarsened
exact matching is used. Finally, an important related
advantage of matching is that it does not require the ana-
lyst to select the underlying causes of death to which ill-
defined deaths are reassigned. In fact, it identifies the
causes of death with which specific ill-defined causes of
death are associated. For example, it is implausible that
heart failure is in the causal chain for cancers, yet certify-
ing physicians frequently list heart failure and cancers
together on the death certificate. This method identifies
that association and redistributes heart failure deaths
accordingly. A multinomial regression using the match

variables in the base case and the outcome categories
identified using matching yields quite similar results to
the matching algorithm -- but arriving at the model using
multinomial regression alone would have required more
stringent assumptions, as well as fitting a larger number
of models, and therefore more time and computational
resources.

The method described here could be applied to other
intermediate cause-of-death codes that are frequently
recorded on death certificates, such as septicemia (ICD-
10 A40-A41). It could also be applied to underlying
causes of death that are used inconsistently for different
demographic groups, such as diabetes [13], or liver cir-
rhosis and liver cancer. Death records for a demographic
group for whom certification is expected to be of poor
quality can be matched to records for a reference demo-
graphic group for whom certification is of high quality.

This method has several limitations. First, the valida-
tion presented did not test the assumption that the prob-
ability of omitting the underlying cause of death is equal
across causes for which heart failure is listed. To validate
that assumption, a review of medical records and/or
autopsies of a random sample of deaths certified to heart
failure, and a tally of the revised underlying causes of
death, would be needed. Second, death records can only
be matched on recorded covariates. The results could be
improved by measuring and including additional covari-
ates (such as additional indicators of socioeconomic sta-
tus or additional signs and symptoms not recorded on the
death certificate) and assessing the results. Finally, the
redistribution algorithm may not be transferable to other
countries. Even if the assumptions of how heart failure is
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Figure 2 Increase in US adult death rates after redistribution of heart failure deaths. Rates are for adults over age 30 and are age-standardized
using the US age distribution in the year 2000.

used hold true within each of the three countries ana-
lyzed, physician culture surrounding the use of heart fail-
ure is likely to vary from country to country. For example,
18% of recorded deaths were certified to heart failure in
Egypt in 2007 [21]; we suspect that physicians commonly
use heart failure when the cause of death is unknown.
The corresponding correct underlying causes of these
deaths likely represent a broader range of underlying
causes than in the US, Mexico, or Brazil.

A challenge when interpreting cause-of-death statistics
is distinguishing between true epidemiological differ-
ences across demographic groups and variations in qual-
ity of cause-of-death assignment. For example, there is a
clear association both across and within the countries
studied between use of hypertensive heart disease as an
underlying cause of death (and therefore, redistribution
of heart failure deaths to hypertensive heart disease) and
indicators of low socioeconomic status. Individuals with
low socioeconomic status are less likely to have diag-
nosed and controlled their hypertension, and therefore
would be more likely to die from hypertensive heart dis-
ease. However, it is also plausible to argue that hyperten-
sive heart disease is overused as an underlying cause of
death, and that overuse is higher among groups with infe-
rior access to health care. Likewise, the high proportion
of heart failure deaths reassigned to diabetes in Mexico
may represent a true epidemiological difference, or
merely physician practice surrounding the certification of

deaths to diabetes. As with a complete validation of this
method, resolving such doubts would require review of
medical records and/or autopsies of a random sample of
hypertensive heart disease deaths.

ICD rules for designating the underlying cause of death
represent a categorical system of classification; that is,
each death is assigned one and only one cause. Categori-
cal classification has the advantage that deaths from each
disease sum to the total number of deaths [22]. However,
in some cases, including with many heart failure deaths,
several diseases contribute to a given death, and the death
may have been delayed by removing any one of the dis-
ease factors. This can make categorical attribution of the
death to a single cause somewhat arbitrary [22]. Relat-
edly, policymakers may be interested in the entire chain
of risks and diseases that lead to a given death so that they
can estimate the effect of intervening early in the causal
chain (i.e., promoting physical activity to reduce hyper-
tension) or at a later stage (i.e., improving management of
patients with heart failure). Nevertheless, there is cur-
rently no consensus on an alternate (counterfactual)
method for classifying deaths. An important first step is
to collect multiple cause-of-death information, and make
these data available for analysis, as done by the US. This
allows researchers to assign deaths according to their spe-
cific research goals. We encourage other national statisti-
cal offices to collect and disseminate multiple cause-of-
death data to allow for this type of research.
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Conclusions

Reassigning ill-defined deaths to plausible underlying
causes of death reduces bias in cause-specific mortality
rates and increases comparability of mortality statistics
over time and across demographic groups. In this paper,
we suggest that coarsened exact matching be used to
identify causes of death to which deaths should be redis-
tributed and to derive situation-specific redistribution
algorithms. We performed a preliminary validation of the
method, and suggest that it be validated with a review of
medical records or autopsies of deaths certified to heart
failure.

Disclaimer
The view presented in this paper does not necessarily

represent the view of the World Health Organization.

Additional material

[ Additional file 1 Additional tables, which contains Tables S1-54. J

Abbreviations

ARE: average relative error; COPD: chronic obstructive pulmonary disease; IHD:
ischemic heart disease; MCD: multiple cause of death; UCD: underlying cause
of death

Competing interests
The authors declare that they have no competing interests.

Authors' contributions

GK developed the methods described in this paper. GK and GS tailored the
methods for this application. GS carried out the calculations and drafted the
manuscript. KS conceived of and coordinated the study. All authors helped to
write the manuscript, and have read and approved the final manuscript.

Acknowledgements

We would like to thank Rafaet Lozano and Christopher Murray for useful discus-
sions on the methods presented in this paper. We would also like to thank
John Silvi for assistance obtaining data used in this analysis and Maya Mascar-
enhas for thoughtful comments on the figures. This research was partially sup-
ported by Japan's Ministry of Health, Labour and Welfare, and the Bill and
Melinda Gates Foundation. The funding bodies played no role in study design,
data collection, analysis or interpretation, writing, or the decision to submit the
manuscript.

Author Details

'Information, Evidence and Research, World Health Organization, 20 Avenue
Appia, 1211 Geneva, Switzerland, 2Institute for Quantitative Social Science,
Harvard University, 1737 Cambridge Street, Cambridge, MA 02138, USA and
3Department of Global Health Policy, University of Tokyo, 7-3-1, Hongo,
Bunkyo-ku, Tokyo, 113-0033, Japan

Received: 11 November 2009 Accepted: 13 April 2010
Published: 13 April 2010

References

1. Mahapatra P, Shibuya K, Lopez AD, Coullare F, Notzon FC, Rao C, Szreter S:
Civil registration systems and vital statistics: successes and missed
opportunities. Lancet 2007, 370(9599):1653-1663.

2. World Health Organization: The global burden of disease - 2004 update
Geneva: World Health Organization; 2008.

3. World Health Organization: International Statistical Classification of Disease
and Related Health Problems Tenth edition. Geneva: World Health
Organization; 1992.

Page 9 of 9

4. Hanzlick R: Improving accuracy of death certificates. JAMA 1993,
269:2850.

5. Yamashita T, Ozawa H, Aono H, Hosokawa H, Saito |, lkebe T: Heart
disease deaths on death certificates re-evaluated by clinical records in
a Japanese city. Jpn CircJ1997,61:331-338.

6. Smith Sehdev AE, Hutchins GM: Problems with proper completion and
accuracy of the cause-of-death statement. Arch Intern Med 2001,
161:277-284.

7. Ravakhah K: Death certificates are not reliable: revivification of the
autopsy. South Med J 2006, 99:728-733.

8. Johansson LA, Bjorkenstam C, Westerling R: Unexplained differences
between hospital and mortality data indicated mistakes in death
certification: an investigation of 1,094 deaths in Sweden during 1995,
J Clin Epidemiol 2009, 62:1202-1209.

9. Roulson J, Benbow EW, Hasleton PS: Discrepancies between clinical and
autopsy diagnosis and the value of post mortem histology; a meta-
analysis and review. Histopathology 2005, 47:551-559.

10. Lopez AD, Mathers CD, Ezzati M, Jamison OT, Murray CJ: Global and
regional burden of disease and risk factors, 2001: systematic analysis of
population health data. Lancet 2006, 367:1747-1757.

11. Lozano R, Murray CJ, Lopez AD, Satoh T: Miscoding and misclassification
of ischaemic heart disease mortality. In Global Program on Evidence for
Health Policy Discussion Papers Geneva: World Health Organization; 2001.

12. Murray CJ, Kulkarni SC, Ezzati M: Understanding the coronary heart
disease versus total cardiovascular mortality paradox: a method to
enhance the comparability of cardiovascular death statistics in the
United States. Circulation 2006, 113:2071-2081.

13. Murray C, Dias RH, Kulkarni SC, Lozano R, Stevens GA, Ezzati M: Improving
the comparability of diabetes mortality statistics in the United States
and Mexico. Diabetes Care 2007, 31:451-458.

14. lacus SM, King G, Porro G: Matching for causal inference without
balance checking: coursened exact matching. 2008 [http//
gking.harvard.edu/files/cem.pdfl.

15. Krum H, Abraham WT: Heart failure. Lancet 2009, 373:941-955.

16. He J,Ogden LG, Bazzano LA, Vupputuri S, Loria C, Whelton PK: Risk factors
for congestive heart failure in US men and women: NHANES |
epidemiologic follow-up study. Arch Intern Med 2001, 161:996-1002.

17. Lu TH: Using ACME (Automatic Classification of Medical Entry) software
to monitor and improve the quality of cause of death statistics. J
Epiderniol Community Health 2003, 57:470-471.

18. Naghavi M, Ross J, Lozano R: Taking out the trash: rethinking garbage
codes and redistribution methods. Seattle: Institute for Health Metrics
and Evaluation; 2008.

19. Secretaria de Salud de México: Sistema Estadistico de Defunciones.

http//www.sinais salud.gob.mx/.

20. Ho D, ImaiK, King G, Stuart E: Matching as nonparametric preprocessing
for reducing model dependence in parametric causal inference.
Political Analysis 2007, 15:199-236.

21. World Health Organization: WHO Mortality Database. 2009 edition.
World Health Organization; 2009.

22. Mathers CD, Ezzati M, Lopez AD, Murray CJL, Rodgers A: Causal
Decomposition of Summary Measures of Population Health. In
Summary Measures of Population Health: Concepts, Ethics, Measurement and
Applications Edited by: Murray CJL, Salomon J, Mathers CD, Lopez AD.
Geneva: World Health Organization; 2002.

doi: 10.1186/1478-7954-8-6

Cite this article as: Stevens et al, Deaths from heart failure: using coarsened
exact matching to correct cause-of-death statistics Population Health Metrics
2010, 86




