Auton Agent Multi-Agent Syst

is biased to reward those agents which had issued “better” bids (according to the mediator’s
criteria). Though it is not possible to know, with a one-shot negotiation, whether agents are
issuing “better” bids due to a socially-oriented strategy or to a more correlated utility space,
the expected effect is that agents will have an incentive to select the bids they send not only
according to their own utility, but also to the mediator’s criteria, which would be set to favor
social welfare. '

5.2 Stability analysis

Stability analysis is oriented to determine the possibility of an agent manipulating the nego-
tiation to its own benefit. In the model we are dealing with, this manipulation may occur
when an agent deviates from the socially optimal strategy taking a more sclfish approach.
To evaluate this empirically, we have performed experiments comparing the utility obtained
by an individualist agent (or, more appropriately, a selfish agent, since it seeks to maximize
its own payoff), using its individually optimal strategy «; = 1, against the utility obtained
by the agent when using the corresponding socially optimal strategy «;, assuming the rest
of the agents are using «;. Experiments have been made for utility spaces with different
correlation lengths. Furthermore, since the model is designed for multi agent negotiations,
experiments have been performed for different number of selfish agents, thus studying the
effect of possible coalitions or coincidences.

Figures 8 and 9 show the experiment results for SA-Q and MWIS-Q, respectively, for
six agents and six issues. Since the aim of the experiment is to study the stability of the
proposed protocol, none of the weighted metrics proposed in the previous section has been
used, and social welfare is computed at the mediator using Nash product. In addition, the
mediator performs deal identification using the bid quality factors declared by the agents
(i.e. there is no ay,). The figures show the ratio between the utilities obtained by selfish
agents and the utilities obtained when there are no selfish agents for different correlation
lengths and different number of selfish agents, for scenarios of different complexity. The
horizontal axis represents the number of individualist or selfish agents, while in the verti-
cal axis we have represented the ratio between utilities as notched box and whisker plots.
In each figure, column labelled as “0” represents the dispersion of utility gains when there
are no selfish agents. We can see that there are only significative gains for selfish agents in
medium complexity scenarios. In high-complexity scenarios (Figs. 8a and 9a), the presence
of selfish agents makes the negotiations fail, and thus there is no incentive to deviate from
the socially optimal strategy. When utility space complexity decreases (Figs. 8b and 9b), we
can see that a selfish agent may obtain gains over 40% for SA-Q and 200% for MWIS-Q.
Increasing the number of selfish agents makes negotiations fail, thus making unlikely that
coalitions will happen. For medium-low complexity scenarios (Figs. 8¢ and 9¢) there is still
a significant gain for selfish agents, and this gain increases with the number of selfish agents
up to a number of three (coalitions between more agents make negotiations fail). Finally, for
the less-complex scenarios (Figs. 8d and 9d), a selfish attitude does not imply a significant
gain in utility, since all agents achieve high utility values using the socially optimal strategy.
Tables 3 and 4 summarize the results for SA-Q and MWIS-Q, respectively, showing the medi-
ans and the 95% confidence intervals for 100 runs of each experiment. From these results
we can conclude that the model is stable in low complexity and high complexity scenarios,
and that the scenarios of medium complexity make stability problems arise, because of the
existing incentive for agents to deviate from the social optimal strategy to their individually
optimal one (& = 1.0). As we have seen in Sect. 4.2.2, having all agents deviating to their
individually optimal strategy makes the negotiations fail, and thus this situation is the worst
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Fig.8 Stability analysis of the protocol using SA-Q for scenarios with different correlationlengths. a yr = 2.8,

by=4cy=43,dy =59

scenario induced by individually rational combinations of strategies, yielding zero utility for
all agents, which imply an infinite expected price of anarchy (EPoA). This is an undesirable
property of the model, and requires the application of additional mechanisms.

In the previous section, a set of alternative mechanisms for deal identification at the
mediator were proposed. Those mechanisms were intended to incentivize agents to social
behavior, and thus solve the stability problems of the model. To evaluate the effect of the
proposed mechanisms on the stability of the protocol, we have repeated the experiments for
the different approaches discussed in Sect. 5.1:

—  Nash: Reference approach, using Nash product.

— Average_V: Product weighted by average bid volume (Eq. 4).

—  Average_(Qq.s: Product weighted by average quality factor (Eq. 5), with o, = 0.5, cor-
responding to the theoretical socially optimal strategy. This ey, is also used for deal
identification at the mediator, as described in Sect. 5.1. '

—  Average_(g: Product weighted by average quality factor, with o, = 0, corresponding
to a deal identification strategy totally decoupled from agent utility (the mediator only
considers bid volume). This o, is also used for deal identification at the mediator.

Figures 10 and 11 present the results of the experiments for SA-Q and MWIS-Q, respec-
tively. The figures show the results for 6 agents and 6 issues with utility spaces of correlation
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Fig. 9 Stability analysis of the protocol using MWIS-Q for scenarios with different correlation lengths.
ay=28by=4cy=43,dy =59

Table 3 Stability analysis for SA-Q with six agents and six issues: gain for individualist agents against social
agents

¥ Number of individualist agents

1 2 3

median conf. interval median conf, interval median conf. interval
2.8 - - - - - -
31 - - - - -
4.0 1.5440 [1.4170, 1.6710] - - - -
43 1.0861 [1.0436, 1.1286] 1.1203 [1.0902, 1.1503]) 1.1648 [1.1207, 1.2090}
4.6 0.9993 [0.9663, 1.0322] 1.0208 [0.9981, 1.0435] 1.001 10.9796, 1.0224]
5.9 0.9693 [0.9438, 0.9949] 0.9976 [0.9775, 1.0177] 0.9907 [0.9715, 1.0100]

lengths ¥ = 4 and ¥ = 4.3, which were identified in the previous experiment as the most
critical scenarios regarding stability. Each graphic presents a box-plot for the final outcomes
of 100 runs of the experiment. The horizontal axis represents the approach under evalua-
tion, while in the vertical axis we have represented the gain for individualist agents in each
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Table 4 Stability analysis for MWIS-Q with six agents and six issues: gain for individualist agents against
social agents

¥ Number of individualist agents

1 2 3

median conf. interval median conf. interval median conf. interval
2.8 - - - — - -
3.1 - - - - -

4.0 2.0086 [1.8574, 2.1598] - - - -
43 1.1066 [1.0610, 1.1522] 1.1986 [1.1431, 1.2541] - -
4.6 0.9795 [0.9567, 1.0024] 1.0081 {0.9870, 1.0292]) 0.9785 10.9567, 1.0003]
59 1.0336 [1.0081, 1.0591] 1.0243 [1.0043, 1.0443] 0.9811 [0.9598, 1.0024]
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Fig. 10 Effect of the different mechanisms on the stability of the protocol for SA-Q in the most critical
scenarios. a ¥y =4.0,b ¢ =43

negotiation. We can see that the mechanism based on average volume provides not enough
improvement in stability, since for all cases median utility results are higher for selfish agents,
thus maintaining the incentive for agents to deviate from the socially optimal strategy. The
mechanism based on average quality factor, however, significantly mitigates the gain for
selfish agents, removing the incentive to choose the previously individually optimal strategy
( = 1). Due to the effect of this mechanism, the situation where all agents take selfish
strategies is no longer induced by individually rationality, thus avoiding the infinite Expected
Price of Anarchy values. This adequately improves the stability of the protocol, and this
improvement is greater for &, = 0. From these results we can conclude that decoupling deal
identification from the attitudes of the negotiating agents by making the mediator calculate
its own quality factor improves the strategic stability of the negotiation process, significantly
decreasing Expected Price of Anarchy.

Since the techniques give preference to socially oriented offers against higher utility offers,
this may make final deals to be further from the theoretical optimum. To evaluate this, as
discussed in Sect. 2.1.3, we can consider the Price of Stability (PoS) imposed by the proposed
mechanisms. As it occurred with PoA, we cannot use Price of Stability definition directly,
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Fig. 11 Effect of the different mechanisms on the stability of the protocol for MWIS-Q in the most critical
scenarios. a ¢ =4.0,by =43

Table 5 Effect of the different mechanisms over social optimality rate (and thus, over expected price of
stability) for SA-Q

Y Mechanism

Reference Average_V Average_Q_0.5 Average_Q_0

Med.  Conf.interval Med. Conf. interval Med.  Conf.interval Med.  Conf. interval

2.8 0326 [0.305,0.347] 0.633 [0.608,0.658] 0.614 {0.587,0.641] 0.632 [0.609, 0.655]
3.1 0.530 [0.511,0.549] 0.588 [0.562,0.614] 0572 [0.546,0.598] 0.571 [0.545,0.597]
40 0.769 [0.740,0.798] 0.620 [0.583,0.657] 0.600 [0.566,0.634] 0.625 [0.594, 0.656)
43 0960 [0.951,0.969] 0.734 [0.696,0.771] 0.756 [0.715,0.797] 0.727 [0.688,0.767]
46 1.000 [1.000,1.000] 0.836 [0.811,0.860] 0.856 [0.831,0.881] 0.847 [0.826,0.869]
59 1.000 [1.000,1.000] 0.939 [0.922,0956] 0.953 [0.938,0.967] 0.967 [0.953,0.981]

since it relies on Nash equilibrium conditions. We can, however, define Expected Price of
Stability (EPoS) in an analogous way as we defined EPoA in the previous section:

Definition 15 Expected Price of Stability (EPoS) The Expected Price of Stability in a non-
deterministic game is the ratio between the maximum expected social welfare achievable by
means of a feasible agent strategy combination and the maximum expected social welfare
achievable by means of an individually rational agent strategy combination.

maxses E [sw(s)]

EPoS= ——Mm———,
maxses, E [sw(s)]

where § is the set of all feasible strategy combinations of the game, S;, C § is the set
of all strategic combinations which are individually-rational for the negotiating agents, and
E [sw(s)] is the expected social welfare for a given strategy combination s.

Tables 5 and 6 present the median social optimality rates for SA-Q and MWIS-Q, respec-
tively, using the different mechanisms proposed, when all negotiating agents choose the
socially optimal strategy. The statistic on this ratio is analogous the inverse of the Expected
Price of Stability defined above. As a reference, the results obtained when no asymmetrical
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Table 6 Effect of the different mechanisms over Social Optimality Rate (and thus, over Expected Price of
Stability) for MWIS-Q

¥ Mechanism

Reference Average V Average_Q_0.5 Average_Q 0

Med. Conf.interval Med. Conf. interval Med. Conf.interval Med.  Conf. interval

2.8 0553 [0.521,0.585] 0.503 [0.470,0.536] 0.536 [0.504,0.567] 0.520 [0.489, 0.550]
3.1 0.681 [0.652,0.710] 0.583 [0.555,0.611] 0.606 [0.578,0.634] 0.596 [0.573,0.620]
4.0 0.949 [0.925,0973] 0.838 [0.809,0.867}] 0.773 [0.751,0.795] 0.814  [0.750, 6.838]
43 0975 [0.952,0.981] 0.964 [0.958,0970] 0962 [0.954,0.969] 0.973 [0.966, 0.981]
46 1.000 [1.000,1.000] 1.000 [0.995,1.000] 1.000 10.995,1.000] 1.000 [0.994, 1.000]
5.9 1000 [1.000,1.000] 1.000 [1.000,1.000) 1.000 [1.000,1.000] 1.000 [1.000, 1.000]

social welfare metric is used have been included. Results show that, for SA-Q, the approaches
which improve stability suffer a significant decrement in optimality for the most correlated
scenarios, and an increment in optimality for the most uncorrelated ones (due to the decre-
ment in failure rate). For MWIS-Q a similar trend is observed, though the optimality loss is
lower. We can conclude that, though it is possible to stabilize the model to a great extent by
having the mediator compute its own quality factor Q, this stability has a price, which is the
loss of social optimality.

6 Incentive compatibility analysis

As we have seen in Sect. 2.1.3, incentive-compatibility is defined as the property of a nego-
tiation mechanism which makes telling the truth the best strategy for any agent, assuming
the rest of the agents also tell the truth. Though there are negotiation models where incentive
compatibility can be proved analytically [11], these proofs are difficult to derive in the nonlin-
ear domain. This is specially true for heuristics approaches with a great degree of variability,
such as the model we are dealing with. In these cases, experimental evaluations may be con-
ducted to assess the possible influence of insincere revelation of information over the stability
of the negotiations. This is the approach we have taken to study incentive-compatibility in
our model.

6.1 Experimental settings

Incentive compatibility analysis is oriented to evaluate the possibility for negotiating agents
to manipulate the negotiation to their own benefit by means of revealing insincere informa-
tion. In the negotiation model we are dealing with, information revealed to the mediator is the
set of agents’ bids. These bids represent regions within the solution space. Each offer has an
associated utility value, a volume, and an associated quality factor value. Since bid volume is
directly related to the region represented by the bid, it does not seem feasible to fake it, since it
can be easily checked by the mediator. Quality factor may be faked, but since the mediator is
very likely to recompute it using its own « parameter, this strategy is also harmless. Finally,
agents may fake bid utility. Insincere information revelation about bid utility may gener-
ally occur in two ways: exaggerating upward or downward the utility values of all bids, or
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exaggerating the utility values of some bids with respect to the others. Exaggerating all bids
is not profitable with the proposed deal identification mechanisms, since bid selection at the
mediator is performed independently for each agent. This means that the bids from different
agents do not compete among each other to be selected as part of a solution. In contrast,
the different bids of a single agent compete among themselves. Taking this into account, an
agent could try to exaggerate the utility value of its preferred bids, thus trying to increase
the probability of the mediator choosing those preferred bids to form deals. As far as social
welfare is concerned, this is a problem if the set of exaggerated bids is small with respect to
the total set of bids, since that would reduce the number of effective bids considered by the
mediator, thus reducing deal probability.

To study the effect of utility exaggerations over the negotiations, we have conducted exper-
iments comparing the utility obtained by an insincere agent with the utility obtained being
sincere, assuming the rest of the agents are sincere. The behavior of the insincere agent is
modeled by exaggerating the utility of a portion of the agent’s highest utility bids. We have
considered different degrees of exaggeration for the insincere agent.

~  Reference: There are no insincere agents.

— 75%: The insincere agent exaggerates 75% of its bids.

—  50%: The insincere agent exaggerates half of its bids.

— 25%: The insincere agent exaggerates one quarter of its bids.
— 12.5%: The insincere agent exaggerates one eigth of its bids.

In all cases, exaggerated bids are the ones which yield better utility for the agents before
exaggeration. Bid exaggeration is performed by multiplying the affected bids by a constant.
The constant has been chosen to be higher than the average utility for agent bids, in order to
make more likely that exaggeration could significantly impact the mediator’s choice. In these
experiments, the value for this constant is 10000. Again, experiments have been repeated for
utility spaces with different values for the correlation length .

6.2 Experimental results

Experiment results for SA-Q y MWIS-Q for six agents and six issues are shown, respectively,
in Tables 7 and 8. Each table represents the median ratios between the utilities obtained by
insincere and truthful agents. The results are statistically significant for P < 0.05. We can
see that there are only significative gains for the insincere agents in medium complexity
scenarios. In high-complexity scenarios, the presence of the insincere agent makes the nego-
tiations fail, and thus there is no incentive to deviate from the socially optimal strategy. When
utility space complexity decreases, we can see that an insincere agent may obtain gains over
40% for both SA-Q and MWIS-Q depending on the degree of exaggeration. Finally, for the
less-complex scenarios, insincere revelation of information does not imply a significant gain
~ in utility, since all agents achieve high utility values by being sincere.

Figure 12a and b show the box plots of the results for 100 runs of the experiments for
SA-Q and MWIS-Q, in the most critical scenarios identified above (i.e. ¥ = 4.0 for SA-Q
and ¥ = 4.3 for MWIS-Q). We can see a different evolution in the gain for the insincere
agent as the degree of exaggeration varies. For SA-Q, this gain increases as the proportion of
exaggerated bids decreases, which is reasonable taking into account that, if the mediator is
successfully tricked into choosing bids only from the exaggerated set, the average utility of
the bids in the set is higher (they are its better n bids). Exaggerating too much, however, can
excessively reduce the selected bid set, thus impacting deal probability and making negoti-
ations fail, which happens for a 12.5% degree of exaggeration. For MWIS-Q the maximum

@ Springer

205



Auton Agent Multi-Agent Syst

Table 7 Incentive-compatibility analysis for SA-Q

¥ Degree of exaggeration

Reference 75% 50% 25% 12.5%
28 0.9875 1.0061 - - -
31 0.9903 1.0107 - - -
4.0 0.9904 1.2708 1.4464 1.5071 -
4.3 0.9882 0.9662 1.0042 0.9727 0.9981
4.6 1.0015 1.0037 0.9858 0.9866 0.9974
59 1.0042 1.0107 1.0010 0.9840 1.0040

Table 8 Incentive-compatibility analysis for MWIS-Q

¥ Degree of exaggeration

Reference 75% 50% 25% 12.5%
2.8 1.0022 0.9656 - - -
3.1 0.9783 09777 - - -
4.0 1.0035 1.0051 - - -
4.3 0.9763 1.1459 1.4785 1.3523 1.1614
4.6 0.9882 0.9463 0.9991 0.9672 0.9968
59 1.0091 1.0145 1.0054 0.9544 1.0139

gain is achieved for 50% degree of exaggeration, and further narrowing of the exaggerated
bid set makes the gain for the insincere agent decrease, but it does not make negotiations fail.
This is an effect of the higher correlation in the MWIS-Q selected scenario (¢ = 4.3), which
makes deal probability higher. Finally, we can observe that exaggeration of the 75% of the
bids has no significant effect, since most agent bids are included in the exaggerated set in this
case. From these results we can conclude that there are incentives for the agents to behave
insincerely in those scenarios, and therefore additional mechanisms should be introduced in
the model to make it incentive-compatible.

6.3 Incentivizing sincere behavior in the auction-based negotiation protocol

As we have seen, the proposed model is prone to manipulations by means of exaggerations
made by the agents, and there is an incentive for agents to behave insincerely. This is an
undesirable property in a negotiation model, and may lead to further stability problems.
Therefore, we seek for mechanisms which counter this effect, incentivizing sincere revela-
tion of information. A possibility to achieve this is to normalize the utility values assigned
by the agents to their bids, thus lowering the absolute differences in utility. We propose three
different possibilities regarding utility normalization:

—  Normalization to maximum utility : obtained by dividing each agent’s bid utility by the
maximum utility value issued by that agent:

u (b;)

b)) = ———————.
Uy ( l) maijeB u (b})

6

Using this normalization mechanism we can avoid the manipulation of the final deal
by exaggerating upwards the utility values of the preferred offers. It does not prevent,
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Fig, 12 Detail of the incentive-compatibility analysis for the most critical scenarios. a SA-Q ¢ = 4.0,
bMWIS-Q ¢ =4.3

however, downward exaggerations, that is, to assign an extremely low value to the bids
which are less profitable for the agent.

—  Bounded maximum-minimum normalization: Atterupts to prevent the manipulation of
the negotiation model through upwards or backwards exaggerations. It is given by the
expression

u (b;) — tmin
un (b)) = u;nin + u( : o (‘u;nax - u;nin) , )
max min

@ Springer

207



Auton Agent Multi-Agent Syst

where umax = Maxp;ep U (bj) , Umin = minbiea u (bj) and up, and uf,. are parame-
ters chosen by the mediator. In this way, a utility mapping from the interval [#min, ¥max]
to the interval [ul; , u},, ] is performed for all bids, putting an upper bound %%ﬂﬂ& to the

min*
ratio between the utilities of an agent’s bids. .
~  Ordinal normalization. obtained by ordering the different bids of an agent according
to their utility or quality factor, and mapping this order to a monotonically increasing
succession of utility values, regardless of the original utility values. For instance, if B
is the set of bids for an agent, in ascendent order of utility, and taking the arithmetic
successions = {1, 2, ..., ng} as the mapping function, the normalized bid utility values
would be of the form

un (b)) =s; = 1.

Our hypothesis is that using these normalization methods may positively contribute to
the incentive-compatibility of the model. To evaluate the effect of the proposed mechanisms
over the incentive-compatibility of the model we have repeated the experiments performed
above for the different normalization mechanisms proposed:

1. Reference: Utility values are not normalized.

2. Umax: Mediator uses normalization to maximum utility (Eq. 6).

3. Bounded: Mediator uses bounded maximum-minimum normalization (Eq. 7).
4. Ordinal: Mediator uses ordinal normalization.

Figure 13 a and b show the box plots of the results for 100 runs of the experiments for
SA-Q and MWIS-Q in the most critical scenarios identified above, that is, ¢ = 4.0 with
a 25% degree of exaggeration for SA-Q and ¥ = 4.0 with a 50% degree of exaggeration
for SA-Q. We can see similar trends for both cases. Though all proposed normalization
techniques reduce the incentive for the insincere agent to exaggerate, only bounded max-
imum-~minimum normalization makes the expected gain for the insincere agent negligible,
thus effectively removing the incentive to exaggerate, improving incentive-compatibility of
the model.

7 Concluding remarks

Situations of high price of anarchy, which imply that individual rationality drives the agents
towards strategies which yield low individual and social welfares, should be avoided when
designing negotiation mechanisms. This is specially important when dealing with complex
negotiations involving highly rugged utility spaces, since in these cases “low individual and
social welfare” often means that the negotiations fail. Therefore, an strategic analysis is para-
mount for any model intended to work for highly rugged utility spaces, in order to determine
the strategic properties of the model and to allow to establish additional mechanisms for -
stability if needed.

In this paper we have performed a strategy analysis for the auction based negotiation
protocol for highly rugged utility spaces we proposed in refs. [31,55]. This strategy analysis
has started studying the existence of individual and social optimal strategy profiles. This has
revealed the existence of an individual optimal strategy, which is different from the socially
optimal strategy. A more in-depth stability analysis has shown that, for highly correlated or
lowly correlated scenarios, there is no incentive for negotiating agents to deviate from the
socially optimal strategy. However, for medium complexity scenarios a selfish agent may
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Fig. 13 Effect of the proposed normalization mechanisms for the most critical scenarios. a SA-Q, ¢ =
4.0, 25% degree of exaggeration. b MWIS-Q, i = 4.3, 50% degree of exaggeration

L

benefit from using its individually optimal strategy, which raises stability concerns, leading
the model to high expected price of anarchy values. To solve this, we have proposed a set of
mechanisms intended to incentivize social behavior among negotiating agents. These mech-
anisms are based on biasing deal identification at the mediator towards those bids which
are more socially oriented, thus decoupling the search for social welfare from the individual
agents’ goals. Experiments show that the proposed mechanisms successfully stabilize the
protocol, avoiding the situations of infinite expected price of anarchy.
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Finally, incentive compatibility issues in the protocol have been analyzed, showing that the
model may be manipulated by agents which exaggerate the utility values of a subset of their
bids, achieving significant gains for the insincere agents in medium correlated scenarios.
To solve this, a set of normalization techniques have been proposed in order to incentiv-
ize sincere behavior. Experiments have shown that, though all proposed techniques reduce
the incentive for an agent to exaggerate its bids, only the proposed bounded maximum-
minimum normalization mechanism effectively removes the expected gain for being insin-
cere, thus making the model incentive-compatible.

Though the experimental analysis performed has proven the effectiveness of the stability
and incentive-compatibility mechanisms proposed, there is still plenty of research to be done
in this area. We are interested on extending the strategy analysis presented in this work to an
iterative version of the studied negotiation protocol, which would allow the agents to refine
their bids in successive iterations of the protocol. This would raise very interesting additional
considerations regarding agent and mediator strategies, since it would allow to develop adap-
tive measures. For the negotiation agents, this would mean, for instance, to be able to acquire
a reasonable belief about the other agents’ strategies during the negotiation, and to adapt its
own strategy accordingly. This would drastically change the strategy analysis, since it would
have to be conducted in a similar manner to a Bayes-Nash problem. The different results of
the strategy analysis would probably impact the mechanisms needed at the mediator, and even
more taking into account that the mediator could also take advantage of adaptive measures,
trying to deduce agent strategies during the negotiation process, and to apply the different
mechanisms as needed. In addition, the effect of the correlation between the utility functions
of different agents (as opposed to the correlation length within each agent’s utility function)
should be analyzed. Finally, we are working on the generalization of these approaches for
other negotiation protocols and utility function types.
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A Appendix: Deduction of the expressions used in the probabilistic analysis

This section deduces these expression used in Sect. 4.1 for the probabilistic analysis of the
auction based negotiation model. For ease of understanding, the deduction of the expres-
sions is presented in a progressive manner. First of all, deal probability is calculated for an
exchange between two agents of an elemental bid (a single unitary bid for each agent, for
a single issue), and then it is shown how the expression varies when the number of issues
and agents increase. Then, the resulting expression is generalized for an arbitrary number of
bids per agent. Finally, given the expression for deal probability, expressions for expected
utility and expected deal utility (defined as the expected utility conditioned to the event of a
successful deal) are determined.

A.1 Deal probability
Considering the negotiation protocol described in Sect. 3.2, the probability of finding a deal
is given by the probability of finding a common intersection of at least one bid of each agent.

The simplest scenario we can devise is a bilateral, single issue negotiation where each agent
makes a single, elemental bid, that is, a bid that represents a single point in the solution space.
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Let a y b be the negotiating agents, and let x?, x? € D be their respective offers in a
finite domain D with cardinality | D|. The probability Pgolution of a deal or solution to the
negotiation problem in this case is given by the probability of the coincidence of both bids.
In this way,

Prawion = | p[(6¢ =90 (2 =) ] = 2 p[(* =) 0 (* = )]

xeD xeD

xi=xevents are disjoint

1 1 | D] 1
E xﬂzx xb:x = —_—— = — (8)
2r (e =) (=) Z 511Dl ~ |pP DI

xeD

v

xa and «¢ are independent

where we have assumed as the probability that a bid has a given value p (x* = x) = ]%[,
which corresponds to a uniform bid distribution, for a maximum uncertainty scenario.

Extending the previous expression to a bilateral negotiation about # issues is straightfor-
ward. Again, let us consider the simplest case of a single elemental bid per agent. In this case,
each bid will represent a point in an n-dimensional solution space, and the deal probability
will be given by the probability of ail issue values corresponding to one agent’s bid matching
the respective values of the issues corresponding to the other agent’s bid.

Leta y b be the negotiating agents, and let x®, x® € D be their respective offers, such that

the bid issued by agent j is given by ¥ = {x,’ iel,...,n }, and such that x,.j e DVi,j.
The probability of a deal or solution to the negotiation problem in this case is given by the
expression

Psotution = [ ) [U P =x)n(x} =")]]

I<i<n LxeD

Up[(xf:x)ﬂ(xf:x)]}: ' Il—l=ﬁ ®)

I<izn

I
—

issue matches are independent events

In a similar way, this expression may be generalized to the case of n, agents, taking into
account that deal probability in this case is given by the probability of a match between the
respective values for all issues of all agents’ bids, and that each agent bid is independent
from the others’. In this way, the expression for the probability of finding a solution or deal
in this case will be the following:

Powion= () {U2?| N (x;’ =x)

1<i<n | xeD 1<j<n,

=N JU[ II #(=5)

I<i<n | xeD | I<j<n,

It
-
™M
—
]
-5
li

I<i<n | xeD | 1€j<n,
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NI T 5
1<i<n | xeD | 1<j<n, D]

N )= T {z=)
iz LD LT g LDt
_ 1

|D|n(n’1—l)'

(10)

So far we have considered only single, elemental bids, that is, each agent issued a sin-
gle bid representing a single point in the solution space. This assumption allowed us to
ensure deal events were disjoint (there was only a possible deal), which allowed to compute
probabilistic unions as sums of probabilities. Generalizing to the case of multiple bids makes
multiple points of agreement possible, and thus makes necessary to take into account possible
intersection among deal events to compute probabilistic unions.

Given asetof N events Ej, ..., Ey, with known probabilities p (E;), and not necessarily
disjoint, the probability of the union va=1 E; is given by

j=1

If the events are independent and equiprobable, we have that p (E;) = p, p(E;j) =1 —p,
and the probability of the intersection above is given by p (ﬂ N E) =({1- p)N . In this
case, we can see that the above expression leads to the following:

N
p(UE,-)=1—(1—p)”

i=1

N : N .
=2 = (j )p’- an

This result can be used to generalize the expression for deal probability obtained in the
previous section to the case of multiple offers. Let us consider again a set of n, agents nego-
tiating about r issues. In this case we will consider that each agent k sends nﬁ elemental
bids. We consider elemental bids without loss of generality, since any other kind of bids (e.g.
hyper-rectangles) can be decomposed to elemental bids. There may be overlaps between the
different bids of an agent (i.e. they may or may not be disjoint). The probability Pyoprion that
there is a solution or deal to the negotiation problem will be given by the probability that ar
least one of the possible combinations of bids from the different agents results in a deal. If
each agent k issues n’g bids there are [ | ng possible combinations of one offer of each agent.
The event C; denotes the fact that the combination { results in a deal, The different events C;
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are equiprobable, and their probability is given by Eq. 10, reproduced here for convenience:

1
pC) = i_Bi]n_(na_l_)’

Taking this into account, and using Eq. 11 for the computation of the probability of a
union of equiprobable events, deal probability for the set of bids is given by the expression

H'l;p Hn,’gp an
Pawion=p| |J G| = D (-1 (j fw)p(cn’
=1 Jj=1

11+,

. [EH 1 j
= Z; 1/ (_j " )ipre=) - (12)
J:

A.2 Expected utility and expected deal utility

Once deal probability has been determined, it is easy to compute expected utility. By defi-
nition, the expected value of a random variable X which takes values from a domain D is
computed as the sum D, .5, x - p (X = x) of the products of each possible value for the
variable and the respective probability that the variable takes each value. For the case of
the expected utility for an agent, the possible values of the variable are the utility values
associated to the different bids, and the probability that the variable takes each value is the
probability that each bid results in a deal. To compute this probability, we have to take into
account that each elemental bid x“,] of an agent j may be part of ]'[k?é ; n’,ﬁp events C (il’ )l,
representing the fact that the different combinations of this bid with the different elemental
bids of the rest of the agents may result in a deal. In this way, the deal probability for a given
elemental bid X is given by

k x
ITez; Thp Hk#j "

. . k 1 i
AR ] - _pyitt { Llezj sy
p(E#)=r| U c(#), ,gl 1) (j 5T )
From this expression, the expected utility for an agent j is computed as follows:

P

i=1
nj nk jnkp .
) ,z:: () ng oo (Pk# n’;p) (IDIn_'_(lna—l))J

%
Hhé j Pop

j
"bp N

i . n nk 1 7
Zlu(x:') zl (—1)+! (j k+j Mop o) | (13)
i= j=

j .
where Z?i"l u ()E;’ ) is the sum of the utilities of all points issued as bids by the agent. For

the case of non-elemental bids, we consider each agent j issues ni bids. Each bid m of the
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agent represents an iso-surface of the agent’s preference space (e.g, an hyperrectangle), and

thus may be decomposed in vJ, elemental bids of the same utility 7, where v}, is the volume
of the iso-surface represented by the bid m. In this case, we can establish the equivalence

ni ; k
i—fl u (fc{ ) = Z;Ll ufn . v,",',, and the expression for the expected utility results as follows

k
Mes; mip

k
i k j
il — ko ok yJ+Hl ch;éjnb ____1__~
£[]= 2 ,Zl b (f p)(tm"(""-” ’

which is the expression we saw for Eq. 2.
Finally, expected deal utility for an agent may be obtained easily, since it only depends on
the utility distribution within the set of bids issued by the agent. Assuming a deal have been

reached, the probability for each elemental bid to be part of the deal will be p (Jfl‘i |deal) =

*5-— , assuming the different elemental bids are equiprobable (maximum uncertainty scenario).
nbp
Taking this into account, expected deal utility is given by

n" n{,

7
- =J =J _ =)
E[u’ |deal] = Zu (x,.) p (xi Ideal) = —].—Zu (xi ) R
i=1 Bpp i=t
which, for hyperrectangular bids, takes the form we saw in Eq. 3:
[
Z4mb:1 uz" ) U;r"

7
nbp

E[u! |deal] = (14)
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