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Finally, combinatorial auctions [21,29,72,73,82,86] can enable large-scale collective
decision making in nonlinear domains, but only of a very limited type (i.e. negotiations
consisting solely of resource allocation decisions). Multi-attribute auctions, wherein buyers
advertise their utility functions, and sellers compete to offer the highest-utility bid [5,78,64]
are also aimed at a fundamentally limited problem (a purchase negotiation with a single
buyer) and require full revelation of preference information.

In summary, in the existing research nearly all the models which assume issue interde-
pendency rely on monotonic utility spaces, binary valued issues, low-order dependencies,
or a fixed set of defined a priori solutions. Simplification of the negotiation space has also
been reported as a valid approach for simple utility functions, but it cannot be used with
higher-order issue dependencies, which generate highly uncorrelated utility spaces. There-
fore, new approaches are needed if automated negotiation is to be applied to settings involving
non-monotonic, highly uncorrelated preference spaces.

3 An auction based approach for negotiations in highly uncorrelated, constraint based
utility spaces

In this work we analyze agents’ strategic behavior and mechanism stability for a mediated,
auction-based negotiation approach we designed for highly uncorrelated, constraint based
utility spaces [30,54]. To make such strategic analysis easier to understand, in this section
we motivate and review the most relevant aspects of our negotiation model.

3.1 Negotiation domain and agent preference model

We explore the problem of negotiating complex contracts, which was first introduced by
Klein et al. [39]. Contracts are defined as a set of issues or clauses, each of which may have
a value. The aforementioned authors limited encounters to bilateral negotiations (i.e. two
negotiating agents), and clauses were limited to binary values, meaning than the clause was
or not present in a given contract. Even with such restrictions, the domain of the solution
space may become very large. For instance, a negotiation scenario with 50 possible clauses
would yield a search space of about 10'% possible contracts. This, along with the assump-
tion of non-linearity in the agents’ preference spaces, imposed serious difficulties for the
negotiation. First, agents needed to use nonlinear optimization mechanisms to try to find
desirable contracts within their own preference spaces. Once desirable contracts for each
agent were identified, building agreements had its own difficulties, since the scenario was
assumed competitive, and thus agents were not inclined to fully disclose their preferences.

Though there are negotiation scenarios about complex contracts which may be modeled
with such a solution space, in many cases more than two agents are involved in a negotia-
tion. Also, most contracts may have non-binary clauses. In a rental agreement, for instance,
clauses may state the rent, the security deposit or the length of the lease. A labor agreement
may include different insurance options. Such issues may have a larger domain, which can
greatly increase the solution and preference space complexity.

Taking this into account, in this work we focus in the general case of multilateral nego-
tiations of complex contracts, where the issues or clauses included in the contracts have
discrete domains. We also assume that agents’ preferences about the different issues are not
independent, which means that the utility that a given clause in the contract yields for an
agent may depend on the presence of other clauses. Interdependence between attributes in
agent preferences can be described by using different categories of functions, like K-additive
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utility functions [8,22], bidding languages [61], or weighted constraints [31]. In this work,
we model this dependency in agent preferences by means of weighted constraints, which are
a natural way to model user preferences and to express dependencies between issues [51].
These constraints may represent ranges of values over different issues, meaning that when
all the clauses affected by the constraint have values satisfying it, that yields a given utility
value for the agent. The set of an agent’s constraints and their associated utility values builds
the preference space of the agent.

From a geometrical point of view, each constraint represents a region with one or more
dimensions, and has an associated utility value. The number of dimensions of the space is
given by the number of issues n under negotiation, and the number of dimensions of each
constraint must be lesser than or equal to n. The utility yielded by a given potential solution
(contract) in the utility space for an agent is the sum of the utility values of all the con-
straints that are satisfied by that contract. Figure 2 shows an example for two issues and
three constraints: a unary constraint C1 and two binary constraint C2 and C3. The utility
values associated to the constraints are also shown in the figure. In this example, contract x
would yield a utility value for the agent u(x) = 15, since it satisfies both C1 and C2 (that is,
constraints C1 and C2 overlap, creating a region of higher utility). Contract y, on the other
hand, would yield a utility value u(y) = 5, because it only satisfies C1. It can also be noted
that unary constraint C'1 can be seen as a binary constraint where the width of the constraint
for issue 2 is all the domain of the issue, so we can generalize and say that all constraints
have n dimensions.

More formally, we can define the negotiation domain and an agent’s preference model by
means of a set of definitions:

Definition 3 Issues under negotiation. The issues under negoriation are defined as a finite
set of variables X = {x;|li = 1,...,n}.

Definition 4 Solution space. The negotiation solution space is defined by the values that the
different values may take. To simplify, we assume that issues take values from the domain
of integers [0, xga"]:

D =0, x3*]"
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Definition 5 Contract or potential solution. A contract or potential solution to the nego-
tiation problem is a vector s = {s;|i = 1,...,n} such that s € D defined by the issues’
values.

Definition 6 Constraint. A constraint is a set of intervals which define the region where a

contract must be contained to satisfy the constraint. Formally, a constraint ¢ is defined as
c={Fli=1...,n}

where If = [xMP, xP%], with xmin xma% g [0, xh*] defines the minimum and maxi-

1
mum values for each issue to satisfy the constraint. Constraints defined in this way describe

hyper-rectangular regions in the n-dimensional space.

Definition 7 Constraint satisfaction. A contract s satisfies a constraint c if and only if x§ €
I£Vi. For notation simplicity, we denote this as s € x(c), meaning that s is in the set of
contracts that satisfy c.

Definition 8 Preference space. An agent’s preference space may be defined as a tuple

(C,Q),
where C = {cx|lk = 1, ...,1} is a set of constraints over the values of the issues x; for the
agentand @ = {@ (cx) Ik =1,...,1; ® (ck) € NT} is a set of weights or utility values, such

that w(cy) is the associated utility value for constraint cx. For simplicity, we will assume that
constraint weights take values from the set of positive integers.

Definition 9 Utility function. An agent’s utility function for a contract s is defined as

ue)= ., ulew,

ck€Clsex(ck)
that is, the sum of the utility values of all constraints satisfied by s.

This kind of utility functions produces nonlinear utility spaces, with high points where
many constraints are satisfied, and lower regions where few or no constraints are satisfied
[31]. As we have seen in Sect. 2.2, the degree of complexity of the utility spaces produced
depends on the number of issues, the domain of the issues and the structural properties of
the utility spaces. For the purpose of this work, we make the following assumptions:

—  We assume that the number of issues and the domains of the issues are such that they
make exhaustive search within the utility space of the agents intractable.

—  We assume that the utility spaces of the agent are highly uncorrelated, and so no a priori
assumptions may be made about where high utility contracts may be located. Therefore,
agents may need to resort to local nonlinear optimization techniques to identify such
high-utility contracts.

—  We assume knowledge about other agent’s preferences not to be common (i.e. agents
do not know their opponent preference structures, neither they can compute opponent’s
utility for a given contract).

— We assume that the negotiation setting is competitive, and that agents may be unwilling
to reveal too much information about their preferences to the other negotiating agents.

The negotiation protocol and mechanisms proposed, which are described in the next sec-
tions, are specifically designed to address this negotiation setting. However, through the study
performed in the latter sections of this paper, some of the assumptions are relaxed to evaluate
the influence of agent strategies and variations in the correlation lengths of the utility spaces
over the negotiation outcomes.

@ Springer

181



Auton Agent Multi-Agent Syst

3.2 Interaction protocol

As we stated at the beginning of this section, our model relies on a mediated, auction-based
protocol to support agent interaction. The reason for the choice of such a protocol is two-
fold. On one hand, the auction-based approach allows to efficiently cope with many of the
challenges imposed by multilateral interactions [39]. On the other hand, the use of a medi-
ator allows to decouple individual agent goals (maximizing their own payoff) from social
negotiation goals (usually, reaching an agreement which maximizes social welfare). This
makes easier mechanism and strategy definition, since agents can be assumed selfish and
competitive, while the mediator can be entitled with the more-cooperative task of pursuing
social welfare. :

Since the main focus of this work is on agent strategic behavior, we have chosen a simple,
one shot, auction based interaction protocol for the negotiation, which mainly consists of two
steps:

1. Bidding: Each agent j generates a set of ni bids B/ = {bi] li=1,..., n,],}, where each
bid b{ represents a region within the solution space which only contains contracts that
agent j would be willing to accept as solutions. Each agent sends its bid set B/ to the
mediator, along with the utility associated to each bid.

2. Deal identification: The mediator tries to find overlaps between the bids of the different
agents. The regions of the contract space corresponding to the intersections of at least
one bid of each agent are tagged as potential solutions. A final deal is chosen from the
set of potential solutions, according to social welfare criteria.

The protocol, as described, is fairly straightforward, and the decision mechanisms which
agents employ for bidding and deal identification are the ones which mostly determine the
effect of agent strategic behavior. There are many different mechanisms which can be used
in this context. In the following we briefly describe the ones we have found to yield better
results in terms of negotiation efficiency and failure rate. All these mechanisms rely on the
concept of quality factor, which we introduce in the following section.

3.3 Constraint/bid quality factor

The use of weighted constraints generates a “bumpy” utility space, with many peaks and
valleys. However, the degree of “bumpiness” is highly dependent on the way the constraint
set is generated, and specially on the average width of the constraints. Figure 3 shows an
example of the resulting two-dimensional utility space for 50 binary constraints, where the
domain of the issues is chosen to be [0,9], and constraints are generated by choosing the
width of each constraint in each issue randomly within the [3,7] interval. This generates
rather “wide” constraints. On the other hand, Fig. 4 shows an utility space obtained using
“narrow” constraints, choosing their widths from the [1,2] interval. Comparing both figures
we can see that, though both utility spaces are nonlinear, the space generated using narrow
constraints is more complex, with narrower peaks and valleys. As the number of issues under
consideration increases, the differences between having wide or narrow constraints become
more relevant. For instance, the average correlation length for utility spaces generated using
[3,7] constraints for six issues is ¢ = 5.9, while average correlation length for utility spaces
generated using [1,2] constraints is ¥ = 2.8. Though most utility-maximizing negotiation
approaches work in scenarios like the example shown in Fig. 3, their performance (in terms of
optimality and failure rate) decreases drastically in highly nonlinear scenarios defined using
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Fig. 4 Example of a highly uncorrelated utility space generated by using “narrow” constraints

narrow constraints, and therefore an alternative approach is needed to deal with these highly
uncorrelated utility spaces [55].

If we compare the utility spaces shown in Figs. 3 and 4, we can see that the main difference
between them (apart from the absolute utility values, but they have no effect in optimality)
is the width of the peaks. Highly-nonlinear scenarios will yield narrower peaks. Utility max-
imizing agents tend to choose those peaks (or high-utility regions) as bids, and the result is
that narrower bids will be sent to the mediator. The width of the bids (or more generally, the
volume of the bids), will directly impact the probability that the bid overlaps a bid of another
agent, and thus its viability, that is, the probability of the bid resulting in a deal. Intuitively,
in such complex scenarios, an agent with no knowledge of the other agents’ preferences
should deviate from the “plain utility maximization strategy” and try to adequately balance
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the utility of their bids (to maximize its own profit) and the volume of those bids (to maximize
the probability of a successful negotiation).
We formally represent this through the following definitions:

Definition 10 Volume of a region. The volume of a given region r within the solution space
D (be it a constraint or a bid) is defined as the cardinality of the set of contracts contained
within the region.

v =|r|, withr C D

Definition 11 Quality factor. The quality factor of a given region r within the solution space
D (be it a constraint or a bid) is defined as

Or = u‘;‘ . U; %
where u, and v, are, respectively, the utility and volume of the bid or constraint r, and
« € [0, 1] is a parameter which models the attitude of the agent. A social, cooperative or risk
averse agent (o < 0.5) will tend to qualify as better bids those that are wider, and thus are
more likely to result in a deal. A risk willing, highly competitive or selfish agent (o > 0.5)
will, in contrast, give more importance to bid utility.

3.4 Bid generation mechanisms
3.4.1 Contracts sampling and simulated annealing

We can see the problem of finding the adequate set of bids for an agent as a local optimiza-
tion problem, since for rational agents bids should be high-utility regions or, more generally,
regions of high quality factor. Therefore, nonlinear optimization mechanisms may be used by
the agents to find those regions suitable to be sent to the mediator as bids. Here we describe
a bidding mechanism based on simulated annealing, which consists of three steps:

1. Sampling: Each agent takes a fixed number of random samples from the contract space,
using a uniform distribution.

2. Adjusting: Each agent applies simulated annealing to each sample to try to find a local
optimum in its neighborhood. The function which is tried to maximize by the simulated
annealing optimizer is the quality factor Q. Since the quality factor Q is a feature of a
region, not a contract, the adjusted contracts must be mapped to the high utility regions
where they are contained before they are accepted or rejected by the simulated annealing
engine. This can be easily done by checking all constraints in the agent preference model
and computing the intersection of the constraints which are satisfied by the candidate
contract. The volume of this intersection can then be used to compute the quality factor
Q of the region.This results in a set of high-quality contracts.

3. Bidding: Each agent generates a bid for each high-quality, adjusted contract. The bids
are generated as the intersection of all constraints which are satisfied by the contract.
Bids defined in this way represent hyper-rectangle regions in the n-dimensional solution
space. Each agent sends its bids to the mediator, along with the utility associated to each
bid.

The bid generation mechanism may be seen formally in Algorithm 1. Also, some details
about the mechanism are highlighted. The algorithm is run for a fixed number of iterations n,
which imposes the maximum number of generated bids (1). The function adjust_annealing
(x, O(.,a),ns4, Tsa) uses simulated annealing to return a region of optimal quality factor
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using as starting point a sampled contract x (2). There are some parameters in this function
which may be adjusted to influence the behavior of the simulated annealing algorithm, like
the initial temperature and the number of iterations. As studied in [30], best results in term of
optimality and efficiency are achieved using ng4 = 30; Ts4 = 30. Moreover, the algorithm
discards any contract which, once adjusted, yields less utility than the agent’s reservation
value ug, which guarantees that all bids would be accepted by the agent as final solutions
(3). Finally, duplicate bids or bids contained in other bids are also discarded (4). Some of
these ideas are also used in the next bidding mechanism described.

Algorithm 1: Bid generation using simulated annealing over quality factor

Input:
D: solution space domain
np: maximum number of bids
u g: reservation utility for the agent
C: constraint set defining agent’s utility space
u: agent’s utility function
«: agent’s attitude parameter
Q: function which computes the quality factor of a region
ngA: iteration bound for the simulated annealing algorithm
T 4: initial temperature for the simulated annealing algorithm
Output:
B: bid set
B =@,
k=0;
1 while k < np, do
k=k+1;
x = random_contract ();
2 b = adjust_annealing(x, Q(.,@),ns4. Ts4);
3 if u(b) > up then
| B=BUb;

end
4 remove_duplicates(B)

3.4.2 Maximum weight independent set and the max-product algorithm

There have been a number of recent successful efforts in literature for using graphs to model
negotiation scenarios in multi-link negotiations [89] or combinatorial auctions [21]. One
of the advantages of such approaches is that they allow to use well-known graph methods
for solving the negotiation problem. In our case, graphs provide an alternative perspective
for the bidding process, looking at the constraint-based agent utility space as a weighted
undirected graph. Consider again the simple utility space example shown in Fig. 2. Think
about each constraint as a node in the graph, with an associated weight which is the utility
value associated to the constraint. Now we will connect all nodes whose corresponding con-
straints are incompatibles, that is, they have no intersection. The resulting graph is shown in
Fig. 5.

To find the highest utility bid in such a graph can be seen as finding the set of unconnected
nodes which maximizes the sum of the nodes’ weights. Since only incompatible nodes are
connected, the corresponding constraints will have non-null intersection. In the example, this
would be achieved by taking the set {C1, C2}. The problem of finding a maximum weight
set of unconnected nodes is a well-known problem called maximum weight independent set
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Fig. 5 Weighted undirected
graph resulting from the utility
space in Fig. 2

(MWIS). Though MWIS problems are NP-hard, in [3], a message passing algorithm is used
to estimate MWIS. The algorithm is a reformulation of the classical max-product algorithm
called “min-sum”, and works as follows. Initially, every nodes i send their weights w; to
their neighbors N (i) as messages. At each iteration, each node i updates the message to send
to each neighbor j by subtracting from its weight w; the sum of the messages received from
all other neighbors except j. If the result is negative, a zero value is sent as message. Upon
receiving the messages, a node is included in the estimation of the M WIS if and only if its
weight is greater than the sum of all messages received from its neighbors. Message passing
continues until M WIS converges or the maximum number of iterations is exceeded. This is
formally shown in Algorithm 2.

Algorithm 2: Min-sum algorithm for MWIS estimation
Input: i = 1,...,n: nodes (constraints) in the weighted graph w; [i = 1, ..., n: weight (utility) of
each node (constraint) N (i): set of neighbors of each node (incompatible constraints)
Imax: maximum number of iterations
Output: MW1IS: estimation of the MWIS
t=0; m?aj =w;Vj € N(i) while f < tax do
t =t + 1; foreach i do

t—1
mi_j = max{0, 0 = Tz jkeNG) Mroi)

end
t — (ilen: t—1 4 T _ r—1
MWIS" = {i|w; >ZkEN(i)’nk4>j}lf’>landMWIs = MWIS' ' then
| return MWIS*
end

However, this reformulation of the bidding problem is not in itself a suitable solution,
since it has some serious drawbacks. On one hand, the algorithm is deterministic, and thus
only one bid can be generated for a given set of constraints. On the other hand, the algorithm
is based on utility maximization, so it does not allow the agent to search for high quality
bids. Moreover, the quality factor Q cannot be directly introduced into the max-product or
min-sum algorithm, because the algorithm is based in a weighted graph where weights are
additive, and the quality factor is not additive (that is, the quality factor of the intersection of
a set of constraints is not the sum of the quality factor of the constraints).

To solve this, the algorithm is applied to a subset of constraints C' = {c,'c lk=1,...,ncn
< I; ¢}, € C}. The constraints cj, are randomly chosen from the constraint set C. In this way,
a different constraint subset C’ is passed to the algorithm at each run, which will result in dif-
ferent, non-deterministic bids. The approach proposed in can be seen in Algorithm 3. In order
to maximize quality factor of the generated bids, a rournament selection [57] is used when
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generating the subset of constraints C’ to be passed to the max-product algorithm (1). This
tournament selection works as follows. For each bid to generate, a number n; of candidate
constraint subsets are randomly generated. From these subsets, the one which maximizes the
product of the quality factors Q of its constraints is chosen as the subset C’ to be used for the
max-product algorithm. In this way, since high- O constraints are more likely to be selected,
we expect the average Q for the resulting bids to be higher.

Algorithm 3: Bid generation using MWIS and Q-based tournament selection
Input:
np: maximum number of bids
ug: reservation utility for the agent
C: constraint set defining agent’s utility space
Q: constraint weights for the agents
u: agent’s utility function
nc: number of randomly chosen constraints passed to the MWIS algorithm
npywi1s: maximum number of iterations for the MWIS algorithm
«: agent’s attitude parameter
n¢: number of candidate subsets in tournament selection
Output:
B: bid set
B =2,
k=0
while k < np, do
k=k+1;
1 | C' =tournament_selection(C, nc, a, ng);
(nodes, weights, neighbors} = build_tree(C’, Q2);
MWIS = minsum(nodes, weights, neighbors, npywrs);
b = generate_bid(C', MWIS);if u(b) > up then
| B=BUb;

end
remove_duplicates(B)

3.5 A probabilistic mechanism for deal-identification

Once agents have placed their bids, it is the turn to the mediator to try to find deals among
them. The most straightforward way to do this is to perform an exhaustive search of overlaps
between the different agents’ bids, tagging those overlaps found as potential solutions, and
then selecting a winner solution from the potential solution set according to social welfare
criteria.

The problem with such an exhaustive search is scalability with the number of agents. In a
worst case scenario, the mediator would have to search through a total of ng“ bid combina-
tions, where nyp, is the number of bids per agent, and 7, is the number of negotiating agents.
This imposes a limit on the maximum number of bids that an agent may send to the mediator.
For instance, if we limited the number of combinations to 6, 400, 000, this means that, for
four negotiating agents, the maximum number of bids per agent is "¢/6400000 = 50. This
limit becomes harder as the number of agents increases. For example, for ten agents, the limit
is four bids per agent, which drastically reduces the probability of reaching a deal. This is
specially true for highly-nonlinear utility spaces, where the bids are narrower.
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To address this scalability limitation, we perform a probabilistic search in the mediator
instead of an exhaustive search. This means that the mediator will try a certain number np. of
randomly chosen bid combinations, where np; < n;“. In this way, np, acts as a performance
parameter in the mediator, which limits the computational cost of the deal identification
phase. Of course, restricting the search for solutions to a limited number of combinations
may cause the mediator to miss good deals. Taking this into account, the random selection of
combinations is biased to maximize the probability of finding a good deal. Again, the param-
eter used to bias the random selection is @, so that higher-Q bids have more probability of
being selected for bid combinations at the mediator.

The mechanism is formally shown in Algorithm 4. We can see that the number of analyzed
bid combinations is limited to np. (1), and that the function combine_bids (. ..) selects the
bid combinations to analyze (2). Limiting bid combinations at the mediator allows us to
remove the limit on the bids issued by the agents, which increases the probability of finding
potential deals. Finally, the algorithm selects from all deals found the one which maximizes
social welfare, computed using the sw (s, U) function (3). Social welfare is computed as the
Nash product [60], that is, the product of the utilities that a potential solution gives to every
agent.

Algorithm 4: Probabilistic deal identification
Input:
A: set of negotiating agents
ng = |A|: number of negotiating agents
B: set of bids issued by every agent
U: declared utilities for every agent’s bids
Q: declared quality factors for every agent’s bids
sw: social welfare function
npc: maximum number of bid combinations at the mediator
Output:
s¢: final deal
n=0;
S=g
1 while n < np. do
2 5 = combine_bids (A,ng, B,U, Q);

if s # & then

| S=8Us;

n=n+1;
end

3 55 = arg {maxses sw (s, U}

3.6 Discussion

We approach the negotiation problem as a mechanism design problem, where we aim to
design the structure of the game in a way that facilitates social welfare optimizing outcomes
[58]. We assume a complex agent preference space, where exhaustive search for high-value
solutions is unfeasible for the agents. Therefore, preference revelation is performed in the
form of bids, which are subsets of the preference space. In fact, the bidding process is seen as
a local constraint-based optimization problem, where each agent needs to find combinations
of compatible constraints which maximize its own utility. Analogously, the deal identifica-
tion process is seen as a constraint-based multi-objective optimization problem, where the
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mediator tries to find overlaps between agents’ bids which maximize social welfare. We
have chosen a mediated approach for the negotiation to facilitate social-welfare maximizing
mechanism design, and we have used a heuristic search at the mediator to cope with the
scalability problems imposed by the high cardinality of the solutions space.

The experimental evaluation performed in our previous work showed that the use of the
quality factor in the bidding and identification mechanisms described significantly improved
the performance of the negotiations over the previous approaches in highly uncorrelated
utility spaces [55]. Furthermore, it was also pointed out that the use of the quality factor
greatly improved the scalability of the model, allowing to perform negotiations with up to 14
agents and 20 issues while keeping high optimality values and low failure rates. However,
there are some issues which are not addressed in the work. Even when the quality factor is
designed to model the attitude of an agent (be it risk attitude, tendency to cooperation or
selfishness) through its o parameter, the experimental evaluation was performed only for
o« = 0.5. This assumes that all negotiating agents have the same attitude, and also that this
attitude is neutral (i.e. agents give the same weight to utility and deal probability). In a real,
competitive scenario, these assumptions do not necessarily hold. The parameter o allows an
agent to take a given strategy (a given attitude), and so the possibility arises that different
agents may choose different strategies for a given negotiation.

Since our aim is to design mechanisms which facilitate social welfare optimizing out-
comes, we have to pay attention to the consequences of having agents playing different
strategies in the negotiation. It could be the case that the proposed approach favored a spe-
cific strategy (or set of strategies) against the others. Assuming the agents are individually
rational, they would have the incentive to play these favored strategies. If they are different
from the assumption above, the outcomes of a real negotiation among rational agents could
differ from the ones obtained in our previous experiments in terms of social welfare. There-
fore, a strategy analysis is needed to evaluate the mechanisms in situations where agents with
different attitudes interact.

4 Strategy analysis of the auction-based negotiation protocol

As we stated in Sect. 2.1.3, one of the main challenges when designing decision mechanisms
for automated negotiations is strategic stability, and this problem is closely related to the
notions of equilibrium described above. For heuristic approaches such as those described
above, game theory concepts and analyses cannot be directly applied, due to the high var-
iability of the bid generation mechanisms and the total uncertainty about the preferences
of the different agents. There are some successful works for finding equilibrium conditions
under incomplete information [24,81], and even with infinite games [68]. However, all these
works assume a certain degree of determination about the outcome of the negotiation once
the agents (each one having a private type) have chosen their strategies. With pure strategies,
this determination is perfect, that is, negotiation outcome is known as soon as agents have
chosen their strategies. For mixed strategies, agents have a probability distribution over their
set of possible actions, and thus the outcome of the negotiation is not perfectly determined
until all agents have chosen their actions.

In the heuristic approach we are dealing with, there are many levels of uncertainty. Agent
strategies may be modeled by varying the value of the & parameter used to compute quality
factor. This can be seen as a pure strategy, since the choice of an agent is to use one value
of a or another. However, a negotiating agent final action (i.e. the bids which are actually
sent to the mediator) does not depend only on that choice. It also depends, of course, on the
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agent’s preference model, which may be identified with the agent “type”. However, since
agents do not know or fully explore their utility spaces (we assume that such exploration
is computationally intractable), the final agent action also depends on the heuristic search
method used to generate the bids. Since this method is, in the cases outlined in the previous
section, non-deterministic, this adds an additional layer of uncertainty, which we could in
some way identify with the use of mixed strategies (although very complex ones). In addi-
tion, once all negotiating agents have performed their actions (i.e. bids), the mediator initiates
the deal identification step of the protocol, which is also non-deterministic. These multiple
layers of uncertainty make very difficult to directly apply game-theoretic concepts such as
equilibrium conditions or best-response strategies, since different trials of the same “game”
(same agents, same strategy combinations, same preference sets) may yield drastically dif-
ferent results depending on the specific outcomes of the heuristics involved. Therefore, part
of our study would be necessarily empirical, which is a usual approach when dealing when
heuristic strategies [1].

Some of the game theory concepts, however, can still be useful with some nuances. In
particular, strategic properties analogous to the equilibrium conditions in game theory may
be studied for heuristic mechanisms. This section is dedicated to assess the strategic behavior
of the described auction-based negotiation model, determining the existence of individually
optimal strategies and social optimal strategies, and verifying if the auction-based negotiation
mechanisms are prone to situations involving high values for the price of anarchy (PoA). To
this end, a probabilistic analysis and an empirical evaluation have been performed.

4.1 Probabilistic analysis

Intuitively, it can be seen that the quality factor defined above allows an agent to balance bid
utility (to maximize its own benefit) and bid volume (to maximize deal probability). More
formally, we may find mathematic expressions for the deal probability and the expected utility
in a negotiation using the auction-based protocol. The deduction of these expressions can be
found in Appendix A. For the purpose of this section, the final expressions will suffice. In par-
ticular, deal probability for a single run of the auction-based negotiation protocol is given by

Hnll:p k i
i+1 Hﬂ 1 J
Piear = Z1 (-~ ( j ””)(——lmn(na_n) ; M
J:

where n? is the number of negotiating agents, n is the number of issues, | D| is the domain
size for the issues (assuming all issues have the same domain size), and n’gp is the number of
bidden contracts for agent k, that is, an indication of the portion of the solution space which

k
is covered by agent k bids. This is given by n’;p = Zzni 1 v,k, where n’b‘ is the number of bids

issued by agent k and v;‘ is the volume of each I-th bid.
In a similar way, we can see that the expected utility for agent k is given by

nf I,

k —_1itt
EWf=| > uf - of Z(E{"bp)ﬁg@ , )

I=1 j=1

where uf is the utility for the I-th bid of agent k. According to this expression, to maximize

expected utility, an agent should reveal as much information as possible. If information dis-
k

closure is limited, an agent should try to maximize Z;Z L uf‘ . vl", balancing in this way bid
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utility and bid volume. This is coherent to the choice of @ = 0.5 in [55]. Of course, this
strategy does not model the attitude of, for instance, a risk willing agent, who would prefer
to risk the success of the negotiation to have the chance of a higher utility gain. To model
this, we can use an expected deal utility, that is, the expected utility for an agent provided
that a deal has been reached. This expected deal utility is given by:

ok ok
Elu* deal] = =11V ®)

Nep

According to this, a risk willing or a selfish agent could give preference to bid utility
against bid volume, trying to reduce n’;p to maximize expected deal utility, but reducing also
deal probability.

These expressions are coherent with the intuitive notion of agent attitude introduced in
the quality factor in the previous sections. We can also use them to infer some of the strategic
properties of the protocol. Since deal probability increases with deal volume, low values of «
are expected to increase deal probability too. As we have seen, when there is total uncertainty
about the utility spaces of the agents, the expected utility is maximized for & = 0.5. If the
utility spaces of the agents are specially complex, or it is known that the utility spaces of the
different agents are strongly different, it is reasonable to think that the deal probability will
be lower, and thus agents should use lower values of « (that is, they should take less risks,
or be more cooperative, or less selfish) in order to keep expected utility at an acceptable
value. Similarly, if the agent’s utility spaces are highly correlated, agents could use higher o
values (that is, be more utility oriented), trying to maximize the expected deal utility, since
deal probability will be higher. Furthermore, since lower « values increase deal probability,
a single agent could benefit from a selfish strategy if the other agents are more cooperative
(their lower a values would compensate the decrement in deal probability). However, should
all agents decide to use selfish strategies, deal probability would reduce drastically, leading
to low expected individual and social welfares. If there is a tendency or incentive for this
condition to occur, we would have a high price of anarchy situation, and we should design
and establish mechanisms to stabilize the protocol.

4.2 Experimental analysis

In this section the strategic properties of the protocol inferred from the statistical analysis
are empirically verified. To this end, a set of experiments has been devised to analyze the
main strategic properties of the model. As stated in Sect. 2.1.3, these properties are related to
the different notions of equilibrium. However, as we discussed above, determining rigorous
equilibrium conditions in our negotiation model is very difficult, due to the different layers
of uncertainty introduced by the heuristics used. Therefore, the experiments performed and
the conclusions drawn from them will be based on statistical observations, in a similar way
to the notions of equilibrium considered for Bayesian players in Harsanyi [24] and Reeves
and Wellman [68]. In particular, best-response strategies will be determined according to the
maximization of the expected payoff.

To conduct the experiments, negotiating agents will generate their offers using contract
sampling with Q-based simulated annealing (SA-Q) or maximum weight independent sets
with a Q-based tournament selection (MWIS-Q). The experiments have been designed to
study the dynamics of the negotiation process when agents with different strategies interact.
In this context, agent strategic behavior is defined by the value of the o parameter each agent
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uses to compute constraint and bid quality factor. Preliminary versions of some of the results
included in this section have been previously published in Marsa-Maestre et al. [56].

4.2.1 Individually optimal strategy analysis

First of all, the existence of an individually optimal strategy is studied. This is closely related
to the concept of dominant strategy defined in game theory. A dominant strategy would be
one which, regardless of the strategies the other agents choose, ensures that a given agent
would not have achieved a higher payoff using any other possible strategy. However, in a
model with such degree of variability in bid generation and deal identification as the one we
are dealing with, and with infinite strategies for the different agents (the possible values for
the o parameter), it is not possible to achieve this certainty. In particular, it is not possible to
state that a given strategy would have given an agent a better payoff than another strategies,
since the same strategies may yield drastically different payoffs in different trials. We can,
however, evaluate statistically which strategies tend to give the agents the best payoffs, trying
to determine whether there is a tendency in the model to favor a given strategy. This would
be an individually optimal strategy in the context of our heuristic model.

Though the idea of an individually optimal strategy is conceptually simple, evaluating
its existence is not straightforward. At a first glance, we need to be able to compare the
utilities or payoffs obtained by an agent in different trials of the experiment. However, to
see if there is an individually optimal strategy regardless of the agent’s specific preferences,
payoffs obtained by agents with different preference spaces need to be evaluated too. The
problem is not only that maximum potential payoffs for different agents may vary, but also
that such potential payoffs for a given negotiation encounter also depends on the preference
spaces of the other agents participation in the negotiation, since only those regions of the
solution space whose utility is above the reservation values of all agents are actual potential
solutions. Taking this into account, we measure the payoff obtained by a given agent j on
a given encounter as its individual optimality rate defined as the ratio between the payoff
obtained by the agent in the encounter, and the highest possible payoff for that agent in
that encounter. This highest possible payoff is computed by giving all information about the
agents preferences to a nonlinear optimizer, which then computes an approximate optimal
contract for j with complete information.

In a first set of experiments, we have tried to determine if there is a strategy, determined
by a certain o value, which yields maximum utility to an agent given the strategies of the
other agents. To evaluate this, we have performed a set of experiments comparing the utility
obtained by an individualist agent, which plays an individual strategy determined by «;, with
the utility obtained by the other agents. To model the joint effect of the behavior of the rest of
the agents, we have used a common strategy «; for them. Experiments have been performed
varying o; and o within the interval [0, 1] in 0.1 steps.

Figures 6 a and b show the box plots of the results for 100 runs of the experiments for
SA-Q and MWIS-Q, respectively, for six agents and six issues. We have represented the ratio
between the optimality rates obtained by the individualist agent and the utility obtained by
the rest of the agents. In this case we consider only successful negotiations, since in failed
negotiations all agents get zero utilities, and the ratio cannot be computed. We can see the
same trend for both approaches studied. Generally, the individualist agent obtains a higher
utility when using higher ¢; values. We can also see that, for any «y, the maximum utility
value for the individualist agent is obtained for ¢; = 1, which suggests that this could be
the individually optimal strategy. For a5 > 0.8 negotiations failed, and thus no values are
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Fig. 6 Individual optimal strategy analysis against symmetric strategy combinations. a SA-Q, b MWIS-Q

shown in the figures. This result is directly related to social strategy analysis, and thus we
will discuss it in more detail in the following section.

Though the results suggest that o;; = 1 is the individually optimal strategy for the agents,
the previous experiment only tests agent individual strategies against symmetric strategy
combinations (i.e. all the other agents play the same strategy). In a more realistic setting, we
may expect agents to play non-symmetric strategy combinations. To determine the expected
payoffs of the different individual strategies for the individualist agent against arbitrary stra-
tegic combinations of its opponents, we have repeated the previous experiment randomizing
the strategy choice of the other agents. In this way, the individualist agent played its indi-
vidual strategy «;, while the other agents’ strategies were randomly drawn from a discrete
uniform distribution within the interval [0, 1] in 0.1 steps. Since the use of non-symmetric
strategy profiles for the opponents increased the variability of the experiment, 1000 runs of
each experiment were performed.

Figures 7 a and b show the box plots of the results for SA-Q and MWIS-Q, respectively,
for six agents and six issues. We have again represented the ratio between the optimality
rates obtained by the individualist agent and the utility obtained by the rest of the agents.
In this case, the columns in the horizontal axis represent the different values for o = 1,
while in the vertical axis we have represented the ratio between optimality rates as notched
box and whisker plots. The box and whisker plots are represented as follows. Each column
corresponds to a set of samples of the gain for individualist agents in 100 negotiations. The
two boxes in each column contain 50% of the samples, corresponding to the 25th and 75th
percentiles, and the red line in the separation of the two boxes represents the median. The
small notches around the median display the variability of the median between samples as
95% confidence intervals, computed using the method described in [85]. This means that
two medians are significantly different at the 5% significance level if their notches do not
overlap. The whiskers (dashed lines) extend to the most extreme data points not considered
outliers, and outliers are plotted individually with a plus (+) sign. We can observe similar
results than in the previous experiment. The individualist agent obtains a higher expected
relative payoff when using higher o; values, being o; = 1 the strategy maximizing expected
payoff, so we can conclude that this is the individually optimal strategy for the agents.

4.2.2 Social strategy analysis

Once individual strategies have been analyzed, we have studied social strategies, trying
to determine the existence of a set of strategies for the different agents which maximizes
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Fig. 7 Individual optimal strategy analysis against random strategy combinations. a. SA-Q. b. MWIS-Q

expected social welfare. Since both the negotiation model and the measure we have taken for
social welfare (Nash product) are symmetric, we expect this strategy set to be symmetric as
well. Taking this into account, we have performed a set of experiments using for all agents
the same social strategy, determined by «,. Experiments have been conducted varying o
within the interval [0, 1] in 0.1 steps. Furthermore, to study the variation of the results with
the complexity of the utility spaces, the experiments have been repeated for utility spaces of
different complexity. Utility space complexity have been measured using correlation length
¥, as introduced in Sect. 2.2.
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Table 1 Social strategy analysis for SA-Q

¥ Qg
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

28 0327 0 0 0 0 0 0 0 0 0 0
31 0529 0 0 0 0 0 0 0 0 0 0
40 0772 0 0 0 0 0 0 0 0 0 0
43 0.864 0.884 0.897 0.830 0.867 0907 0919 0935 0948 0 0

46 0935 0955 0959 0961 0963 1.000 1.000 1000 1.000 1.000 1.000
59 1.000 1.000 1.000 1.000 1.000 1000 1.000 1000 1.000 1.000 1.000

Table 2 Social strategy analysis for MWIS-Q

¥ oy
0.0 0.1 0.2 03 04 0.5 0.6 0.7 0.8 0.9 1.0

28 0334 0379 0384 0377 0434 0480 0552 048 0O
3.1 0460 0528 0495 0504 0554 0555 0359% 0682 0
40 0795 0.785 0798 0814 0821 0.838 0.828 0827 0814
43 0967 0963 0976 0961 0973 0969 0971 0970 0977 O 0
46 1.000 1000 0975 1000 1000 1000 1.000 1000 1.000 1.000 1.000
59 1000 1000 1000 1.000 1.000 1000 1000 1.000 1000 1.000 1.000

[ I = R e }
o o O

Experiment results for six agents and six issues for SA-Q and MWIS-Q are presented,
respectively, in Tables 1 and 2. Each table shows the median social optimality rates for
the negotiation as the value of w; varies, for different values of . Social optimality rate
is defined as the ratio between the social welfare obtained with the protocol and the social
welfare obtained using an optimizer with complete information. For SA-Q, in the most
uncorrelated utility spaces, only the most risk-averse strategy (a; = 0) achieves success-
ful negotiations. For mediom or low-complexity scenarios, maximum social welfare values
are obtained for a; values around 0.7. MWIS-Q approach performs better than SA-Q for
uncorrelated utility spaces, and the « values which maximize social optimality are around
0.6 and 0.8. This is higher than the theoretical optimum (o = 0.5), which is reasonable if
we think that calculations were made assuming total uncertainty about the utility space (that
is, r = 0).

Once optimal social strategies have been identified, a desirable property would be that
these strategies were a Nash equilibrium or a Bayes-Nash equilibrium for the system as we
saw in Sect. 2.1.3, that is, that there was no incentive (no potential increase in expected
payoff) for any agent to deviate from this strategy. Unfortunately, as we saw above, there is
an individually optimal strategy, given by ¢; = 1. Therefore, an individually rational agent
may decide to take this strategy to maximize its own benefit (as seen in Fig. 6 a and b). All
agents have the same incentive, so the trend would be for all agents to choose @; = 1. As we
can see in Tables 1 and 2, this makes negotiations fail in medium and highly complex scenar-
ios. The fact that individual rationality may lead the system to situations far from the social
optimum makes the model prone to situations analogous to those of high price of anarchy
{PoA) described in Sect. 2.1.3. Rigorously speaking, we cannot use Price of Anarchy directly,
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since it is related to the notion of Nash Equilibrium, which has no sense in our setting due
to the great variability and uncertainty about negotiation outcomes. However, other authors
have recently defined analogous concepts to PoA for games under uncertainty conditions,
like Bayes-Nash PoA in Leme and Tardos [46]. We can take a similar approach under the
assumption that agent types are not known and there are no specific a priori beliefs about
the strategies played by other agents, which means that from the point of view of the agents,
opponents’ strategies/types are equiprobable. Taking this into acount, we analogously define
an Expected Price of Anarchy as follows:

Definition 12 Expected Price of Anarchy (EPoA) The Expected Price of Anarchy in a non-
deterministic game is the ratio between the maximum expected social welfare achievable by
means of a feasible agent strategy combination and the minimum expected social welfare
achievable by means of an individually rational agent strategy combination.

maxses E [sw(s))
EPoA = —20_— 7
? minges;, E [sw(s)]

where § is the set of all feasible strategy combinations of the game, §;, C § is the set
of all strategic combinations which are individually-rational for the negotiating agents, and
E [sw(s)] is the expected social welfare for a given strategy combination s.

According to this definition and to the results of the experiments above, our negotiation
model could be prone to high EPoA situations in medium and highly complex scenarios. If
confirmed, this would be a situation which would negative impact model stability. Stability
issues in the model, along with techniques to improve stability, are discussed in detail in the
following section.

5 Addressing infinite expected price of anarchy in the auction-based negotiation
protocol

In this section, stability problems of the auction-based negotiation protocol are addressed.
A set of different mechanisms intended to address situations of high price of anarchy in the
negotiation process are proposed, and their effectiveness is empirically evaluated.

5.1 Enforcing socially-oriented strategies at the mediator

The final element in the deal identification mechanism is the social welfare functionsw (s, U).
Once a set of viable solutions has been found, the mediator chooses as the solution the one
which maximizes social welfare, Therefore, a metric which allows the mediator to compare
the different solutions in terms of social welfare is needed. One of the most widely used is
usually called social welfare, which is defined as the sum of the utilities that solution gives
to every agent [67]. Maximizing this metric, solutions near to the Pareto-optimal region are
found. However, sometimes the solutions found may have excessive low utility for some
of the agents. This is specially true if the agents’ reservation value is zero, since there may
be solutions maximizing the sum of utilities even when the utility values for some of the
agents tend to zero. To avoid this, an alternative metric could be the minimum utility, that
is, the minimum of the utilities that solution gives to each agent. Though maximizing this
metric guarantees a certain satisfaction level for all agents participating in the negotiation, it
has an important drawback, since it makes no difference between solutions which give the
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same minimum utility even when they give different utility values for the rest of the agents.
Therefore, solutions obtained using this criterion may be far apart from the Pareto front.

A metric which allows to achieve more egalitarian solutions which are closer to the Pa-
reto-optimal region is the Nash product [60], which is the product of the utilities that solution
gives to every agent. This metric for the quality of a solution is widely used in the literature,
since it allows to achieve solutions close to the Nash solution, which is widely used in the
literature as a reference for optimality in negotiation processes. The ratio between the Nash
product of a given solution to a negotiation problem and the Nash solution associated to that
problem is usually referred as the Nash optimality of the solution.

Given the different social welfare metrics, it is clear that an agent’s attitude greatly influ-
ences the final utility value for this agent if an agreement is reached. Once all valid inter-
sections have been found, the final outcome is selected using a function which depends on
the utility values the outcome gives to the agents. Selfish, risk-willing or highly competitive
agents, which have given more importance to utility against volume in the bid generation
process, will have, on average, higher utility bids, and thus their expected deal utility (Eq. 3)
will be higher. Taking this into account, the preferred strategy of an agent may be to take
a selfish attitude, as we inferred in the previous section. The problem is that, in complex
utility spaces, having all agents taking such attitudes could lead to very narrow offers at the
mediator, which would make deal probability (given by Eq. 1) decrease drastically. This may
lead the protocol to negotiation failures, with zero social welfare, thus resulting in situations
of infinite Expected Price of Anarchy, turning the negotiation model unstable.

To improve the strategic stability of the negotiation, the mechanisms should be modified
to incentivize the adoption of socially optimal strategies. The logical step in the protocol to
make any modification is the deal identification at the mediator. Since negotiating agents are
supposed to be individually rational, it seems reasonable to entitle the mediator with the task
of pursuing social welfare. In the deal identification mechanism described in Sect. 3.5, the
mediator chooses as the final solution the one maximizing social welfare. The metric used
to compute social welfare in this case is the Nash product of the individual agent utilities.
Since the Nash product is symmetric, those agents whose bids have higher average utility
would, on average, obtain higher utilities in the final deal, which incentivizes the use of the
dominant strategy. To mitigate this effect, a reasonable measure could be to reward in the
selection of the final solution to those agents which have made wider bids. This can be done
by using a generalized or asymmetrical version of the Nash product, similar to the ones used
in [35] to model agents power of commitment. In particular, we propose a modification of
the Nash product which we have called weighted product by average volume:

Definition 13 Weighted product by average volume The weighted product by average vol-
ume of a solution to a negotiation problem among n, agents is the product of the utilities the
solution gives to every agent i, weighting each utility # (s) by an adjustment factor equal to
the ratio between the average volume of the bids issued by the agent #* and the maximum
average volume of the bids of one of the agents:

g o

swpls, U) = [ ( () ™rsi=ne? @

i=1

where u' (s) is the utility of the solution s for agent i, and ¥’ is the average volume of the
bids issued by agent i.

In this way, the utility for those agents who have issued widest bids (which, on average,
will be the ones using more socially oriented strategies) will be given more weight in the
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selection of the final solution than those of the more selfish agents. An interesting effect
of this metric is that a rational agent could issue some high volume, low utility bids to try
to compensate for its high-utility, low volume bids. To counter this effect, we propose to
consider bid utility and bid volume jointly, using a product weighted by average quality
factor:

Definition 14 Weighted product by average quality factor The weighted product by average
quality factor of a solution to a negotiation problem among n, agents is the product of the
utilities that solution gives to every agent i, weighting each utility 4’ (s) by an adjustment
factor equal to the ratio between the average quality factor of the bids issued by the agent Qi
and the maximum average quality factor of the bids of one of the agents:

Na X o _
SUJQ(S, U) = H (ul (S)) maX] < j<ny O , (5)

i=l1
where {' is the average quality factor of the bids issued by agent i.

‘When this last metric is applied, quality factor is not only used to compute social welfare
at the mediator. As we have seen in Sect. 3.5, bid selection for deal identification at the
mediator is performed using the quality factor of the bids as declared by the agent issuing the
bids. This makes the assessment of the bids made by the mediator strongly dependent on the
risk attitudes of the agents, thus favoring those agents with more selfish strategies. Taking
this into account, we propose that the mediator uses its own o, parameter for O calculation.
In this way, we expect to decouple deal identification from the negotiating agent strategies,
improving the stability of the protocol. Possible choices for oy, are the socially optimal strat-
egy for a given correlation length, or o, = 0.5, which is the theoretical optimal value if there
is total uncertainty about the agents’ utility spaces. However, there is a problem with using
such a,, values. Any ap,, > 0.5 would give at least the same weight to bid utility than to bid
volume. Because of this, it would not be possible for the mediator to discriminate whether a
given bid has 2 high quality factor due to its high volume (thus being probably a bid issued by
a socially oriented agent) or due to its high utility (thus being probably generated by a selfish
agent). It seems reasonable to use a,; < 0.5, giving more weight to higher volume bids,
and thus enforcing social behavior among agents. The limit would be to use o, = 0, which
would make the mediator to select bids according only to their volume, regardless of their
utility. Our hypothesis is that this would totally decouple the deal identification mechanism
from the strategic behavior of the negotiating agents, thus improving protocol stability.

Finally, we shall consider that the use of such asymmetrical social welfare metrics, though
may contribute to improve model stability, may have its drawbacks as well. The rationale
behind the metrics is to “reward” those agents which are playing more cooperative strategies,
but the metrics are based on observations about agents’ final actions, since their strategies
are unknown to the mediator. More specifically, the mediator cannot distinguish whether an
agent is issuing low volume or low quality bids because it is playing a selfish strategy or
because its utility space does not contain better feasible regions. In this way, the mediator
may seem to be giving an undue advantage to agents with wider constraints. This kind of
asymmeltric models have, however, been used successfully in other negotiation scenarios.
The Clarke tax method [11], which was briefly discussed in Sect. 2.1.3 imposes a tax to
each agent once the negotiation has ended, making each agent “pay” for the impact that its
participation had over other agents’ utilities. The approach we have taken here is similar in
the sense that we apply the asymmetrical social welfare metrics at the final steps of the deal
identification, to select the final deal among al potential deals found, and this final selection
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