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Algorithm 1 get_Dependency(C)
C: aset of constraint

1: force Cdo

2. fori:=0to Number of issues do

3 for j :=i+1to Number of issues do

4 if Issue i and Issue j are interdependent in ¢
then

5 interdependencyGraph[i][j1++

6 end if

7: end for

g:  end for

9: end for
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Representative based Multi-Round Protocol
based on Revealed Private Information for
Multi-issue Negotiations

Katsuhide Fujita* Takayuki Itof Mark Klein

Abstract

Multi-issue negotiation protocols represent a promising field since most
negotiation problems in the real world involve multiple issues. Our work
focuses on negotiation with interdependent issues in which agent utility
functions are nonlinear. Existing works have not yet focused on the pri-
vate information of agents. In addition, they were not scalable in the
sense that they have shown a high failure rate for making agreements
among five or more agents. In this paper, we focus on a novel multi-
round representative based protocol that utilizes the amount of revealed
agents’ private information. Experimental results demonstrate that our
mechanism reduces the failure rate in making agreements and is scalable
for the number of agents compared with existing approaches.

Keywords: Multi-issue Negotiation, Nonlinear Function

1 Introduction

We envision a future in which large numbers of participants collaborate, nego-
tiate, and reach consensuses through computer-supported negotiation support
systems for global problems. Collaboratorium [1, 2], one such pioneering work
that enables many people to participate in an argument on such worldwide
problems as global warming, provides a platform for coordinating large-scale
arguments through web based collaboration tools. In our research, we consider
a tool that supports large-scale negotiations among the world’s people. In such
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a situation, eliciting people’s utility spaces and automatically finding and sug-
gesting possible agreements would be valuable. People could reach agreements
based on such system suggestions.

Multi-issue negotiation protocols represent an important field of study. Even
though much previous work exists in this area [3, 4, 5], most of it deals exclu-
sively with simple negotiations involving independent multiple issues. These
studies of negotiations mainly assume that agents have an incentive to coop-
erate to achieve win-win agreements because the situation is not a zero-sum
game. Many real-world negotiation problems, however, are complex and in-
volve interdependent multiple issues. Thus, we focus on complex negotiation
with interdependent multiple issues.

The bidding based negotiation protocol offers high performance on multi
interdependent issues negotiation. However, it has two main issues. 1) Pri-
vacy: Existing works have not yet addressed agents’ private information, which
should not be revealed excessively because agents who reveal too much utility
information suffer a disadvantage. For example, suppose that several companies
are collaboratively designing and developing a new car model. If one company
reveals more utility information than the other companies, those other com-
panies can learn more of that company’s utility information. As a result, the
company will face a disadvantage in subsequent negotiations. Furthermore, ex-
plicitly revealing utility information is dangerous from a security standpoint.
2) Scalability for the number of agents: The bidding based negotiation
protocol does not have high scalability for the number of agents. In the bidding
based negotiation protocol, the mediator needs to find the optimum combina-
tion of submitted bids from the agents. However, the computational complexity
for finding solutions is too large. The number of agent bids was limited in ex-
isting work [6]. Limiting bids causes low optimality and high failure rate for
agreements.

To resolve privacy issues, we define an agent’s revealed area that represents
the amount of his/her revealed utility space. This revealed area numerically de-
fines which agents are cooperative and which are not. Additionally, the mediator
can understand how much of the agent’s private information has been revealed
in the negotiation.

Moreover, we propose a representative based protocol that has high
scalability for the number of agents and considers the agent’s private informa-
tion. In our protocol, we first select representatives who revealed more of their
utility space than the others. These representatives reached an agreement on al-
ternatives and proposed them to the other agents. Finally, the other agents can
express their own intentions concerning agreement or disagreement. In this pro-
tocol, agents who revealed more private utility information can have a greater
chance to be representatives who will attend to reach an agreement on behalf
of the other agents. Although agents tend to avoid revealing their own private
information, they have an incentive to reveal it to be representatives.

The representative based protocol has been inspired by the parliamentary
systems in England, Canada, Australia, Japan, etc. in which representatives are
making an agreement on behalf of other people. In a situation in which many
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people have to reach an agreement, directly reflecting all members’ opinions is
quite difficult. Doing so requires much time and energy and is not scalable.
Although voting is one option, voting might have paradoxical results [7].

We expand our mechanism to be multi-round by using the Threshold Adjust-
ment Protocol [8]. The multi-round mechanism improves the failure rates and
achieves fairness in terms of the revealed area. This means that the amounts
of the revealed areas are almost the same among agents. Further, a represen-
tative mechanism can prevent the unfair solutions that can exist in the original
Threshold Adjustment Protocol.

The representative based protocol drastically reduces computational com-
plexity because only representative agents try to reach a consensus. The experi-
mental results demonstrate that our protocol reduces the failure rate in making
agreements and that it is scalable on the number of agents compared with ex-
isting approaches. We also demonstrate that our protocol reduces the revealed
area compared with existing works. Furthermore, we investigate the detailed
effect of the representative selection method in our protocol and call the selec-
tion method RAS in which agents who reveal a larger utility area are selected as
representatives. In the experiments, we compare RAS with a selection method
in which representative agents are randomly selected (RANDOM).

The remainder of this paper is organized as follows. First, we describe a
model of non-linear multi-issue negotiation and an existing work’s [6] prob-
lems. Second, we define the revealed area and proposed our new negotiation
mechanism. Third, we describe the multi-round negotiation protocol. Fourth,
we present an experimental assessment of this protocol. Finally, we describe
related work and draw conclusions.

2 Negotiation Using Complex Utility Space
2.1 Complex Utility Model

We consider the situation where n agents want to reach an agreement. m
issues, s; € S must be negotiated. The number of issues represents the number
of dimensions of the utility space. For example, if there are three issues, the
utility space has three dimensions. The issues are not “distributed” over agents
who are all negotiating a contract that has N (e.g., 10) issues. All agents are
potentially interested in the values for all N issues. Issue s; has a value drawn
from the domain of integers [0, X], i.e., s; € [0,X]. A discrete domain can
come arbitrarily close to a real domain by increasing the domain size. As a
practical matter, many real-world issues that are theoretically real (delivery
date, cost) are discretized during negotiations. Our approach, furthermore, is
not theoretically limited to discrete domains. The deal determination part is
unaffected, although the bid generation step must be modified to use a nonlinear
optimization algorithm suited to real domains. A contract is represented by a
vector of issue values &= (s1, ..., Sm)-

An agent’s utility function is described in terms of constraints. There are
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[ constraints, ¢y € C. Each constraint represents a region with one or more
dimensions and has an associated utility value. Constraint c has value w;(c, §)
if and only if it is satisfied by contract §. Figure 1 shows an example of a binary
constraint between issues 1 and 2. This constraint has a value of 30 and holds
if the value for issue 1 is in the range [4,9] and the value for issue 2 is in the
range [2,7]. Every agent has its own, typically unique, set of constraints.

An agent’s utility for contract 5'is defined as ui(5) = >_, c¢ sew(cr) WilCk, 5),
where z(cr) is a set of possible contracts (solutions) of ¢;. This expression
produces a “bumpy” nonlinear utility space with high points where many con-
straints are satisfied and lower regions where few or no constraints are satisfied.
This represents a crucial departure from previous efforts on multi-issue negotia-
tion, where contract utility is calculated as the weighted sum of the utilities for
individual issues, producing utility functions shaped like flat hyperplanes with a
single optimum. Figure 2 shows an example of a nonlinear utility space. There
are two issues, i.e., two dimensions, with domains [0,99]. There are 50 unary
constraints (i.e., that relate to one issue) as well as 100 binary constraints (i.e.,
that interrelate to two issues). The utility space is highly nonlinear with many
hills and valleys.

In our utility function, we assume interdependency between the issues. For
example, since an agent has a binary constraint between issues 1 and 2, as
Figure 1 shows, they are interdependent for the agent. Therefore, our utility
space is highly interdependent.

As is common in negotiation contexts, we assume that agents do not share
their utility functions with each other to preserve a competitive edge. In fact,
generally agents do not completely know their desired contracts in advance
because their own utility functions are simply too large. If we have 10 issues
with 10 possible values per issue, for example, this produces a space of 101° (10
billion) possible contracts, which is too many to evaluate exhaustively. Agents
must thus operate in highly uncertain environments.

Finding an optimal contract for individual agents with such utility spaces
can be handled using such well-known nonlinear optimization techniques as sim-
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ulated annealing or evolutionary algorithms. We cannot employ such methods
for negotiation purposes, however, because they require that agents fully re-
veal their utility functions to a third party, which is generally unrealistic in
negotiation contexts.

The objective function for our protocol can be described as follows:

argm?xzw(é'). (1)

iEN

In other words, our protocol tries to find contracts that maximize social welfare,
i.e., the total utilities for all agents. Such contracts, by definition, will also be
Pareto optimal.

2.2 Existing Bidding based Protocol

In a previous work [6], agents reach an agreement based on the following steps.
This is called a basic bidding based mechanism.

[Generate bids] Each agent samples its utility space to find high-utility
contract regions. A fixed number of samples are taken from a range of random
points, drawn from a uniform distribution. Note that if the number of samples
is too low, the agent may miss some high utility regions in its contract space
and thereby potentially end up with a sub-optimal contract.

There is no guarantee, of course, that a given sample will lie on a locally
optimal contract. Each agent, therefore, uses a nonlinear optimizer based on
simulated annealing [9] to find the local optimum in its neighborhood. Figure 3
exemplifies this concept. Black dots are sampling points and white dots are
locally optimal contract points.
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For each contract § found by adjusted sampling, an agent evaluates its utility
by a summation of the values of satisfied constraints. If that utility is larger
than reservation value § (threshold), then the agent defines a bid that covers
all the contracts in the region with that utility value. This is easy: the agent
merely finds the intersection of all the constraints satisfied by that s.

[Find the Solutions] In negotiation, the mediator takes the middle po-
sition and identifies the final contract by finding all the combinations of bids,
one from each agent, that are mutually consistent, i.e., that specify overlapping
contract regions (Figure 4) 1. If there is more than one such overlap, the medi-
ator selects the one with the highest summed bid value (and assuming truthful
bidding, the highest social welfare).

2.3 Scalability and Privacy Problems

Since it is a combinatorial optimization calculation, computational complexity
for finding solutions exponentially increases based on the number of bids. For
example, if there are 10 agents and each agent has 20 bids, the number of
bids is 20'°. To make our negotiation mechanism scalable, the computational
complexity must be reduced to find solutions.

We limited the number of bids for each agent to handle the computational
complexity in the basic bidding based protocol [6]. The concrete number of
bids in this limitation was %/6,400, 000, a number that reflects our experimen-
tal calibration in 2005. But even though CPUs are faster now, the limitation

1A bid has an acceptable region. For example, if a bid has regions [0,2] for issue 1 and [3,5]
for issue 2, the bid is accepted by a contract point (1,4), which means that issue 1 takes 1 and
issue 2 takes 4. If a combination of bids, i.e., a solution, is consistent, definitely overlapping
regions exist. For instance, a bid with regions (issue 1, issue 2) = ([0,2],[3,5]), and another
bid with ([0,1],[2,4]) is consistent.
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number does not differ so much because this is an exponential problem. Table 1
shows the limitation numbers of bids in one agent. This number quickly drops
by increasing the total number of agents. Because of the limitation of bids, the
failure rate for finding agreements quickly increases along with increasing the
number of agents. When the number of agents is five and the number of issues
is seven, we experimentally observed that the failure rate is around 40%. In
fact, a strong trade-off exists between increasing the number of total bids and
finding good quality solutions. Increasing the number of total bids is not an
effective approach for finding good quality agreements.

Thus, it is necessary to build another mechanism that will find higher quality
solutions without limiting the bids. Our mechanism proposed in this paper is
highly scalable. The other issue with existing protocols is that they are not
concerned with privacy in utility spaces. Even in a collaborative situation among
people, it is normal to keep one’s own utility space closed as long as one is not
asked to do otherwise. Our new mechanism achieves such a situation by defining
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Num. of agents | Limit of bids || Num. of agents ] Limit of bids

2 2530 7 9

3 186 8 7

4 50 9 6

5 23 10 5

6 13

Table 1: Limitation of the bids
Utility N Issue 2 Revealed Area
i / \
Threshold v
Issue 2L’—_J\

Issue 1 Issue 1

Figure 5: Revealed area
the revealed area in utility spaces.

3 Multi-Round Representative based Protocol
based on Revealed Private Information

3.1 Revealed Area for Agent

We focus on the amount of private information agents revealed in the nego-
tiation. We employ revealed area as a measure of the amount of revealed
utility space. Figure 5 shows an intuitive example of a revealed area, defined as
an agent’s possible contract points that are revealed in his utility space on his
threshold.

For an agent, it is important for him/her to know how much his/her private
information is revealed compared with the other agents. The mediator can
judge whether an agent is cooperative based on the amount of revealed private
information.

We use a threshold that is employed in generating bids as a measure of
adjusting agents’ revealed areas. Since directly adjusting the revealed area is
difficult because agents have complex utility spaces, we consider adjusting their
threshold to adjust their revealed areas. The threshold is employed for an
agent to generate his/her bids based on utility values above the threshold. The
threshold was originally adopted to adjust the number of bids. However, in this
paper, we also utilize it for determining an agent’s revealed area while handling
complex utility space.
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Figure 6: Representative based protocol

3.2 Representative based Protocol

Representative-based protocol consists of three steps. The first step is to select
the representative agents (Stepl). The second step is to find solutions, and
propose them to the other agents (Step2). The third step is to respond to the
agreement by the other agents (Step3).

We assume each agent uses a reservation value to determine whether to
“agree” or “disagree” with the representative agents. Actually, for practical
applications, the reservation value can be determined by a human user. In ad-
dition, we assume that the number of representatives is static in representative
based protocol. This protocol consists of the following steps.

[Step 1: Selection of Representative Agents] Representative agents are
selected based on the amount of their revealed areas, as shown in Figure 6 (A).
First, each agent submits how much he can reveal his utility space to the media-
tor. Namely, each agent submits the numeric value of the amount of his possible
revealed area. The mediator selects the representative agents who revealed a
large area. We call this selection method RAS. This step is main additional
coordination processes by the use of representatives. By employing RAS, all
agents are satisfied with the mediator’s decision because it is the best method
for all agents to find optimal solutions.

[Step 2: Proposing by Representatives] Representative agents find solu-
tions and propose them to other agents, as shown in Figure 6 (B). First, repre-
sentative agents find solutions by employing a breadth-first search with branch
cutting to find solutions (from lines 3 to 14 in representative_protocol()).

Next, the representative agents ask the other agents whether they “agree”
or “disagree.” Step 2 is repeated until all the other agents agree or the solutions
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found by the representatives are rejected by the other agents.
[Step 3: Respond to Agreement by other Agents| First, the other agents
receive the solutions from the representative agents. Then they judge whether
they “agree” or “disagree” by determining whether the solution’s utility is higher
than their own reservation value (Figure 6 (C). ).

Steps 1, 2, and 3 are captured as Algorithms 1 and 2:

Algorithm 1 representative_protocol(B)
B: A set of bid-set of each agent
(B={Bo, Bi, ..., Bn}, a set of bids from agent ¢ is B; = {bi,0,bi,1, ..., bi,m; })
RB:A set of bid-set of each representative agent
(RB={RBy, RBx,...,RBr}, a set of bids from representative agent i is RB; =
{T‘b«;,o, Tbi,l, ceny 'f'bi,li })
SC: A set of solution-set of each representative agent
(SC={SCy, SC4, ..., SCy}, a set of bids from agent 7 is SC; = {sci,0, s¢i1, ..., SCi,m; })
1: RB := select_representative(B)
2: SC:=RBy,1:=1
3: while 7 < the number of representative agents do
4 SC':=10
5. for s € SC do
6 for rb; ; € RB; do
T s i=sUrb;;
8
9

end for

end for
10:  if s’ is consistent then
11: SC':=8C"Us
12:  end if
13: SC:=8C"i:=1+1
14: end while
15: while 1 < |SC| do
16:  if ask_agent(SC;) is true & SC; Utility is maximum then

17: return SC;

18: else

19: return No Solution
20: end if

21: end while

This protocol is scalable for the number of agents. In a representative pro-
tocol, combinatorial optimization only occurs in negotiation among representa-
tive agents. In fact, the computational complexity for proposing solutions to
unrepresentative agents only increases linearly and is almost negligible. Thus,
the computational complexity is drastically reduced compared with the existing
mechanism.

Finally, we describe the trade-off for an agent between revealing a large
amount of utility space and being a representative agent. Representative agents
have advantages since they can propose alternatives to other agents and dis-

10
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Algorithm 2 ask_agent(SC)

select_representative() is a method for performing Step 1
Th: A reservation value of each agent (Th={Tho, Tha, ..., Thn})

1: while ¢ < the number of agents do

2. if SC’'sUtility < Th; then
return false

else
ti=t+1

end if

7: end while

8: return true

advantages because they need to reveal larger utility space. Unrepresentative
agents have advantages in keeping their utility hidden and disadvantages in
responding based on representatives’ agreements.

3.3 Threshold Adjusting Mechanism

We extend our protocol to multi-round negotiation based on the threshold ad-
justing method [8] so that the number of times to be a representative agent is
fair. The total amount of revealed utility space for each agent is almost the
same by the threshold adjustment mechanism.

The main idea of the threshold adjusting mechanism is simple: if an agent
reveals a larger area of his utility space, he should gain an advantage. On the
other hand, an agent who reveals a smaller area of his utility space should adjust
his threshold to agree with others. The threshold values are changed by each
agent based on the amount of revealed area. If the agent decreases the threshold
value, this means that he must reveal more of his utility space.

This mechanism is repeated until an agreement is achieved or all agents
refuse to lower their thresholds. Agents can decide whether to lower the thresh-
old based on their reservation value, i.e., the minimum threshold. This means
that agents have the right to reject the request to decrease their threshold if the
request decreases a threshold lower than the reservation value.

Figure 7 shows an example of the threshold adjusting process among three
agents. The upper and bottom figures show the thresholds and the revealed
areas before and after adjusting the threshold, respectively. In particular, in
this case, agent 3 revealed a small amount of his utility space. The amount
of agent 3’s revealed utility space in this threshold adjustment is the largest
among these three agents. The exact rate of the amount of revealed utility
space and the amount of decreased threshold are defined by the mediator or the
mechanism designer.

The threshold adjusting mechanism is shown as Algorithm 3:

In the threshold adjusting mechanism, agents can consider others’ behaviors
by adjusting the agent thresholds. In our definition, agents can reveal more

11
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Algorithm 3 threshold_adjustment( )
Ar: Area Range of each agent (Ar = {Arg, Ar1,..., Arn})

representative_protocol(): representative based protocol explained in previous sec-
tion.

1: loop
2 i:=1,B:=0

3:  whilei < |Ag| do

4 bid_generation.with_ SA(Th;,V,SN,T,B;)

5:  end while

6:  mazSolution := representative_protocol(B)

7. if find mazSolution then

8: break loop

9: else if all agent can lower the threshold then
10: 1:=1

11: SumAr 1= X a9 Ari
12: while i < |Ag| do
13: Thi:=Th; — C % (SumAr — Ar;)/SumAr
14: 1:=1+4+1
15: end while
16: else
17: break loop
18:  end if
19: end loop

20: return maxSolution

12

157



Agent 1 Agent 2 Agent 3

Utility Utility - A Utility

Threshold Threshold o Threshold f

Issue2 Tssue2 / \\__\—_’_Jv\ Issue2
t —_—

Issue2

Issue2 Issue2

Issuel Issuel Issuel

7 Compromising (Threshold adjusting)

Utility|
TL PN

Issue2

Issue2 Issue2 Issue2

Issuel Issuel Issuel

Figure 7: Threshold adjusting process

revealed area if they greatly lower their threshold. Additionally, the width
of decreasing the threshold is decided based on a comparison of the others’
revealed areas in the threshold adjusting mechanism. Therefore, they can take
the behaviors of others into consideration in multi-round negotiation.

4 Experiment Results

4.1 Experiment Settings

We conducted several experiments to evaluate the effectiveness of our approach.
In each experiment, we ran 100 negotiations between agents with randomly
generated utility functions.

In the experiments on optimality, for each run, we applied an optimizer
to the sum of all the agents’ utility functions to find the contract with the
highest possible social welfare. This value was used to assess the efficiency
(i.e., how closely optimal social welfare was approached) of the negotiation
protocols. To find the optimum contract, we used simulated annealing (SA)
because exhaustive search became intractable as the number of issues grew too
large. The SA initial temperature was 50.0 and decreased linearly to 0 over the
course of 2500 iterations. The initial contract for each SA run was randomly
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