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Figure 1 Changes in AOC concentration along the treatment process in
a) plant A, b) plant B and c) plant C

observed after ozonation in all plants. This is because partial degradation of organic matter in raw
water to more biodegradable forms [6]. AOC-NOX fraction was increased mostly in plant A and
plant B. This observation is consistent with the other studies [7-10]. On the other hand, AOC-P17
fraction was increased after ozonation in plant C. Plant A and plant B receive raw water from the
same river while plant C receives raw water from a different river. Thus, dissolved organic matter in
raw water of plant C might have different composition, resulting in the different production pattern
of AOC by ozonation. Reduction of AOC concentration by BAC filtration was observed in all
plants. Although both of AOC-P17 and AOC-NOX fractions were highly removed, removal
performances were different among plants. AOC reductions by BAC filtration followed the order of
155 ng acetate-C/l (73% reduction) in plant A, 111 pg acetate-C/l (53% reduction) in plant C and
58 ug acetate-C/1 (53% reduction) in plant B. The largest AOC reduction in plant A could be due to
longer retention time of BAC filtration in plant A (15 min) compared with plant B and plant C (12
min). However, AOC reduction in plant C was two times larger than that in plant B despite the

same retention time. Thus, differences in retention time of BAC filtration are not directly associated
with AOC removal efficiency.

3.2 Relationship between total microbial abundances of BAC and AOC removal
Total microbial cells on BAC-A, -B and -C were 4.4x10%, 9.0x10® and 5.1x10® cells/g-wet,



respectively. No large differences were observed among the BAC samples. Considering AOC
removal rates of BAC filtration calculated by AOC concentration data in Figure 1 and total
microbial cells in the entire BAC bed, cell-specific activity of AOC removal can be estimated. The
estimation demonstrated that cell-specific activities of AOC removal for BAC-A, -B and -C were
1.18, 0.27, and 0.91 fgC/cell/hr, respectively. Thus BAC-A offered the highest performance for
AOC removal followed by BAC-C and BAC-B. However, total abundances include dead cells as
well as live ones. Thus, we need to evaluate only viable or active microorganisms rather than total

abundances to estimate more accurate activity.

3.3 Bacterial community structures in raw water and on BAC

Bacterial communities in raw water and on BAC were investigated by DGGE analysis
(Figure 2). The DGGE result indicated that bacterial communities in raw water were similar among
all plants. However, they were significantly different from communities on BAC, suggesting that
communities on BAC were composed of bacteria which were not dominant in raw water. Some
bands such as band 1 were common in all BAC samples while some bands were observed in only
one BAC sample (e.g. band 2 in BAC-A, band 4 in BAC-B, band 5 in BAC-C). In addition, there
were some common bands found in two samples (e.g. band 3 observed in both BAC-B and BAC-C).

In addition to DGGE analysis, T-RFLP analysis was applied to evaluate bacterial
community structures of raw water and BAC samples. Figure 3 shows T-RFLP profiles of raw
water and BAC samples obtained by Hhal digestion. The T-RFLP profiles of raw water samples

Raw water BAC

‘ABCABC

Figure 2 DGGE profiles of bacterial communities in raw water and on BAC
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were similar among three plants. Major T-RFs detected are shown in Figure 3 and Table 1. T-RF |
to 4 were common fragments detected in all raw water samples. However, some fragments (T-RF 5
and 6) observed in raw water of plant C were not observed in plant A and B. This is probably
because plant A and B receive raw water from the same river but plant C receives raw water from
another river. On the other hand, the T-RFLP profiles of BAC samples were significantly different
from those of raw water samples. It was in accordance with the DGGE results. Some T-RFs
including T-RF 7, 9, 10, 11 and 15 were common in all BAC samples. However, some T-RFs only
observed in each BAC sample were also found such as T-RF 13,14, 16 and 17 in BAC-A, T-RF 18
in BAC-B and T-RF 20 in BAC-C. Principal component analysis (PCA) of the T-RFLP profiles
obtained by Hhal digestion was applied to evaluate similarity of the profiles. The result of PCA is
shown in Figure 4. Principal component 1 (PC1) separated the profiles of raw water samples from
those of BAC samples. All raw water samples were grouped together. On the other hand, principal
component 2 (PC2) separated BAC-A from BAC-B and BAC-C, indicating that community
structure of BAC-A was different from those of BAC-B and BAC-C. The difference in service time
of BAC (BAC-A: 4 years, BAC-B and BAC-C: 1 year) or retention time of BAC filtration (BAC-A:
15 min, BAC-B and BAC-C: 12 min) might have some influence on bacterial community structures.
The bacterial candidates corresponding to the major T-RFs were predicted by PAT software.
In this analysis, three profiles obtained by Hhal, Mspl and Rsal digestion were compared with the
database of T-RFs of bacterial strains and clones generated by using the Microbial Community
Analysis software (MiCA) (http://mica.ibest.uidaho.edu/pat.php/) [11]. We need to understand the
limitation of this indirect estimation because closely related or phylogenetically different bacteria



Table 1 Bacterial candidates of major T-RFs in raw water and BAC predicted by PAT analysis

Species match Raw water BAC

(Bacterial phylum information) A
Unidentified v/ v
Unidentified v v
e '
v v

T-RF

chloroplast of Palmaria palmata

Polaromonas naphthalenivorans CJ2

(Chlorabi)

Unidentified - -

Unidentified - -
Unidentified - -

Unidentified - -
Clostridium piliforme pRJ

(Firmicutes)

Chlorobaculum tepidum (T)
(Firmicutes)

Pseudomonas sp. BBCT8
(Gammaproteobacteria)
Catenibacterium mitsuokai JCM 10611
(Firmicutes)

Paenibacillus ourofinensis AC13MSD
(Firmicutes)

Unidentified - - -

Roseivivax halotolerans (T) OCh 210T
(Alphaproteobacteria)
Acidiphilium cryptum JF-5
16 (Alphaproteobacteria)
Microcystis holsatica NIES-43
(Cyanobacteria)
17 Unidentified - - - 4 - -

18 Unidentified - - - _

19 Spiroplasma chrysopicola (T) ATCC 43209 DF-1
(Tenerecutes)
20 Leptotrichia amnionii

(Fusobacteria)
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could share fragments of the same length. The matching result is summarized in Table 1. T-RF 3
and 4 found in all raw water samples were probably derived from chloroplast of Palmaria palmata
(eukaryotic algae) and Polaromonas naphthalenivorans, respectively. On the other hand, candidates
for T-RFs (T-RF 9, 10, 11 and 15) observed in all BAC samples included bacteria in phylum
Firmicutes, Gammaproteobacteria and Alphaproteobacteria. Moreover, T-RF 13 and 16 detected in
only BAC-A were matched with Firmicutes and Alphaproteobacteria or Cyanobacteria,
respectively. These bacterial candidates might be associated with higher AOC removal performance
of BAC-A. However, relationship between community structures and AOC removal performances
is still not clear because BAC-C could remove more AOC than BAC-B despite their community
structures were similar as shown in Figure 4. Further study is required to identify community
members on BAC and their activities and functions in terms of AOC removal.

4. CONCLUSION

This study compared the removal efficiency of AOC by BAC filtration in three advanced
drinking water treatment plants in Japan. The influence of total microbial abundances and bacterial
community structures of BAC on AOC removal efficiency was investigated. The AOC

concentrations were increased after ozonation treatment and highly reduced after BAC filtration.



The highest AOC reduction was observed in plant A followed by plant C and plant B. This order
was in accordance with the cell-specific activities of AOC removal estimated for the BAC samples.
The community structures of BAC samples were significantly different from those of raw water
samples. The community structure of BAC-A was different from those of BAC-B and BAC-C. The
difference in service time or retention time of BAC filtration might have some influence on
bacterial community structures. Identification of community members and elucidation of their
activities and functions in terms of AOC removal are required to further understand the mechanism
of AOC removal by BAC filtration.
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Application of Stable Isotope Probing to Evaluate AOC Assimilating

Bacteria Attached on BAC in Drinking Water Treatment Plant

Suwat SOONGLERDSONGPHA, Ikuro KASUGA Futoshi KURISU, Hiroyuki KATAYAMA, Hiroaki FURUMALI

|. Introduction

Assimilable organic carbon (AOC) has been concerned as one of the
factors causing bacterial regrowth in drinking water distribution
system, It has been reported that biological activated carbon (BAC)
filter can efficiently reduce AOC through biological oxidation.
However, bacterial community associated with BAC involved in the
AOC removal has not been understood well. This study aimed to
evaluate AOC assimilating bacteria attached on BAC by DNA-
pased stable isotope probing (SIP) using *C-labeled acetate as a
model substance of AOC.

2. Methods

2.1 Incubation of BAC with *C- and '’C-acetate

BAC sample was collected from an advanced drinking water
treatment plant which has been operated for two years. The BAC
sample was incubated with 10 mgC/l of "*Cy-acetate (99atom%;
Cambridge Isotope Lab.) or *C-acetate in mineral medium at 20°C,
Different incubation time conditions (24 hours and 48 hours) were
compared.

2.2 Isopycnic centrifugation and fractionation

Density pgradient centrifugation was performed in 4.9 ml
polyallomer centrifuge tubes with an NVT65.2 Beckman rotor
(Beckman, USA) spun at 45,000 rpm (178,000xg) for 68 hr at 20°C.
Centrifugation medium was prepared by mixing 4.75 ml of 1.720
glem® CsCl stock solution in gradient buffer (GB; 0.1 M Tris-HCl,
pH8.0; 0.1 M KCI; I mM EDTA)" with 0.15 ml of DNA extract.
Centrifuged gradients were fractionated into 20 fractions (~250 pl)
by paraffin liquid displacement. The buoyant density of each
fraction was determined with an AR200 digital refractometer
(Reichert, Japan). DNA was precipitated from CsCl solution with
polyethylene glycol and resuspended in a 30-ul elution buffer. DNA
concentration was measured with a Nanodrop spectrophotometer
(Scrum, Japan).

2.3 Bacterial community analysis

Bacterial community structure in each gradient fraction was
characterized by terminal restriction fragment length polymorphism
(T-RFLP) analysis. Bacterial 16S rRNA genes were amplified with
a primer set of 27f labelled with 6-carboxyfluorescein and 907r. The
purified product was digested with Hhal at 37°C for 6 hr. Separation
of fluorescently labelled fragments was conducted with an ABI
3100 Prism Avant Genetic Analyzer (Applied Biosystems, USA).

3. Results and discussion

3.1 DNA distribution in CsCl gradient fractions

Fig. 1 shows the distribution of "’C- and C-DNA in the CsCl
gradient fractions prepared from the samples incubated for 48 hours.
Although 2C- and *C-DNA were not clearly separated in case of 24
hours of incubation, separation of *C-DNA from C-DNA was
improved by extending incubation time to 48 hours as shown in Fig,
1. This result suggests that 24 hours of incubation was not enough
for bacteria associated with BAC to assimilate acetate well.

3.2 Comparison of T-RFLP profiles

Fig. 2 shows T-RFLP profiles in the different CsCl gradient
fractions of 1*C- and "*C-DNA (incubation time: 48 hours). T-RFLP
profiles of *C- and 'C-DNA were similar below 1.703 g/cm®
fractions. In contrast, T-RFLP profiles were obtained from only *C-
DNA in 1.717-1.722 g/em’ fractions, while PCR products were not
amplified from the corresponding fractions of '?C-DNA. In
particular, terminal-restriction fragments (T-RFs) of 200, 332, and
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Fig.1 DNA distribution in CsCl gradient fractions of *C-acetate
treatment (®) and '2C-acetate treatment (o) (incubation time: 48
hours).
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Fig.2 T-RFLP profiles in CsCl gradient fractions after incubation
with a) '*C-acetate and b) '*C-acetate for 48 hr.

339 bp were more abundant in BC.DNA than those in '2C-DNA
over 1.707 g/cm® fractions. Though effects of cross-feeding of Be-
acetate during longer incubation should be assessed, this result
suggests that some bacteria corresponding to those T-RFs are
probably involved in the removal of acetate. It is possible that the
abundances or activity of these bacteria associated with BAC could
be related to performance of acetate removal in BAC treatment.
However, actual concentration of acetate or AOC is much lower
than 10 mgC/l. Thus, further trial is necessary to modify SIP
experimental condition under lower substrate condition.

4. Conclusions

SIP analysis was applied to evaluate acetate assimilating bacteria
associated with BAC. The separation of *C-DNA from '*C-DNA
was achieved after 48 hours of incubation. It was revealed that
bacteria corresponding to some specific T-RFs could probably take
part in acetate removal in BAC filter.
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