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Study on Failure Detection of Plumbing Check Valve

Masaki ITO', Toshiro YAMADA', Takashi BABAZ, Takeshi HAYASHIDA?
and Michihiro AKIBA'

'Dept. of Water Supply Engineering, National Institute of Public Health
2 Bureau of Waterworks Tokyo Metropolitan Government
3 Chiba Prefectural Waterworks Bureau

This study aimed at the development of a failure detection method on plumbing check valves based on
monitoring results of differential water pressure between the valve inlet and outlet and flow rate through
the valve. The relationships between the differential pressure and flow rate of both single spring check
valve and double check valve under the positive pressure, back pressure and negative pressure was
demonstrated and some different characteristics were found between the valve with regular function and
the impaired one. A failure detection method with the differential water pressure and flow rate was

proposed and shown to be available in this study.
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The effects of coagulant residuals on fouling of a nanofiltration {NF) membrane were investigated.
Experiments were carried out with a laboratory-scale microfiltration (MF)~NF setup and a pilot MF-NF
plant. In the laboratory-scale experiments, NF feed water was pretreated with poly-aluminum chloride
(PAQ)) or alum followed by MF. NF membrane permeability declined when the feed water contained residual
aluminum at 18 pg/L or more, but not when it was lower than 9 pg/L. When pretreated with ferric chloride,
no substantial decline of NF membrane permeability was observed; residual iron did not affect the
permeability. When Si0, was added to the water before the pretreatment with PAC], the NF membrane
permeability declined at about double the speed. Thermodynamic calculations and elemental analysis of
foulants recovered from the membranes indicated that the majority of inorganic foulants were compounds
composed of aluminum, silicate, and possibly potassium. In the pilot plant, NF feed was pretreated by PACI.
Transmembrane pressure for NF doubled over 4.5 months of operation. Although the aluminum
concentration in the NF feed was not high (30 pg/L), analysis of membrane foulants revealed excessive
accumulation of aluminum and silicate, also suggesting that aluminum residuals caused the membrane
fouling by alumino-silicates or aluminum hydroxide.
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1. Introduction

Nanofiltration (NF) is a promising advanced drinking water
treatment process that offers an efficient alternative to conventional
advanced treatment (ozone-activated carbon) and has the potential to
produce potable water of better quality. NF is expected to perform better
than conventional advanced treatment in removing natural organic
matter, precursors of disinfection by-products [1,2] and trace hazardous
chemicals such as pesticides [3] from water; however, NF is still more
expensive, and its cost needs to be reduced ifit is to be widely accepted.

Membrane fouling leads to a continuous decline in membrane
permeability, and fouling mitigation considerably reduces the cost of
designing and operating membrane filtration systems. In the case of
NF of surface waters, the accumulation of particulate matter severely
decreases the permeability of the NF membranes; such particulates

* Corresponding author. Tel./fax: +81 11 706 7282,
E-mail addresses: ohnok@eng.hokudai.acjp (K. Ohno), matsui@eng hokudai.acjp
(Y. Matsui), itoh@niph.go.jp (M. Ttoh), taku-m@eng.hokudai.acjp (T. Matsushita),
magara@enghokudat.acjp (Y. Magara).
! Tel.: +81 48 458 6298; fax: +81 48 458 6299.
2 Tel.ffax: +81 11 706 7278,

0011-9164/§ ~ see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/].desal.2009.12.020

must be removed by pretreatment processes such as coagulation,
followed by clarification and then multi-media filtration or micro-
filtration (MF).

Although these pretreatments can alleviate the effect of organic
foulants as well as that of particulate, the pretreatment increases
coagulant residuals to NF feed and they may precipitate on the
membrane surface and reduce membrane permeability. Kim et al. [4]
used three types of NF feed: untreated raw water (RAW water),
pretreated by in-line coagulation followed by MF (MF water) and
pretreated by coagulation, sedimentation and sand filtration (CS
water). They found that the order of the ratio of inorganic foulants to
the total amounts of foulants was CS water>MF water>RAW water.
Gabelich et al. tested reverse osmosis (RO) membrane using feed
pretreated with conventional or direct filtration treatment plants.
They used either alum or ferric chloride, and also used cationic
polymer and chloramines for pretreatment. The tests using alum with
RO elements revealed rapid deterioration in specific flux, on the other
hand, the specific flux using ferric chloride did not decrease over time
[5]. They also suggested that three types of aluminum-based foulants:
aluminum silicates, aluminum hydroxides, and aluminum phosphates
{6]. Accordingly, both pretreatment methods and types of coagulants
may play a crucial role in the control of NF/RO fouling. Application of
conventional coagulation, clarification and muiti-media filtration can
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take advantage of preexisting facilities; however, the processes offset
the benefit of small area required for NF membrane process. Pre-
coagulated MF would be more advantageous process for pretreatment
for NF,

Most of the surface water treatment plants in Japan that have
coagulation process currently use aluminum coagulants [7]. During
our pilot plant experiment [8}, which is also discussed in this study,
we found that residual aluminum coagulants in the NF feed might
cause the membrane fouling. Therefore, the objective of this study
was to investigate the effects of coagulant residuals on NF membrane
fouling when NF is applied as an advanced water treatment process of
surface or ground water. In laboratory-scale experiments, we used
two types of aluminum coagulant: poly-aluminum chloride (PACH)
and alum and pretreated by in-line coagulation and ceramic MF. As an
alternative coagulant, iron coagulant (ferric chloride) was also used.
To clarify the effect of residual coagulants, groundwater that
contained low organic matter was used as raw experimental water.
To elucidate the effects of SiO, on the NF membrane fouling, we added
Si0; to the raw water in some of the experiments. The results of the
pilot scale experiment, in which PACI was used as a coagulant agent,
were also presented and discussed.

2. Experimental
2.1. Laboratory-scale experiment

In the laboratory-scale experiment, Hokkaido University ground-
water was used as raw experimental water. The average quality of this
water was: DOCO0.5 mg/L, EC450 pS/cm, pH 7.2, Na 29 mg/L, K 9.6 mg/
L-Ca 50 mg/L, Mg 15mg/L, Cl 25mg/L, S0, 40 mg/L. Types of
coagulants used were PAC! (10% Al;0s, basicity 52%, Japanese
Industrial Standard (JIS) grade), alum (Aluminum Sulfate 14-18
Water, reagent grade, Wako Pure Chemicals, Osaka, Japan) or ferric
chloride (Iron (M) Chiloride Hexahydrate, reagent grade, Wake Pure
Chernicals). The raw water was firstly treated with activated carbon
cartridge filter to quench residual chlorine and then pretreated by in-
line coagulation followed by MF. The MF filtrate (pH 7.0-7.1) was
then pumped at a rate of 1.5 L/h to a flat sheet membrane test cell
{filtration area 60 cm?, C10-T, Nitto Denko Matex Corp., Tokyo, Japan;
Fig. 1) that housed the NF membrane (UTC-60, nominal NaCl rejection
55%, Toray Industries, Inc.). NF was performed at a filtration flux of
2.5 cm/h and a water recovery rate of 10%. The system flow is shown
in Fig. 2. We conducted nine experimental runs and their conditions
are summarized in Table 1. In all experimental runs, the coagulant

- Fig. 1. Flat sheet membrane test cell.

dose was set at 0.04 mM (1.1 mg-Al/L, 2.2 mg-Fe/L). MF was
performed with a laboratory-use ceramic membrane (nominal pore
size 0.1 um, membrane area 0.4 m?, NGK Insulators, Nagoya, Japan) at
very low filtration flux (0.83 cm/h), without periodic hydraulic
backwashing; the MF membrane was replaced with a chemically
cleaned membrane when the inlet pressure reached 0.05 MPa. After
the NF experiments, spent NF membranes were cleaned with 2% citric
acid, and the aluminum and iron concentrations in the citric acid drain
were analyzed.

After five experimental runs with the laboratory-scale experimental
setup, an automatic hydraulic backwash system was introduced to the
MF step; the MF was performed at a normal filtration flux (6.25 cm/h),
and the MF membrane was hydraulically cleaned by backwash at a
pressure of 500 kPa for 10 s every 2 h {9]. MF permeate (pH 6.8-7.0) was
introduced to the NF membrane test cell at a filtration flux of 2.08 cm/h,
which is slightly lower than the fluxes used for the previous
experiments. Runs 6-9 were conducted with this system. Run 6 used
PAC! as a coagulant, and Run 7 used ferric chloride.

In the next two experimental runs (Runs 8 and 9), Si0, was added
to the chlorine-quenched groundwater before coagulation with PACI
and MF pretreatment. By comparing these results with the results of
Run 6, in which the mean silicate concentration was 35 mg-SiO,/L, we
investigated the effect of silicate on the NF membrane fouling. Diluted
sodium silicate was added so that the silicate concentration in the NF
feed would be approximately 80 mg-Si0,/L. Sodium silicate is a basic
reagent, and thus the pH was adjusted to approximately 7 with
hydrochloric acid. After Runs 6, 8, and 9, the spent NF membranes
were cleaned sequentially with HCl, NaOH, and citric acid; and then

- the aluminum, silicate, calcium, and potassium concentrations in the

cleaning water were analyzed.

2.2. Pilot MF-NF plant experiment

The pilot plant received water at a rate of 24 m>/h from the outlet
of a sedimentation basin of the Ishikawa Water Treatment Plant,
Okinawa, Japan, after PACI {basicity 50%, JIS grade) coagulation. In the
pilot plant, MF (polyvinylidene fluoride membrane, nominal pore size
0.1 ym; Toray Industries, Inc., Tokyo, Japan) filtrates (pH 6.5-7.3)
were transferred to the NF modules (nominal NaCl rejection 55%;
polyamide SU-610, Toray Industries, Inc.), which were operated at
constant flux (2.5 cm/h) and water recovery rate (95%) by adjustment
of the feed pressure. Average quality of MF filtered water was: TOC
09 mg/L, EC 185uS/cm, Na 19 mg/L, Ca 11 mg/L, CI 27 mg/L, SO4
14 mg/L, and residual Al was 0.03 mg/L. The 15 NF modules were
placed in a multistage array (8, 4, 2, and 1 modules in series), and the
water recovery rate of each element was about 13%, Details of the
process configuration and operation are given elsewhere [8]. After
4.5 months of system operation, foulants on the NF membrane surface
were collected by gentle scraping of the membrane deposits. The
foulants were then dried, weighed, combusted for 30 min in a muffle
furnace at 550 °C, and then weighed again to obtain the mass of fixed
solid. The recovered foulant was analyzed for Al, Ca, Fe, S, and Si.

2.3. Analytical methods

Aluminum and iron concentrations were measured by -an induc-
tively coupled plasma-mass spectrometer (ICP-MS; HP-4500; Agilent
Technologies, Inc., Palo Alto, CA, USA). lon concentrations (Na*, K,
Mg*, Ca*, CI™, NO7, SO3~) were measured by ion chromatograph
(DX-120, Nippon Dionex KK, Osaka, Japan). SiO, was measure by
molybdenum' yellow colorimetric method. TOC and DOC were
measured by TOC-5000A (Shimadzu Corporation, Kyoto, Japan) or
Sievers 900 Laboratory TOC analyzer (GE Analytical Instruments,
Boulder, CO, USA).
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Quenching of
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activated carbon
cartridge filter

Groundwater

Na,$10, and HCI
(Runs 8and 9
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P: pump
P1: pressure indicator
Fi: flow instrument

Flow control

NF permeate NF retentate

Fig. 2. Experimental setup for laboratory-scale MF-NF experiments,

3. Results and discussion

3.1. Laboratary-scale experiment pretreated with aluminum coagulants
(Runs 1-3)

Changes in NF membrane permeability over time in the labora-
tory-scale experiment with different aluminum coagulants (i.e., PACI
and alum) are compared in Fig. 3. Because variation in the initial
filtration flux of the pieces of NF membrane sheet used in the NF
cross-flow cell was smali, nanofilter permeability -was evaluated in
terms of the dimensionless standardized filtration flux, which is the
standardized flux at 1 MPa and 25 °C divided by the standardized flux
for pure water, as described by the following equations [10]:

I=35 M

where | is standardized filtration flux [m/(h MPa)), Q is filtration rate
(m%h), A is membrane surface area (m?), a is a temperature
compensation factor to 25°C, and AP is transmembrane pressure
(TMP) (MPa); and

w . J
J I 2)
where J' is dimensionless standardized flux, and Jw is standardized
filtration flux for pure water {m/(h MPa)].

After 25 days of operation of the laboratory-scale experiment with
PACI coagulant (Run 1) in which MF permeate (NF feed) had a mean
aluminum concentration of 20 pg/L, the filtration flux decreased by
about 15% (Fig. 3). In an experiment with alum coagulant (Run 2) in
which NF feed contained aluminum at a mean concentration of 18 pg/
L, the filtration flux again decreased by about 15% Lower mean

Table 1
Laboratory-scale experimental conditions and mean concentrations of residual
coagulant in NF feed water.

alurinum concentration (8.7 pg/L) in NF feed was observed in
another experiment with PACI coagulant {Run 3); we did not change
any specific condition of coagulation and MF, and we could not
elucidate the reason why we could achieve this lower residual
aluminum concentration. In this Run 3, the NF membrane permeabil-
ity did not change substantially. The percentage rejection of
aluminum by NF was more than 85%; most of the aluminum
remaining after MF obviously could not permeate the NF membrane
and thus had the potential to be deposited on the NF membrane,
reducing membrane permeability. However, the aluminum concen-
trations in the NF retentates were only slightly higher than the
concentrations in the corresponding NF feed; more than 98% of the
aluminum fed to the NF was discharged with the NF retentate.
Therefore, the high rejection ratio of aluminum did not produce a
retentate that was highly concentrated in comparison with the feed
and did not necessarily result in a high deposition rate on the NF
membrane.

3.2. Laboratory-scale experiment with iron coagulant pretreatment (Runs 4
and 5)

Unlike Runs 1 and 2, Runs 4 and 5 did not show a large change in
nanofilter permeability (Fig. 4). Mean iron concentrations in the NF
feed after the ferric chloride coagulation and MF pretreatments in
Runs 4 and 5 were 10 and 18 pg/L, respectively, and the aluminum
concentration in the NF feeds was less than 2 pg/L. The percentage
rejection of iron by NF was 60-90%, which was not as high as that of
aluminum. These results suggest that the concentration of residual
aluminum after coagulation influenced NF fouling more strongly than
did the residual iron concentration.

x
=
3
2
f =4
2
B )
5 04 L —O—Run 1 (NF feed: 20 ug-AliL, PACI coagulation)
g ~4— Run 2 {NF feed: 18 ug-AliL, alum coaguiation)
02 F @ Run 3 (NF feed: 8,7 yg-AliL, PACI coagulation)
0‘0 1 1 1 i 1 3
0 100 200 300 400 500 600

Time (h)

Fig. 3. Time dependence of dimensionless standardized flux (standardized flux/
standardized flux for pure water) for NF after coagulation and MF in the laboratory-
scale experiment (Runs 1-3).
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Fig. 4. Time dependence of dimensioniess standardized flux (standardized flux/
standardized flux for pure water) for NF after coagulation and MF in the laboratory-
scale experiment (Runs 4 and 5).

Table 2 summarizes the masses of aluminum and iron eluted from
the spent NF membranes by citric acid. The membranes used in Runs 1
and 2, which showed larger permeability declines, contained more
aluminum (3.6 and 4.0 mg/m?*-membrane surface) than the others.
The amount of iron eluted from the spent membranes was similar to
the amount of aluminum (Table 2), but unlike the mass of aluminum,
the mass of iron was not obviously correlated with membrane
permeability decline (Figs. 3 and 4).

3.3. Laboratory-scale experiment with backwashing in the MF step

3.3.1. Comparison of aluminum and iron coagulation (Runs 6 and 7)

An automatic backwash was introduced to the MF step after Run 5,
* and this alteration permitted MF at a normal filtration flux. Under this
altered condition, experimental runs with PACI coagulant (Run.6) and
ferric chloride (Run 7) were performed. Nanofilter permeability
declined during Run 6 (Fig. 5). In this run, the NF feed contained
residual aluminum of 40yug/L in average, and the membrane
permeability declined by 25% after 60 days (1440 h) of operation.
The permeability declined at lower rates in this run than in Runs 1 and
2; this result was probably due to the fact that the filtration flux
(2.08 cm/h) was-lower than in Runs 1 and 2 (2.5 cm/h). In the
experiment with ferric chloride (Run 7), no substantial decline in NF
membrane permeability was observed; this result was the same as
those for Runs 4 and 5.

3.3.2. Effect of SiO; addition (Runs 6, 8 and 9)

When Si0; was added to the water before the pretreatment by
coagulation with PACl and MF (Runs 8 and 9), the NF membrane
permeability declined at about double the speed observed for Run 6
(Fig. 6). The pH in Run 8 was not strictly controlled (the pH of the NF
feed water fluctuated between 6.6 and 7.5). Aluminum is more
soluble at alkaline pH than at neutral pH {11}, and therefore the mean
aluminum concentration in the NF feed was as high as 103 ug/L. In
Run 9, the pH was controlled more strictly (6.7-7.0 over the course of

the run); nevertheless, the mean aluminum concentration was also -

rather high (85 pg/L) in this run. This higher residual aluminum may

Table 2
NF membrane foulants in the laboratory-scale MF-NF experiment in Runs 1-5.

121
1.0 I35

0.8

06

041

—@— Run 6 (NF feed: 40 pg-AliL, PACI coagulation)
=~ Run 7 {(NF feed: 8.6 pg-Fe/l., FeCls coagulation)

Normalized flux

0.2+

0.0 | 1 I3 1 1 L 3
0 10 20 30 40 50 60

Time (d)

Fig. 5. Time dependence of aormalized flux (standardized flux/first day standardized
flux) for NF after coagulation and MF in the laboratory-scale experiment {(Runs 6 and 7).

have been due to the effect of excess silicate, Lartiges et al. [12]
reported that flocculation of colloidal silica with polymerized
aluminum begins with the formation of negatively charged alumino-
silicate sites, Duan and Gregory {13,14] investigated the interaction of
aluminum coagulants with silica and found that a small amount of
dissolved silica can improve coagulation by affecting the charge-
neutralizing behavior of hydrolyzed aluminum species, but silica
coagulation is inhibited as the amount of silica is increased, as a result
of the increasing negative charge of the particles,

To explore further the effect of a large amount of silicate on the
faster decline of NF membrane permeability, we cleaned the spent
membrane sequentially with HCl, NaOH, and citric acid after the
experimental runs. Results after chemical cleaning with HCl are
shown in Table 3; aluminum and silicate were recovered in molar
ratios of 1:0.49 (Run 6), 1:1.52 (Run 8), and 1:1.78 (Run 9). These
results suggest that aluminum and silicate were major inorganic
foulants of the nanofilter.

We calculated the aluminum solubility diagram for the NF feed
solution used in Runs 6, 8, and 9 {Fig. 7) with Geochemist's Workbench
(ver. 6, RockWare, Inc,, Golden, CO, USA). The major difference in the feed
water quality of these runs was silicate concentration. The aluminum
concentration in the NF feed water exceeded the upper solubility limit in
the case of gibbsite (AI{OH)3), pyrophyllite (AlSi;0s0H), and kaolinite
(AlLSi;05(0H),), that is. an aluminum compound and two compounds
containing both aluminum and silicate, Furthermore, changing the silicate
concentration from 40 to 80 mg-Si0,/L led to a large decrease in the
solubility of pyrophyllite and kaolinite (from dotted line to solid line),
although the solubility of gibbsite did not change. This result implies that
more aluminum silicate compounds may have deposited on the NF
membrane as the amount of silicate in the feed water increased. Therefore,

Standardized flux
(m d' MPa!) at 25°C
5 &
T T

o Run 6 (NF feed: 35 mg-SiOa/l)
- &, Run 8 (NF feed: 75 mg-SiOy/L}
<& Run 9 (NF feed: 75 mg-SiOa/t)

1 1 i
005 30 0 50

Time (d)

o4
3

Fig. 6. Changes-in standardized flux for NF after coagulation and MF in the laboratory-
scale experiment (Runs 6, 8, and 9}.
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Table 3
Molar ratio of Si and K to Al recovered by cleaning with HCL

the silicate concentration could play a major role in NF membrane fouling,
even though the rejection rate of silicate itself was not high: the rejection
percentages of silicate were only 10-20% in both the pilot plant and
laboratory experiments,

Calcium was not detected on the spent membrane from Run 6 but
was detected in Runs 8 and 9. In these runs, calcium was detected in the
NaOH cleaning solution, which suggests that calcium fouled the NF
membrane in combination with organic substances. In contrast,
potassium was largely detected in the HCl and citric adid cleaning
solutions. The molar ratios of aluminum to potassium in the HCl cleaning
solution were 1:048 (Run 6), 1:1.02 (Run 8), and 1:0.70 (Run 9)
(Table 3). The thermodynamic calculation (Geochemist's Workbench)

also suggests that the aluminum concentration in the NF feed water was -

higher than the solubility of mordenite-K (K;ALSi 024 7H50) (Fig. 7),
and in some calculations, clinoptilolite-K (KgAlgSizg072) also appeared as
a candidate foulant (data not shown). These two minerals are siliceous
zeolites [15,16}, and the chemical formulas of natural zeolites are very
complicated; not only potassium but also other cations, including
sodium, calcium, and magnesium, are incorporated into the zeolites
because zeolites have ion-exchange properties [17]. The foulants in the
other experiments were not analyzed for potassium {because we did not
consider potassium as a potential foulant when the research started) and
other cations except calcium; we therefore could not elucidate further
the effects of these cations,

3.4. Pilot MF-NF plant experiment

The permeability of the first stage modules in the multistage array
of nanofilters declined with operation time (Fig. 8). Although no
severe membrane fouling was expected for the first stage module,
TMP doubled and the permeability (represented by standardized
filtration flux at 25°C and 1 MPa) was reduced to 1/3 the original
permeability over 4.5 months of operation. The mean silt density
index of the NF feed water was 2.25 (minimum 1.0, maximum 3.2),
which suggests an absence of severe fouling by particulate matter.
Gabelich et al. [18] recently reported that aluminum residuals, most

0 - .
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2 4 6 8 10 12 14
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Fig. 7. Solubility diagram for aluminum at 25 °C: dotted lines, solubility diagram for the
NF feed solution in Run 6 (40 mg-5iOz/L); solid lines, Runs 8 and 9 (80 mg-SiOy/L).
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Fig. 8. Water permeability for the first stage of the muitistage array in the NF pilot plant.
Triangles, transmembrane pressure (TMP); circles, permeability represented by
standardized filtration flux at 25 °C and 1 MPa of TMP.

notably from alum coagulation, cause colloidal fouling of RO
membranes through interaction with the ambient silica to form
aluminum silicate. They suggested that keeping the aluminum
concentration at <50 pug/L would result in stable RO membrane
performance. The aluminum concentration in the NF influent of our
experiment was below this suggested limit {mean 30 pg/L, minimum
10 pg/L, maximum 47 pg/L).

Collection of the membrane deposits was followed by combustion
at 550 °C, and we recovered remaining foulants {regarded as ash) at a
rate of 330 mg/m*-membrane surface, We conducted elemental
analysis of this ash for Al, Ca, Fe, S, $i0; and their concentrations
were 46, 0.33, 2.5, 3.9, and 30 mg/m?, respectively. This excessive
accumulation of aluminum and silicate also suggests that aluminum
residuals probably caused the membrane fouling by forming alumino-
silicates or aluminum hydroxide.

4. Conclusion

Residual aluminum in the NF feed water greatly increased the
decline of NF membrane permeability both in a pilot MF-NF plant
experiment and in laboratory-scale MF-NF experiments when
aluminum coagulants were used in the pretreatment process. On
the contrary, there was no substantial decline in NF membrane
permeability in the laboratory-scale experiments when ferric chloride
was used as a coagulant. In the laboratory-scale experiments with
aluminum coagulants, NF membrane permeability declined when the
feed water contained residual aluminum at 18 pg/L or more, but not
when the aluminum concentration was lower than about 9 pg/L.
Therefore, the control of residual aluminum in the pretreatment
processes of NF is crucial for mitigation of severe fouling of the NF
membrane. The silicate concentration in the NF feed water also
greatly increased NF membrane fouling, and other cations, especially
potassium, may have been incorporated in the foulants in the form of
zeolites.
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ABSTRAGT

Norovirus (NV) is an important human pathogen that causes epidemic acute nonbacterial
gastroenteritis worldwide. Because of the lack of a cell culture system or an animal model for
this virus, studies of drinking water treatment such as separation and disinfection processes
are still hampered. We successfully estimated NV removal performance during a coagula-
tion-rapid sand filtration process by using recombinant NV virus-like particles (rNV-VLPs)
morphologically and antigenically similar to native NV. The behaviors of two widely
accepted surrogates for pathogenic waterborne viruses, bacteriophages QB and MS2, were
also investigated for comparison with that of *NV-VLPs.- Approximately 3-log;o removals
were observed for INV-VLPs with a dose of 40 yM-Al or -Fe, as polyaluminum chloride at pH
6.8 or ferric chloride at pH 5.8, respectively. Smaller removal ratios were obtained with alum
and ferric chloride at pH 6.8. The removal performance for MS2 was somewhat larger than
that for INV-VLPs, meaning that MS2 is not recommended as an appropriate surrogate for
native NV. By comparison, the removal performance for Q was similar to, or smaller than,
that for rNV-VLPs. However, the removal performances for rNV-VLPs and QB differed
between the coagulation process and the following rapid sand filtration process. Therefore,
QB also is not recommended as an appropriate surrogate for native NV.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Acute gastroenteritis is one of the leading causes of
morbidity and mortality in children in the developing countries,
and NVisknown to be presentin alarge fraction of stool samples

Norovirus (NV), which has been previously termed Norwalk-
like virus or small round structured virus, is an important
human pathogen that causes epidemic acute nonbacterial
gastroenteritis worldwide. This virus belongs to the genus
Norovirus in family Caliciviridae (Zheng et al.,, 2006). On the
basis of the molecular characterization of complete gene
sequences, the Norovirus genus has been classified into seven
distinct genogroups (GI to GVII) (Phan et al., 2007). Among the
seven genogroups, the GI, GII, GIV, GVI, and GVII strains are
found in humans (Phan et al., 2007).

* Corresponding author. Tel.: +81 11 706 7281; fax: +81 11 706 7279.

E-mail address: nobutaka@eng.hokudai.acjp (N. Shirasaki).

from diarrhea hospitalizations (Ramani and Kang, 2009). NV
outbreaks are caused mainly by consumption of contaminated
food (Daniels et al., 2000; Fankhauser et al., 2002), or they can be
spread person-to-person (Fankhauseretal,, 2002). NV outbreaks
due to contaminated drinking water have also been reported
(Kukkula et al., 1999; Nygard et al.,, 2003; Maunula et al., 2005).
The presence of NV in drinking water sources is a public health
concern owing to the potential for widespread NV outbreaks.
However, because of the lack of a cell culture system or an

0043-1354/$ - see front matter © 2009 Elsevier Ltd. All rights reserved.
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animal model for NV (Parker et al., 2005; Zheng et al., 2006),
studies of drinking water treatments such as separation and
disinfection processes are still hampered. Accordingly, the
removal performance of NV in the coagulation-rapid sand
filtration process, which is commonly used in drinking water
treatment facilities, has not been investigated fully.

Feline calicivirus (FCV) has been widely used as an NV
surrogate in studies of drinking water treatment processes to
predict the treatability of NV (Thurston-Enriquez et al., 2003,
2005; Duizer et al., 2004; Abbaszadegan et al., 2007; Mayer et al.,
2008), because FCV has a similar genome organization and
capsid architecture to NV and it can be easily grown in cell
cultures (Thurston-Enriquez et al., 2003). However, FCV belongs

to the genus Vesivirus, family Caliciviridae, and it causes-

respiratory illness (Hashimoto et al., 1999); thus, FCV is unlike
an enteric virus that is spread by the fecal-oral route. More
recently, murine norovirus (MNV), genus Norovirus, family
Caliciviridae, has been successfully propagated in cell culture
(Karst et al, 2003). MNV is an enteric virus, and some
researchers have reported MNV to be more suitable as a surro-
gate for NV than FCV in the aquatic environment (Cannon et al.,
2006; Bae and Schwab, 2008). However, the suitability of MNV as
a surrogate for NV in physical removal processes such as
coagulation and filtration processes has not been investigated.
On the other hand, expression of the NV genome in a bacu-
lovirus expression system has made possible the production of
recombinant NV virus-like particles ('NV-VLPs) (liang et al,,
1992) that are morphologically and antigenically similar to
native NV (Jiang et al., 1992; Green et al.,, 1993). Because the
native NV source is the stools of human volunteers infected
with NV, it is difficult to obtain a large amount of NV for spiking
experiments of drinking water treatment processes, but the
baculovirus expression system can produce enough rNV-VLPs
to conduct spiking experiments. In addition, because INV-VLPs
lack RNA, which is necessary for infection and replication in
host cells, they are harmless to humans during experiments, so
they are easy to handle without any special facilities. In fact,
INV-VLPs have been used with the sandy aquifer treatment
process to estimate the behavior of native NV (Redman et al.,
1997). On the other hand, the fate of infectivity of NV in the
treatment process, especially in response to disinfection
processes such as chlorination, ozonation, and UV radiation,
cannot be studied by using rNV-VLPs because of their lack of
RNA. Thus, we can only discuss the fate of NV as particles.
Here, we used rNV-VLPs to investigate the removal perfor-
mance of NV as particles during laboratory-scale coagulation-
rapid sand filtration. We also experimentally investigated the
behaviors of the F-specific RNA bacteriophages Qf and MS2 for
comparison with those of INV-VLPs and to assess the suit-
ability of these bacteriophages as surrogates for NV. This study
represents the first attempt to apply rNV-VLPs to estimate the
removal of native NV in a drinking water treatment process.

2, Materials and methods
2.1.  Source water, coagulants, and filter media

River water was sampled from the Toyohira River (Sapporo,
Japan, water quality\ shown in Table 1) on 12 June 2008. The

coagulants used for the coagulation process were two
commercial aluminum coagulants, polyaluminum chloride
(PAC]) (PACI 250A; 10.5% Al,O3, relative density 1.2 at 20 °C;
Taki Chemical Co., Ltd., Hyogo, Japan) and alum (8.1% Al,Os,
relative density 1.3 at 20 °C; Taki Chemical Co., Ltd.), and one
laboratory-made ferric chloride solution, which was prepared
by dilution of regent-grade iron (1) chloride (FeCl;, Wako Pure
Chemical Industries, Ltd., Osaka, Japan) dissolved in Milli-Q
water (Milli-Q Advantage, Millipore Corp., Billerica, MA, USA).
Silica sand (effective size 0.6 mm, uniformity coefficient <1.3;
Nihon Genryo Co., Ltd., Kanagawa, Japan) was used as the
filter medium for the rapid sand filtration process.

2.2 rNV-VLPs

INV-VLPs were produced by a baculovirus in silkworm,
Bombyx mori (Katakura Industries Co. Ltd., Saitama, Japan).
Subgenomic cDNA fragments‘ of Chiba virus (AB042808, Gl/4,
Chiba407/1987/]P) genome were artificially synthesized and
used for the expression of Chiba virus INV-VLPs. Chiba virus,
a Japanese strain in genogroup I of genus Norovirus, family
Caliciviridae, was first identified as the cause of an oyster-
associated outbreak of gastroenteritis that occurred in Chiba
Prefecture, Japan, in 1987 (Kasuga et al., 1990). Someya et al.
(2000) have determined the complete nucleotide sequence of
the Chiba virus genome. Chiba virus has a positive-sense,
single-stranded RNA of 7697 bases composed of a 5 untrans-
lated region (UTR), three open reading frames (ORFs), and
a 3'UTR; the large 5'-terminal ORF (ORF1) encodes a poly-
protein with 1785 amino acids that is likely processed into
functional proteins. ORF2 encodes the capsid protein with 544
amino acids, and the small 3'-terminal ORF (ORF3) encodes
a basic protein with 208 amino acids (Someya et al., 2000).
Because Bertolotti-Ciarlet et al. (2003) reported that expression
levels of NV capsid protein are enhanced by the presence of
ORF3 and 3'UTR in recombinant baculovirus, compared with
expression in the absence of ORF3, 3'UTR, or both, we
synthesized 2352 (positions 5346-7697) bases of Chiba virus

" genome containing ORF2, ORF3, and 3'UTR with attB1, EcoR],

attB2, and Pstl restriction sites (total 2422 bases). The synthe-
sized cDNA fragment was inserted into the vector (pDONR221,
Invitrogen Japan K. K., Tokyo, Japan) by the Gateway BP
reaction. After EcoRI and Pstl digestion of the plasmid, the
digested cDNA fragment was ligated into the baculovirus
transfer vector (pMONHTO4, Katakura Industries Co. Ltd.). The
transfer vector was co-transfected with the linearized
genomic DNA of baculovirus (B. mori nucleopolyhedrovirus;
CPd strain, Suzuki et al., 1997) into the B. mori-derived cell line

- (BmN, Maeda, 1989) to generate the recombinant baculovirus,

and then the recombinant baculovirus was injected into
silkworm pupae to express the rNV-VLPs. Six days after



