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TABLE 2. Blood hormone values in cases 1-5 with heterozygous OTX2 mutations

Patient Case 1 Case 2 Case 3 Case 4 Case 5
Sex (age at examination) Male (2 yr) Female (1yr)  Male (14 yr) Male (10 yr) Male (2 yr)
Stimulus (dose) Basal Peak Basal Peak Basal Peak Basal Peak Basal Peak
GH (ng/mi) Insulin (0.1 U/kg)® 1.9° 4.0° 33° NE 0.8 1.3 1212 NE 0.5¢ 9.0°
Arginine (0.5 g/kg) 1.1¢ 7.0°
(-dopa (10 mg/kg) 1.5 3.8° 032 1.8°
LH (MmiU/ml) GnRH (100 pg/m?) 0.1 1.7 0.1 N.E. 239 4.5 0.4 N.E. 0.1 3.1
FSH (miU/ml) GnRH (100 pg/m?) 1.0 6.2 3.7 N.E. 137 6.3 1.1 N.E. 1.5 9.9
TSH (uU/mi) TRH (10 po/kg) 4.2 23.8 1.1 N.E. 0.2 1.9 11 N.E. 5.2 19.5
Prolactin (ng/mi)  TRH (10 pa/kg) 179 345 NL.E, N.E. 5.5 8.3 9.1 N.E. 1043 8838
ACTH (pg/ml) Insulin (0.1 U/kg) 31 195 N.E. NE 24 N.E. NE 4 222
Cortisol (wg/d)®  Insulin (0.1 U/kg) 12.7 9.4 N.E. 194 N.E. N.E. 254 39.2
IGF-} {ng/mi) 8 65 N.E. 5 214 N.E. 48
Testosterone (ng/d) N.E. N.E. N.E. 45 <5 N.E. N.E.
Free T, (ng/dl) 1.32 1.17 N.E. 0.87 1.15 N.E. 1.17
Free T, (pg/ml) 2.91 3.24 N.E. 1.94 3.92 N.E 4,54

The conversion factor to the Sl unit: GH, 1.0 (pg/liter); LH, 1.0 (IU/liter); FSH, 1.0 (IUAiter); TSH, 1.0 (miW/liter); prolactin, 1.0 (pg Aiter); ACTH, 0.22
{(pmolfliter); cortisol, 27.59 (nmolfiter); IGF-I, 0.131 (nmaliter); testosterone, 0.035 (nmolfiter); free T,, 12.87 (pmolliter); and free T5, 1.54 {pmol/
liter). Hormone values have been evaluated by the age- and sex-matched Japanese reference data (29, 30); low hormone data are boldfaced.
Blood sampling during the provocation tests: 0, 30, 60, 90, and 120 min. N.E., Not examined.

2 Sufficient hypoglycemic stimulations were obtained during all the insulin provocation tests; b GH was measured using the recombinant GH
standard, and the peak GH values of 6 and 3 ng/ml are used as the cutoff values for partial and severe GH deficiency, respectively; © GH was
measured by the classic RIA, and the peak GH values of 10 and 5 ng/ml were used as the cutoff values for partial and severe GH deficiency;

9 Obtained at 0800~0900 h.

gests that the biological functions of OTX2 are primar-
ily contributed by the short isoform-b.

Clinical features of cases 1-5 are summarized in Table
1, together with those of the previously reported OTX2
mutation-positive patients examined for detailed pituitary
function, Here four patients with cytogenetically recog-
nizable deletions involving OTX2 are not included (19—
22) because the deletions appear to have removed a large
number of genes including BMP4 and/or SIX6 (Fig. 2B)
that can be relevant to pituitary development and/or func-
tion (1, 23).

Several points are noteworthy for the clinical findings.
First, although cases 15 in this study had anophthalmia
and/or microphthalmia, ocular phenotype has not been
described in cases 7 and 8 identified by OTX2 mutation
analysis in 50 patients with hypopituitarism (9). Whereas
no description of a phenotype would not necessarily in-
dicate the lack of the phenotype, OTX2 mutations may
specifically affect pituitary function at least in several pa-
tients. This would not be unexpected because several
OTX2 mutation-positive patients are free from ocular
anomalies (6).

Second, pituitary phenotype is variable and indepen-
dent of the in vitro function data. This would be explained
by the notion that haploinsufficiency of developmental
genes is usually associated with a wide range of penetrance
and expressivity depending on other genetic and environ-
mental factors (24), although the actual underlying factors
remain to be identified. In this regard, because direct
mRNA analysis was not performed, it might be possible

that the mutations have not produced the predicted aber-
rant protein and, consequently, in vitro function data do
not necessarily reflect the in vivo functions. Even if this is
the case, the quite different pituitary phenotype between
cases 3 and 4 with the same mutation would argue for the
notion that pituitary phenotype is independent of the re-
sidual OTX2 function.

Third, cases 1, 3, 5, and 6 -9 with pituitary dysfunction
have IGHD or CPHD involving GH, and show the com-
bination of preserved prenatal growth and compromised
postnatal growth characteristic of GH deficiency (25).
This suggests that GH is the most vulnerable pituitary
hormone in OTX2 mutations. Consistent with this, pre-
viously reported patients with ocular anomalies and
OTX2 mutations also frequently exhibit short stature (6,
8). Thus, pituitary function studies are recommended in
patients with ocular anomalies and postnatal short stature
to allow for appropriate hormone therapies including GH
treatment for short stature, cortisol supplementation at a
stress period, T4 supplementation to protect the develop-
mental deterioration, and sex steroid supplementation to
induce secondary sexual characteristics. Furthermore,
OTX2 mutation analysis is also recommended in such
patients,

Lastly, PH and/or EPP is present in patients with IGHD
and CPHD, except for case 6 with IGHD. In this regard,
the following findings are noteworthy: 1) heterozygous
loss-of-function mutations of HESX1 are associated with
a wide phenotypic spectrum including CPHD, IGHD, and
apparently normal phenotype and often cause PH and
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EPP, whereas homozygous HESX1 mutations usually
lead to CPHD as well as PH and EPP (2); 2) heterozy-
gous loss-of-function mutations of POU1F1 usually
permit apparently normal pituitary phenotype, whereas
homozygous loss-of-function mutations and heterozy-
gous dominant-negative mutations usually result in
GH, TSH, and prolactin deficiencies and often cause PH
but not EPP (2); and 3) heterozygous GNRH1 frame-
shift mutation are free from discernible phenotype,
whereas homozygous GNRH1 mutations result in iso-
lated hypogonadotropic hypogonadism with no abnor-
mal pituitary structure (26). Collectively, overall pituitary
phenotype may primarily be ascribed to reduced HESX1
expression, although reduced POUIF1 and GNRHI ex-
pressions would also play a certain role, and there may be
other target genes of OTX2.

In summary, the results imply that OTX2 mutations are
associated with variable pituitary phenotype, with no gen-
otype-phenotype correlations, and that OTX2 can trans-
activate GNRH1 as well as HESX1 and POU1F1, Further
studies will serve to clarify the role of OTX2 in the pitu-
itary development and function.
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Abstract

Context: Mutations of multiple transcription factor genes involved in pituitary development have
been identified in a minor portion of patients with combined pituitary hormone deficiency (CPHD).
However, copy number aberrations involving such genes have been poorly investigated in patients
with CPHD.

Objective: We aimed to report the results of mutation and gene copy number analyses in patients
with CPHD.

Subjects and Methods: Seventy-one Japanese patients with CPHD were examined for mutations and
gene copy number aberrations affecting POUIF1, PROPI, HESX1, LHX3, LHX4, and SOX3 by
PCR-direct sequence and multiplex ligation-dependent probe amplification. When a deletion was
indicated, it was further studied by fluorescent in situ hybridization, oligoarray comparative genomic
hybridization, and serial sequencing for long PCR products encompassing the deletion junctions.
Results: We identified a de novo heterozygous 522,009-bp deletion involving LHX4 in a patient with
CPHD (GH, TSH, PRL, LH, and FSH deficiencies), anterior pituitary hypoplasia, ectopic posterior
pituitary, and underdeveloped sella turcica. We also identified five novel heterozygous missense
substitutions (p.V2011 and p.H387P in LHX4; p.T63M and p.A322T in LHX3; and p.V53L in SOX3)
that were assessed as rare variants by sequencing analysis for control subjects and available parents,
and by functional studies.

Conclusions: The results imply the rarity of abnormalities affecting the six genes in patients with

CPHD and the significance of the gene copy number analysis in such patients.



Abbreviations:

CGH, comparative genomic hybridization; CPHD, combined pituitary hormone deficiency; FISH,

fluorescence in situ hybridization; MLPA, multiplex ligation-dependent probe amplification.
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Pituitary development and function depends on spatially and temporally controlled expression of
multiple transcription féctor genes such as POUIFI1, PROPI, HESXI, LHX3, LHX4, SOX3, and
OTX2 (1-3). Mutations of these genes are usually associated with combined pituitary hormone
deficiency (CPHD), although they sometimes lead to isolated GH deficiency (1-3). However,
mutations of these genes have been found only in a minor portion of patients with CPHD (2-7).
Thus, although multiple genes would remain to be identified in CPHD, a certain fraction of
mutations may have been overlooked in these known genes. Indeed, since previous studies have
primarily been performed with PCR-direct sequencing for coding exons (4-7), gene copy number
aberrations (deletions and duplications) affecting such genes, as well as pathologic mutations in
non-coding regions, may remain undetected in patients with CPHD. Indeed, microdeletions of
PROPI and LHX3 and microduplications of SOX3 have been identified in a few of patients with
CPHD (8-10).

Thus, we performed sequence and gene copy number analyses for six pituitary transcription
factor genes in Japanese patients with CPHD. The results imply the importance of gene copy
number analysis in patients with CPHD, while abnormalities of the hitherto known genes still

remain very rare in CPHD.

Materials and Methods
Patients

We studied 71 Japanese patients with various types of CPHD (39 males and 32 females; age
1-43 yr). In all the patients, OTX2 mutations and gene copy number aberrations have been excluded

previously (3).

Primers and probes

The primers and probes utilized in this study are summarized in Supplemental Table 1.

Sequence analysis

This study was approved by the Institutional Review Board Committee at National Center for

Child Health and Development. After obtaining written informed consent, leukocyte genomic DNA
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| samples of the 71 patients were amplified by PCR for the all coding exons and their flanking splice

sites of POUIFI, PROPI, HESX1, LHX3, LHX4, and SOX3. Subsequently, the PCR products were

subjected to direct sequencing on a CEQ 8000 autosequencer (Beckman Coulter, Fullerton, CA). To
confirm a heterozygous substitution, the corresponding PCR products were subcloned with a TOPO
TA Cloning Kit (Invitrogen, Carlsbad, CA), and normal and mutant alleles were sequenced

separately.

Functional studies

Functional studies were performed for an LHX4 missense variant. In brief, an expression
vector containing the wild-type LHX4 cDNA was constructed by fusing the human LHX4 cDNA to
the Myc tag in pPCMV-Myc (designated as pLHX4-WT). The wild-type LHX4 cDNA was obtained
from a human pituitary cDNA sample (Clontech, Palo, Alto, CA), using primers that were
designed to lose the first codon to enable the fusion to the C-terminal sides of the Myc tag. An
expression vector containing a variant LHX4 cDNA (designated as pLHX4-VT) was created by
site-directed mutagenesis. The luciferase reporter vector was constructed by inserting the promoter
sequences of POUIF1 with an LHX4 binding site (ATTAATTG) (11) (541 to +6 bp) into pGL3
basic (pPOU1F1-luc).

Subsequently, transactivation analysis was performed with Dual-Luciferase Reporter Assay
System (Promega, Madison, WI). COS1 cells seeded in 12-well dishes (1.5x10° cells/well) were
transiently transfected, using lipofectamine 2000 (Invitrogen), with [1] the empty expression vector
(0.6 pg), [2] pLHX4-WT (0.6 pg), [3] pLHX4-VT (0.6 ng), or [4] pLHX4-WT (0.3 pg) plus
pLHX4-VT (0.3 pg), together with pPOU1F1-luc (0.6 pg) and pRL-CMYV vector (20 ng) used as
an internal control for the transfection. Luciferase assays were performed at 48 hours after the
transfection with Lumat LB9507 (Berthold, Bad Wildbad, Germany). Transfections were

performed in triplicate within a single experiment, and the experiment was repeated three times.

Gene copy number analysis
Muitlplex ligation-dependent probe amplification (MLPA), a recently developed method for

relative quantification of single copy sequences (12), was performed as a screening of a possible



10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

gene copy number alteration (deletion and duplication) in all the 71 patients, using a commercially
available MLPA probe mix (P236) (MRC-Holland, Amsterdam) for all coding exons of POUIF1I,
PROPI, HESXI, LHX3, and LHX4, together with originally designed probes for SOX3. The
procedure was as described in the manufacturer’s instructions. To confirm a deletion, fluorescence
in situ hybridization (FISH) was performed with a long PCR product obtained using LA taq
polymerase (Takara, Ohtsu, Japan). To indicate an extent of a deletion, oligoarray comparative
genomic hybridization (CGH) was carried out with 1x244K Human Genome Array (catalog No.
G4411B) (Agilent Technologies, CA), according to the manufacturer’s protocol. Finally, to
characterize a deletion, long PCR was performed with primer pairs flanking the deleted region, and
the PCR product was subjected to direct sequencing using serial sequence primers. The deletion size
and the junction structure were determined by comparing the obtained sequences with the reference
sequences at the NCBI Database (NC_000014.7), and the presence or absence of repeat sequences

around the breakpoints was examined with Repeatmasker (http://www.repeatmasker.org).

Resuits
Mutation analysis

We identified five novel heterozygous missense substitutions, i.e., p.T63M (c.188C>T) and
p.A322T (c.964G>A) in LHX3 (GenBank accession number: NM_178138), p.V2011 (c.601G>A)
and p.H387P (c.1160A>C) in LHX4 (NM_033343), and p.V53L (c.157G>C) in SOX3 (NM_005634).
These substitutions were found in different patients. No other mutations or novel substitutions were
identified in the six genes examined.

Thus, we examined 100 Japanese control subjects, detecting the LHX4 p.H387P in 4 subjects
and the SOX3 p.V53L in 3 subjects. Furthermore, sequencing of parental samples was performed for
the two LHX3 substitutions, showing the p.T63M and the p.A322T substitutions in the

phenotypically normal mother and father, respectively.

Functional studies
We performed functional studies for the p.V2011I substitution in LHX4. The p.V201I had a

normal transactivation function for the POUIFI promoter, with no dominant negative effect
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(Supplemental Fig 1).

Deletion analysis

A heterozygous deletion involving LHX4 was indicated by MLPA and confirmed by FISH
(Fig. 1A). Oligoarray CGH delineated an approximately 530-kb deletion, and sequencing of the
fusion point showed that the deletion was 522,009 bp in physical size (178,210,910-178,732,918 bp
on the NC_000014.7 at the NCBI Database) and was associated with an addition of an 8-bp segment
of unknown origin (Fig. 1B). There were no repeat sequences around the deletion breakpoints. This

microdeletion was absent from the parents.

Patient with the microdeletion

This Japanese female patient was born at 40 weeks of gestation after an uncomplicated
pregnancy and delivery. At birth, her length was 48.0 cm (0.2 SD), her weight 2.59 kg (-1.0 SD),
and her head circumference 33 cm (0.1 SD). She had transient respiratory distress and
hypoglycemia in the early neonatal period. Furthermore, she was found to have hypothyroidism
because of prolonged jaundice (Table 1), and was placed on thyroid hormone replacement therapy.

At 1 yr 6 months of age, she was referred to us because of severe short stature. Her height
was 64.5 cm (—5.1 SD), and her weight 6.2 kg (2.8 SD). Endocrine studies indicated GH, TSH, and
prolactin deficiencies (Table 1). Her karyotype was 46, XX in all the 50 lymphocytes examined.
Recombinant human GH therapy (0.175 mg/kg per week) was started at 1yr 8 months of age,
showing a remarkable effect. Brain magnetic resonance imaging at 5 yr of age delineated anterior
pituitary hypoplasia with a small cystic lesion, ectopic posterior pituitary, underdeveloped sella
turcica (Supplemental Fig. 2). At 11 yr of age, a GnRH test was performed due to lack of pubertal
signs, revealing gonadotropin deficiencies. Thus, hormone replacement therapy was started at 13 yr
of age. On the last examination at 17 yr old, she measured 148.7 cm (-1.8 SD), weighed 45.6 kg
(0.9 SD), and manifested full pubertal development. She had no developmental retardation.

The non-consanguineous parents and the three brothers were clinically normal. The father

was 164 cm (—1.2 SD) tall, and the mother was 155 cm (0.6 SD) tall.
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Discussion

We performed sequence and gene copy number analyses for all coding exons of six
previously known genes in 71 patients with CPHD, although non-coding regions were not examined.
Consequently, we could identify only a single patient with a heterozygous microdeletion involving
LHX4. This indicates the rarity of abnormalities affecting the six genes in patients with CPHD and,
at the same time, the significance of the gene copy number analysis in such patients. In this regard,
since gene copy number aberrations have been found for multiple genes including microdeletions of
PROPI and LHX3 and microduplications of SOX3 (8-10, 13, 14), this implies that a screening of
gene copy number aberrations using a simple method such as MLPA should be performed in genetic
diagnosis.

Two findings are noteworthy for the microdeletion. First, the microdeletion has removed
three additional genes (CEP350, QSOX1, and ACBD6) (Ensembl, http://www.ensembl.org/). In this
context, the pituitary phenotype of the patient with the microdeletion remains within the clinical
spectrum of the previously reported patients with heterozygous intragenic loss of function mutations
of LHX4 (Supplemental Table 2) (15-19). In addition, this patient had no discernible extra-pituitary
phenotype. Thus, hemizygosity for the three genes would not have a major clinical effect, if any.
Second, the deletion break points resided on non-repeat sequences, and the fusion point was
associated with an addition of an 8-bp segment of unknown origin. This indicates that the deletion
has been produced by nonhomologous end joining, i.e., an aberrant breakage and re-uinion between
non-homologous sequences (20).

We also identified five novel heterozygous missense substitutions. However, the p.H387P in
LHX4 and the p.V53L in SOX3 were identified in control subjects, and the p.T63M and the p.A322T
in LHX3 were found in clinically normal parents. Furthermore, the p.V201I in LHX4 had a normal
transactivation activity for the POUIFI promoter. Thus, although the possibility that they might
function as a susceptibility factor(s) for the development of CPHD remains tenable, they would not
be a disease-causing pathologic mutation. In this regard, p.V201I in LHX4, which was absent in 100
control subjects, may have been erroneously regarded as a pathologic mutation, unless functional
studies were performed. Such rare variants with an apparently normal function have also been

reported previously (3, 18). Thus, while in vitro functional data may not precisely reflect in vivo
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functions, it is recommended to perform functional studies for novel substitutions, especially
missense substitutions.

In summary, the results imply the rarity of pathologic abnormalities in the previously known
genes in patients with CPHD and the significance of the gene copy number analysis in such patients.
Thus, the causes of CPHD remain elusive in most patients, and further studies are required to clarify

the underlying factors for the development of CPHD.
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Figure legends

Figure 1. Gene copy number analysis.

A. MLPA and FISH analyses. The black and white boxes on genomic DNA (gDNA) denote the

coding regions on exons 1-6 (E1-E6) and the untranslated regions, respectively. The sites
examined by MLPA probes (A-F) are indicated by arrows, and the region identified by the
5,305-bp FISH probe is shown by a thick horizontal line. In MLPA analysis, the peaks for the
sites A-F are reduced in the patient. The red peaks indicate the internal size markers. In FISH
analysis, the red signal is derived from the probe for LHX4, and the green signals are derived
from chromosome 1 centromere control probe (Cytocell, Cambridge, UK) used as an internal
control. The probe for LHX4 is labeled with digoxigenin and detected by rhodamine
anti-digoxigenin, and the control probe is labeled with biotin and detected by avidin conjugated

to fluorescein isothiocyanate.

. Oligoarray CGH analysis and direct sequencing of the deletion junction. The deletion is 522,009

bp in physical size (shaded in gray) and is associated with an addition of an 8-bp segment of
unknown origin (highlighted in yellow). The normal sequences flanking the microdeletion are

indicated with dashed underlines.



TABLE 1. Blood hormone values of the patient with LHX4 deletion.

Age at examination 1 yr 6 months 11 yr
Stimulus (dosage) Baseline  Peak Baseline  Peak
GH (ng/ml) GHRH (1 pg/kg) 0.2 12
| Arginine (0.5 g/kg) 0.1 0.2
L-Dopa (10 mg/kg) 0.1 0.1
LH (mIU/ml) GnRH (100 pg/m®) <0.5 0.3 0.8
FSH (mIU/ml) GnRH (100 pg/m®) 0.5 1.3 1.6
TSH (uU/ml) TRH (10 pg/kg) 2.3 3.9
Prolactin (ng/ml) TRH (10 pg/kg) <10 <1.0
ACTH (pg/ml) 24.6
Cortisol (pg/dl)* 17.5
IGF-I (ng/ml) 9
Free T4 (ng/dl) 0.6°
Estradiol (pg/ml) <15

The conversion factor to the SI unit: GH 1.0 (ug/liter), LH 1.0 (IU/liter), FSH 1.0 (IU/liter),

TSH 1.0 (mIU/liter), prolactin 1.0 (ug /liter), ACTH 0.22 (pmol/liter), cortisol 27.59

(nmol/liter), IGF-10.131 (nmol/liter), free T4 12.87 (pmol/liter), and estradiol 3.671

(pmol/liter).

Hormone values have been evaluated by the age-and sex-matched Japanese reference data;
low hormone data are boldfaced.

Blood sampling during the provocation tests: 0, 30, 60, 90, and 120 minutes.

® Obtained at 0800h.

® Measured at one month of age.
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