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Accession no.  Gene name Gene symbol Fold-change
DNCB BQ
Signal transduction
Uss021 adenylate cyclase 8 AdcyB -1.3 -1.4
BC012488  Rho guanine nucleotide exchange Arhgefl -1.3 -1.3
Y13346 adenosine A2a receptor Adora2a -14 -1.4
BC085270 RAB11B. member RAS oncogene family Rabllb -14 -1.5
L21671 epidermal growth factor receptor pathway ~ Eps& -1.3 -1.6
Protein modification/synthesis
Dg§7521 protein kinase. DNA activated. catalytic Prkde -1.4 -1.5
M95408 PTK2 protcin tyrosine kinase 2 Ptk2 -1.4 -5
Others
AF071316  COP9 (constitutive photomorphogenic) Cops7a -1.9 -1.5
AJ238213 exonuclease 1. Exol -1.5 -1.7
BC056376  Mycwbularin-related protein | Mtml -1.8 -1.6
AB037181  N-acylsphingosine amidohydrolase 2 Asah2 -1.7 -1.5
U94662 Trk-tused gene. Tig -2.2 -1.6
AF123502 DNA polymerase epsilon. catalytic subunit A Pole -1.6 -1.7
BCO6R143  DNA-directed RNA polymerase HI Polr3b -1.8 -1.5
M94584 chitinase 3-like 3; eosinophil chemotactic Chi3l3 -1.9 <23
AKO078888 interferon-related developmental regulator | [fid! -14 -4
AF045252  tousled-like kinase 2 (Arabidopsis) Tli2 -1.3 -1.3
BQ928977  tumor protein D52 Tpd52 -1.3 -1.5
X84692 spermatid perinuciear RNA binding protein  Sttbp -1.3 -1.6
CA478631  metallothionein | Mti -1.3 -1.5
AF031939 RalBP1 associated Eps domain containing  Reps! -1.4 -1.5
X97982 poly(rC) binding protein 2 Pcbp2 -1.4 -1.4
D85391 carboxypeptidase D Cpd -1.4 -1.8
NM_007622 Chromobox homolog 1 (Drosophita HP1 beta)Cbx1 -1.4 -1.5
BC056376  myowmbulann related protein 1 Munl -14 -1.6
AF411253 EF hand calcium binding protein 2 Efcbp2 -1.4 -1.4
BC079642  abl-intcractor ! Abil -1.4 -14
BCO11246  hemopexin HEMO_MOUSE -1.4 -13

blood or bone marrow [1, 36]. However, the use of in virro
differentiated primary DCs is difficult due to the nature of
these cells such as low numbers in the source and donor-to-
donor variability [2]. [n addition, treatment with several
cytokines is generally applied to obtain DCs from blood or
bone marrow cells [3, 11, 30}, and this process probably
changes the cell reactivity to stimulations. Thus, established
cell lines are preferable to standardize the condition among
assay. A recently established DC line, DC2.4 cells, was
applied as a target cell for this assay, and its reactivity to
chemical exposures was addressed by microarray analysis.
As the result, many gene expression changes were observed
atter treatment with two different allergenic chemicals,
DNCB and BQ. Overall, the changes seemed to be not so
noticeable. It is because of the nature of this cell line since
the human monocyte-derived THP-1 cells with the same
treatment extensively changed a large number of gene
expression profile (data not shown). In addition, similar
results to our data were reported in a recent study using pri-
mary DCs from peripheral blood after chemical treatment
[31, 36, 37, suggesting that the effect of sensitization on the
gene expression levels might be relatively mild in DC lin-
eage. We analyzed the two data from DNCB- and BQ-sen-
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sitized cells and tried to line up the candidate genes
specifically up- or down-regulated by type IV allergy-
inducible chemicals. As the results, 26 genes were shown to
be up-regulated, and 53 were down-regulated in both
groups. Interestingly, some of up-regulated genes were
associated with the maturation process of DCs. These
include TNF-a (a maturation-inducing cytokine), Sdc-1 (a
cell surface proteoglycan induced during the maturation
process), Map2k4 (a member of MAP kinase kinase family
associated with migration and maturation of DC) and Socs2
(a suppressor of cytokine signaling molecule induced during
the maturation process) [12, 19, 40]. In addition, up-regula-
tion was also detected on defensin and cathelin, which were
formerly considered to work just as antimicrobial peptides
[6, 8] and recently reported to have cell migration activity
and to be associated with DC maturation process [25]. In
contrast, down-regulation of CD44 was detected, which is
reported to be expressed on mature DC and induce adhesion
with T cell. This may be explained by that the time point at
24 hr after sensitization is still in the process of maturation.
In the previous studies, many other molecules are reported
to be associated with DC maturation process; for instance,
up-regulation of transcripts for the co-stimulatory molecules
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Fig. 2. Gene expression changes in DC2.4 cells induced by DNCB, BQ, Cit, TMA and Dex. DC2.4 cells

were exposed to type IV allergy-inducible chemicals, DNCB, BQ or Cit (0.1 ug/mi), a type I aller gy~
inducible chemical, TMA (1.0 ug/m/) or a non-sensitizer, Dex (1.0 ug/m/) for 24 hr, and the changes of
the gene expression were analyzed by real-time RT-PCR. Fold changes were determined based on the
gene expression in the cells exposed to solvent DMSO used for solubilization of chemicals.

CD386 [29] and the constitutive chemokine receptor CXCR4
[32, 33], and down-regulation of genes encoding molecules
involved in antigen uptake such as the high affinity IgE
receptor [27], aquaporin 3 [13]. However, the changes of
these molecules were not observed in our study. Assess-
ments of gene expression changes in other time points may
detect the up- or down-regulation of these genes. Alterna-
tively, characteristics of DC2.4 cells may give rise to the
results.

In order to determine the reproducibility of the gene
expression changes observed by microarray analysis, the

data trom DNCB or BQ-treated DC2.4 cells were compared
with that from type IV chemical-exposed mouse ears (data
not shown), and 3 up-regulated (Socs2, Sdcl and Tuba6)
and 8 down-regulated (Eps8, Exol, Asah2, Cpd, LY86,
SMO, Heyl and Pik3c¢2a) genes in all the experiments were
selected tor further evaluation by real-time RT-PCR. DC2.4
cells were treated with TMA, an irritant on the skin and type
L allergy inducer, and Dex, a non-hazardous chemical on the
skin, in addition to type IV allergy inducers, DNCB, BQ and
Cit, to identify contact hypersensitivity-specific changes.
Although DNCB-induced up-regulation of Sdcl gene is
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limited, other type IV allergy inducible chemicals, BQ and
Cit, markedly up-regulated the gene expression as seen in
microarray experiments in DNCB or BQ-exposed DC2.4
cells and DNCB-treated mouse tissues. TMA, an irritant on
the skin and type 1 allergy inducer, also up-regulated Sdcl
gene expression in some experiment; however, the changes
are neither significant nor reproducible. Thus, these results
suggested that up-regulation of Sdel gene and especially,
down-regulation of SMO gene in DC2 .4 cells correlated
with type IV allergic reaction (Fig. 2). In the experiment,
Dex-treatment induced expression changes of Sdci, Eps8,
Exol, Asah2, Heyl and Pik3c2a genes (Fig. 2). Dex is
known as a non-sensitizer on the skin; however, we sus-
pected that it had some stimulatory effects on the cells when
sensitized directly. Alternatively, uptake of such a high
molecular compound with molecular mass of 60,000-
90,000 probably initiated DC activation in vitro. At present,
the function of the proteins derived from Sdcl and SMO
genes on DCs was not well documented although Sdc! was
shown to be a cell surface proteoglycan induced during the
maturation process. Further functional analyses may bring
interesting information about the role of these proteins on
DC maturation and initiation of type IV allergic reaction.
In conclusion, we tried to identify the gene expression
changes specitically induced by type IV allergy-inducible
chemicals in DCs by microarray and real-time RT-PCR
analyses, and 2 possible candidates, Sdcl and SMO genes,
were identified. Thus, up-regulation of Sdcl gene and
down-regulation of SMO gene in DC2.4 cells may be diag-
nostic markers for the screening of type IV-allergy inducible
chemicals. Further analyses of the genes specifically
changed by type IV allergy-inducible chemicals are required
to clarify the gene expression profiles. The combination of
expression changes on several candidate genes may promise
reliable results for screening of the allergic chemicals.
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Effects of Transmaternal Exposure to Genistein in
Hatano High- and Low-Avoidance Rats
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Abstract: Hatano high- and low-avoidance (HAA and LAA) rats are separated by breeding
from Sprague-Dawley rats by high versus low rates of avoidance responses in a shuttle-box
task. In addition, compared to HAA rats, LAA rats show lower running-wheel activity, later
sexual maturation, 5-day estrous cycling, lower sperm motility, more pronounced immunological
reactions, and are generally less reactive to stress. The present study was designed to
compare the effects of transmaternal exposure to genistein on these characteristics between
HAA and LAA rats. To this aim, litters from both strains were fostered onto Sprague-Dawley
rats receiving genistein by gavage with 5 mg/animal/day from day 17 of pregnancy through
day 21 of lactation. Inhibited growth after weaning and reduced uterine weight at weaning
were observed in the LAA offspring reared by genistein-treated dams. IgM antibody production
in response to sheep red blood cells was significantly decreased in the HAA offspring reared
by genistein-treated dams. During restraint stress, the plasma concentration of corticosterone
was significantly lower in the LAA offspring reared by genistein-treated dams. Strain-related
differences were detected in shuttie-box avoidance performance, running-wheel activity,
estrous cycling, and sperm motility. The results demonstrate that transmaternal exposure
to genistein potentially affects the immunological and stress responses as well as the post-
weaning growth of the offspring. It suggests that a comparative study using Hatano rats
would be useful for studying the influence of endocrine active chemicals on the whole body
systems.

Key words: endocrine disruptor, genistein, inbred strain, offspring

Introduction

From the viewpoint of behavioral genetics, consider-
ation of genetic control is necessary for animal studies
of neurobehavioral teratology. Therefore, we have
separated two inbred strains from Sprague-Dawley (SD)

rats, Hatano high- and low-avoidance (HAA and LAA)
rats, which show uniform behavior within the strain, but
different baseline behaviors between strains in a shuttle-
box avoidance task [27]. The selection criterion is based
on the number of avoidance responses obtained during
four daily sessions of 60 trials, with HAA rats being

(Received 30 January 2009 / Accepted 20 April 2009)
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identified by a high rate of avoidance responses and LAA
rats by a low rate. Using these two strains, we have
developed new methods for the risk assessment of the
toxicological effects of substances on the behavior of
the next-generation [28, 30]. Although the Hatano rats
are separated by their avoidance performance as men-
tioned above, characteristic differences between the
strains are not only observed in their behaviors but also
in their reproductive function [2, 35, 36, 38], immuno-
logical reactions [26], and stress responses {1, 3, 31].
For example, compared to HAA rats, LAA rats show
lower running-wheel activity, later sexual maturation,
5-day estrous cycling, lower sperm motility, more pro-
nounced immunological reactions, and are generally less
reactive to stress. In addition, the data of these two
strains falls within the normal range of variation for SD
rats, from which the Hatano rats are derived.

In this study, we studied the effects of an endocrine
active compound that has the potential to stimulate the
normal endocrine system and focused on its effects on
the nervous, endocrine, and immune systems. The re-
sults of animal studies on endocrine active compounds
have often varied study by study, especially in their ef-
fects on the next generation. These variations in results
may originate in genetic variations in the animals used
[391, and we hoped to clarify the situation by using the
HAA and LAA inbred strains, which show little inter-
individual variation and whose nervous, endocrine, and
immune interactions are well characterized.

Genistein (GN) is a typical phytoestrogen. Phytoe-
strogens are naturally occurring constituents of plants
such as soy, and are known to exhibit estrogenic activ-
ity in rodent uterotrophic assays [13]. Soy-containing
infant formulas and the breast milk of mothers that con-
sume soy-based foods are rich in isoflavones [8, 37]. In
animal studies, GN is reported to have had effects on
behavior [7, 18], the reproductive system [4, 19, 23, 34],
and the immune system [9, 15,41].

In the present study, we used non-selected SD rats
(background strain of Hatano rats) as the foster dams to
rear pups of Hatano rats and administered the test com-
pound, genistein, to the foster dams in order to avoid the
influence of strain differences in maternal behavior
[32].
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Materials and Methods

Newborns of ten litters from HAA and LAA strains,
maintained at the Hatano Research Institute were used
for this experiment. In addition to the newborns, 20
pregnant SD rats purchased from Charles River Labora-
tories Japan, Inc. were prepared as foster dams for the
newborns. The animals were kept in an animal room
maintained under a 12-h light-dark cycle (lights on from
07:00 to 19:00), with a room temperature of 22 to 24°C
and a relative humidity of 50 to 65%. GN (Purity:
minimum 98%) was purchased from Sigma Chemical
Co. (St. Louis, MO), and was suspended in corn oil (Na-
calai Tesque, Co.) and mixed in a mortar to prepare the
dosing sample (5 mg/ml). A stomach tube attached to a
syringe was used to orally administer 5 mg/animal/day
of GN to ten pregnant SD rats from day 17 of pregnancy
through day 21 of lactation. Based on the average body
weight of 0.3 kg for a foster dam rat, the dose of 5 mg/
animal/day was estimated as being approximately equal
to a dose of 16 mg/kg/day. This dose was within the
range of human exposure levels. Another ten pregnant
SD rats, used as a control group, were administered with
| ml/animal/day of corn oil in the same manner. All of
the pregnant females were housed individually with
wood-chip bedding, and free access to food (CE-2, Clea
Japan Inc.) and water. On the day after parturition, des-
ignated as postnatal day 1 (PD 1), eight newborns (4
males and 4 females where possible) from HAA and LAA
dams were fostered onto SD dams receiving GN admin-
istration. The ages of the litters reared by the foster dams
were within 24 h of their own litters. The HAA and
LLAA offspring were subjected to the tests noted below.
The animal experiments in this study were conducted in
accordance with the “Guidance for Animal Experiments
in Hatano Research Institute, Food and Drug Safety
Center”.

Body weight and physical development

All offspring were weighed on PDs 1, 4, 7, 14, and
21, and weanlings were further weighed at 4,5,6,7, 8,
9, and 10 weeks of age. Test offspring were examined
daily for the following developmental landmarks as pre-
viously described: eyelid opening [29] from PD 12,
vaginal opening [38] from PD 28, and preputial separa-
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tion [36] from PD 35.

Behavioral tests and estrous cycle

Litters weaned at PD 21, were caged in pairs of the
same sex and kept in the same animal room as before.
Four offspring (2 males and 2 females where possible)
from each litter were examined using the following tests
as previously described [30]: shuttle-box avoidance and
running wheel activity tests at 7 and 8 weeks of age,
respectively. From 9 weeks of age, vaginal smears were
taken daily from three females of each litter for 3 weeks
to determine the stage of the estrous cycle.

Organ weight, sperm motility, and hormone levels

At PD 21, two offspring (1 male and 1 female where
possible) from each litter were sacrificed by exsan-
guination under sodium pentobarbital anesthesia. The
adrenal glands, thymus, testes, epididymides, ovaries,
and uterus were weighed.

At 12 weeks of age, four offspring (1 male and 3 fe-
male where possible) from each litter were anesthetized
with sodium pentobarbital, and blood was collected in
heparinized tubes from the posterior vena cava. Females
were sacrificed at various times during the estrous cycle
(12 and 18 h of pro-estrus, 12 h of estrus). The adrenal
glands, spleen, thymus, testes, epididymides, seminal
vesicles, ventral prostate, ovaries, and uterus were
weighed. The characteristics of motile sperm in the
caudal epididymis were determined using a Hamilton-
Thorne IVOS analyzer as previously described [35].
Blood collected at necropsy was centrifuged and the
plasma was separated and stored at —20°C until deter-
mination of progesterone, LH, and FSH [2].

Immune response to sheep red blood cells (SRBC)

At 19 weeks of age, one male from each litter was
given a single intravenous injection of 0.7 ml of 1%
SRBC four days prior to necropsy. The animals were
anesthetized with sodium pentobarbital, and blood was
collected from the posterior vena cava, prior to sacrifice.
The spleen was weighed, and the spleen cells were sub-
jected to a plaque-formation cell (PFC) assay as previ-
ously described [26]. The blood’s lymphocyte count was
analyzed by an automated hematology analyzer (Cell-
Dyn3500, Abbott Laboratories), and then the serum was
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separated and stored at -80°C until determination of
anti-SRBC-1gM [26].

Hormonal response to stress

At 6 months of age, one male from each litter was
sacrificed by decapitation following 30 min of immobi-
lization in a plastic bag as previously described [3]. On
the day before immobilization, a blood sample was col-
lected from the tail vein as previously described [31] to
assess the basal level of hormones. The blood sample
was collected in heparinized tubes containing aprotinin
and centrifuged. The plasma was separated and stored
at -20°C until it was assayed for ACTH, corticosterone
and prolactin [3]. The testes, epididymides, and ventral
prostate were weighed at necropsy.

Statistical analyses

Data were analyzed using analysis of variance (ANO-
VA) with transmaternal exposure (GN, oil) and strain
(HAA, LAA) as between-subject factors, and day as a
within-subject (repeated measure) factor. Data were
analyzed separately for males and females. Significant
interactions were further analyzed using simple-effect
ANOVA at each level of interaction to localize the major
effects. The offspring data used the litter average as the
unit of statistical analysis. Statistical significance was
assumed at P values of 0.05 or less.

Results

No effects of GN exposure on the body weight of the
offspring during the pre-weaning period were observed
in either the HAA or LAA offspring. The body weights
after weaning are shown in Figs. 1A to 1D. Inthe LAA
offspring, the post-weaning weights of the GN group
were significantly lower than those of the control group
in both males [F(1,48)=6.56, P<0.05] and females
[F(1,54)=5.53, P<0.05]. In the HAA offspring, no sig-
nificant effects of GN exposure were observed in the
post-weaning weights of either sex.

The mean ages of eyelid opening, vaginal opening and
preputial separation are shown in Table 1. No influence
of GN exposure on eyelid opening was observed in either
the HAA or LAA offspring. In the LAA offspring, in
which sexual maturation is observed later than HAA
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Fig. 1. Body weights of male HAA (A), female HAA (B), male LAA (C), and female LAA (D) offspring from 4
to 10 weeks of age following transmaternal genistein exposure. Data are expressed as the litter mean +

SE. *P<0.05 compared to the respective controls.

Table 1. Physical development of HAA and LAA offspring following lactational genistein exposure

Strain HAA LAA

Treatment Control Genistein Control Genistein
Eyelid opening 142 £ 0.2(32) 14.0 £ 0.1(39) 147+ 02(48) 14602 (39)
Vaginal opening 325+0.6(11) 322x03(16) 347 0417 36.5 £ 0.6%(15)
Preputial separation 404 £09(13) 412+£0.5012) 46.9 + 04(19) 483 +0.7%(13)

Data are expressed as the mean + SE in postnatal days until the criterion was met. Parentheses show the
number of animals examined. *P<0.05 compared to the respective controls.

offspring, both vaginal opening [F(1,30)=6.40, P<0.05]
and preputial separation [F(1,30)=5.93, P<0.05] were
further delayed in the GN exposure groups. The differ-
ences were marginally significant when individual data
were used for analysis, but did not reach significant lev-
els when litter means were used. In the HAA offspring,
no influence of GN exposure was observed in either
sex.

No significant differences between the control and GN
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groups were observed in the rate of avoidance respons-
es during 2 days (60 trials per day) of shuttie-box avoid-
ance tests, in spite of clear strain differences between
HAA and LAA rats.

The number of revolutions in the running wheel activ-
ity test was significantly higher in HAA than LAA off-
spring over 3 consecutive days. There were, however,
no significant effects of GN exposure on the number of
revolutions in either HAA or LAA offspring.
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tive controls.

In the monitoring of estrous cycle from 9 to 12 weeks
of age, all of the HAA offspring showed a regular 4-day
estrous cycle in both the control and GN groups. In the
LAA offspring, 24 and 41% of the control rats exhibited
regular 4- and 5-day cycles, respectively, as did 7 and
46% of the GN group. The rest of the control (35%) and
GN (47%) groups showed repeated 4- and 5-day cycles,
and the mean cyclic lengths of the control (4.6 days) and
GN (4.7 days) groups were not significantly different.

At weaning of LAA offspring, the mean uterus weight
of the GN group (27.0 mg) was significantly lighter
[F(1,10)=6.53, P<0.05] than that of the control group
(30.3 mg). There were no significant differences be-
tween the control and GN groups in the weights of the
adrenal glands, thymus, testes, epididymides, or ovaries
in either strain.

In male offspring at 12 weeks of age, the weights of
the seminal vehicles, adrenal glands, and thymus were
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significantly lighter, and the weight of the testes was
significantly heavier in LAA than in HAA rats. There
were no significant effects of GN exposure on any organ
of either strain. The percent of motile sperm was sig-
nificantly higher in HAA than in LAA rats. The values
of VAP, VSL, and VCL, which represent the swimming
speed, and ALH, which reflects the oscillation width of
a sperm head, were significantly higher in HAA than in
LAA rats. There were, however, no significant effects
of GN exposure on any of the parameters of sperm mo-
tion. A strain difference between HAA and LAA rats
was observed in the plasma levels of FSH, but no sig-
nificant effects of GN on progesterone, LH, or FSH of
male offspring were noted.

In female offspring at 12 weeks of age, the weight of
the thymus was significantly lighter, and that of the ova-
ries was significantly heavier in LAA than in HAA rats.
No influence of GN exposure was observed in any organ
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of either strain. Strain differences were observed in the
plasma levels of progesterone, LH, and FSH, but no
significant effects of GN on these hormones were noted.

The results of the PFC assay, the anti-SRBC IgM,
spleen weights, and lymphocyte counts are shown in
Figs. 2A to 2D. The value of the PFC assay in the HAA
offspring was significantly decreased by GN exposure
[F(1,6)=6.42, P<0.05]. The same tendency was observed
in the LAA offspring, but the difference was not sig-
nificant. The anti-SRBC IgM level was higher in LAA
than in HAA offspring. There was, however, no sig-
nificant effect of GN exposure on anti-SRBC IgM levels.
No effect of GN exposure was observed on the spleen
weights of either strain. The number of lymphocytes
was significantly decreased in HAA offspring reared by
GN-treated dams [F(1,6)=18.92, P<0.01]. Nosignificant

-514-

effect of GN exposure was observed in the LAA off-
spring.

The results of the restraint-stress challenge test are
shown in Figs. 3A, 3B, and 3C. During restraint stress,
the plasma concentrations of corticosterone, ACTH, and
prolactin increased in both strains. A significant effect
of GN was found on the corticosterone concentrations
of LAA offspring [F(1,9)=16.53, P<0.01], which were
significantly lower in the GN group than in the control
group. Similarly, the corticosterone concentrations of
the HAA offspring and the ACTH concentrations of both
strains tended to decrease in the GN group during stress,
but these changes were not significant. There was no
significant effect of GN on plasma prolactin concentra-
tions. The weights of the testes and the ventral prostate
at 6 months of age were significantly heavier in LAA
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than in HAA offspring. However, there were no sig-
nificant effects of GN on the weights of the testes,
epididymides, or ventral prostate at 6 months of age.

Discussion

The influence of transmaternal GN exposure on body
weight was observed in both sexes of LAA offspring
after weaning. The newborns of SD rats directly given
12.5 mg/kg/day or more of GN by gavage from PD 1 to
PD 5 exhibited a decrease in the body weight of both
sexes after weaning [23]. It has been reported that in
juvenile female mice given GN (20 and 80 mg/kg/day
s.c.), fat pad weight decreases dose dependently and that
lipoprotein lipase mRNA also decreases [22]. Oral GN
treatment (150 and 1,500 mg/kg diet) in ovariectomized
mice is also reported to result in reduced body weight
and apotosis of adipose tissue [14]. In addition, GN (5
mg/kg) caused a slight increase in blood glucose con-
centration with a concomitant drop in insulin level in
male rats [40]. Although the mechanisms of the body
weight reduction induced by transmaternal GN exposure
in the present study are not clear, the strain difference in
the effect of GN on body weight is interesting, and this
difference is probably dependent on the genetic back-
grounds of the animals.

Sexual maturation was delayed in both sexes of LAA
offspring. This was possibly caused by the body weight
effect, because a high dose of GN as well as other estro-
genic compounds is expected to accelerate vaginal open-
ing.

No obvious effects of GN were observed on any pa-
rameters of shuttle-box avoidance or running-wheel
activity for either the HAA or LAA strain. Therefore,
transmaternal exposure to GN does not affect avoidance
learning or locomotion activity independently of baseline
behavior.

When the organ weights were measured at weaning
of the LAA offspring, the mean uterine weight in the GN
group was significantly lighter than that in the control
group. Although postnatal exposure to a high dose of
GN is expected to increase uterine weight, decreased
uterine weight following lactational exposure was re-
ported at low doses of GN [4, 6]. Low doses of dieth-
ylstilbestrol or ethynylestradiol also induced uterine
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weight reduction by neonatal treatment [S]. Uterine
weight reduction may be caused by down regulation of
uterine estrogen receptor during neonatal treatment with
estrogens.

There were no effects of GN exposure on the estrous
cycles of the HAA and LAA offspring. It was shown
that irregular estrous cycles occur following neonatal
exposure of rats to GN for prolonged periods during
estrus [24]. Jefferson et al. [12] reported alterations in
the estrous cycle of CD-1 mice following neonatal ex-
posure to GN at doses of 0.5 to 50 mg/kg and these were
exacerbated more at 6 months than at 2 months of age.
The dose of GN used in the present study probably did
not affect the estrous cycle of offspring, because no sig-
nificant effects of GN were observed on reproductive
organ weight or hormone levels in adulthood. However,
estrous cycle observation in the present study was made
only at a young age. Further study at an older age is
needed to evaluate the estrous cycle of offspring.

Although no effect of GN exposure was observed on
anti-SRBC IgM levels, the value of the PFC assay was
decreased by GN exposure in the HAA offspring. Fur-
thermore, the number of lymphocytes was decreased in
the HAA offspring reared by GN-treated dams. These
results suggest that GN induces immunosuppression in
vivo. GN at a dose of 80 mg/kg/day produced impair-
ments in humoral immunity reducing keyhole limpet
haemocyanin-specific antibody titers in mice [41]. In
ovalbumin-immunized mice, GN at a dose of 20 mg/kg/
day suppressed ovalbumin-specific IgG levels [16].
However, an increased splenic T-cell number was ob-
served in SD rats exposed to GN during gestation and
lactation [10]. Sakai and Kogiso [34] suggest that the
effect of GN on immunity is immune cell-dependent.

Long-Evans rats that were given a high phytoestrogen
diet showed decreased anxiety, as expressed in elevated
plus maze results [18]. During restraint stress in the
present study, the plasma concentrations of corticoster-
one and ACTH were lower in the GN group than in the
control group in both strains. These results seem to agree
with the decreased anxiety reported for GN offspring as
described above. The opposite result was reported in
hooded Lister rats that were fed 150 u g of GN plus daid-
zein for 14 days [11]. Furthermore, male Long-Evans
rats on a lifelong high phytoestrogen diet (600 pg/g of
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diet) showed higher plasma ACTH but similar corticos-
terone levels after stress [17]. In addition, serum corti-
costerone levels tended to decrease in male Wistar rats
that were administered subcutaneously with GN (40 mg/
kg/day) for 3 weeks after weaning [25]. These reports
suggest that GN alters the negative feedback of stress
hormones and/or steriodogenesis in the adrenal gland of
rats. However, the perinatal effect of GN on the hypo-
thalamic-pituitary-adrenal (HPA) axis is not clear. Fur-
ther study is needed to evaluate the effects of GN on the
relationship between anxiety stress and the HPA axis.

The dosage of 5 mg/animal/day (approximately 16
mg/kg/day) of GN, that was used in the present study,
was chosen to be comparable to the normal range of
human exposure levels during lactation {8, 37]. Lewis
et al. [20] reported that SD rats administered with GN
in a single oral dose of 16 mg/kg during lactation had a
milk GN level of 0.17 pg/ml, while the plasma level of
dams was 1.8 pg/ml. Thus, the amount of GN expressed
into milk is low. However, some alterations were de-
tected in offspring reared by GN-treated dams in the
present study suggesting that this dose of GN caused
some effects in the next generation.

This comparative study using HAA and LAA rats,
which have different characteristics between their strains
and uniform characteristics within strains, may provide
useful information on individual differences in sensitiv-
ity to compounds with estrogen activity such as GN.
Transmaternal exposure to GN inhibited growth and
reduced uterine weight in the LAA offspring. Antibody
production was inhibited in the HAA offspring and a
reduced stress response was observed in the LAA off-
spring. These results suggest that the HAA and LAA
strains are useful animal models for studying the influ-
ence of endocrine active chemicals found in the environ-
ment and for estimating their influences on the whole
body systems.
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Rat One-lifespan Test as a Definitive Test for Endocrine Disruptors

Ryo Omnra, Takashi Mrvanara, Takeshi Matavosai, Hideo Omvukar, Hiroshi Ono

In order to establish a definitive test protocol for endocrine disruptors, a one-lifespan test
was performed using rats and the aging process of reproductive function was observed.
Neonates of Sprague-Dawley rats received forced oral administration of diethylstilbestrol
(DES) at doses of 0 (vehicle), 0.05, 0.5 and 5 ug/kg for 5 days after birth. Sexual maturation
(vaginal opening and preputial separation), estrous cycles (from 8 to 49 weeks of age), mating
(at 12, 23, 34, 56 and 68 weeks) and litter size (of the 1st to 3rd parturitions) were observed.
Each half of the males were examined for sperm counts and organ weights at 26 and 52
weeks of age. In half of the females, hCG induced ovulation and organ weights were
examined at 54 weeks of age. Then the observation of remaining animals was terminated at
101 weeks and survival rate were determined.

Vaginal opening in the group received DES at 5 ug/kg was significantly earlier than the
vehicle control group. Normal estrous cycles were observed in no animals of 5 ug/kg DES
group throughout the study, and in less than 10% of 0.5 ug/kg DES group at 28 weeks and on.
Fertility rate of 12 week-old females of the 5 ug/kg DES group was 0%, and that of 23 week-
old females of the 0.5 ug/kg group was 33.3%. Mating rate of 0.05 ug/kg females of this age
was reduced to 60%. Influence of neonatal DES exposure was not observed in the first
delivery in any group, but in the second parturitions litter size was reduced significantly in
the 0.5 ug/kg group. Organ weights of 54 week-old females showed dose-related significant
increase of pituitary weight in the 0.05 to 5 pg/kg groups. Adrenal weight was increased in
the 0.5 and 5 ug/kg groups. Weight of ovaries was lowered significantly in the 0.5 and 5 ug/kg
groups. Testing of induced ovulation with hCG revealed lack of influence of DES on number
of shed oocytes. No effects of neonatal DES exposure in males were observed on preputial
separation, fertility, sperm counts and organ weights. The lower survival rate was observed
in the 5 ug/kg group females.

These results showed that early life exposure of low doses of DES potentially cause
precocious sexual maturation, and decreases in reproductive function such as estrous
cyclicity, fertility or litter size in female rats. These effects were considered to cause through
disruption of hypothalamo-pituitary system, not through direct disturbance on ovarian
function. The effects of DES observed in this study indicate the usefulness of one-lifespan
test as a definitive test protocol for endocrine disruptors.
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K1 HMERIICDES#BELASDRS v M OTERE

Males Females
DES (ug/kg) © 0.05 0.5 5 0 0.05 0.5 5

At 12 weeks of age

Copulation index (%) 100.0 95.0 100.0  90.0 100.0 95.0 100.0  90.0

(No. copulated/no. mated)  (20/20) (19/20) (20/20) (18/20) (20/20) (19/20) (20/20) (18/20)

Fertility index (%) 100.0 84.2 95.0 100.0 90.0 81.3 80.0 0.0 **

(No. pregnant/no. copulated) (20/20) (16/19) (19/20) (18/18) (18/20) (13/18) (16/20) (0/18)
At 23 weeks of age

Copulation index (%) 100.0 95.0 100.0  90.0 100.0 60.0 ** 90.0

(No. copulated/no. mated)  (20/20) (17/20) (20/20) (18/20) (20/20)  (12/20) (18/20)

Fertility index (%) 89.5 100.0 1000 83.3 80.0 58.3 33.3 #*

(No. pregnant/no. copulated) (17/18) (17/17) (20/20) (15/18) (16/20) (7/12)  (6/18)
At 34 weeks of age

Copulation index (%) 100.0 90.0 100.0 95.0 55.0 25.0 20.0*

(No. copulated/no. mated)  (20/20)  (18/20) (20/20) (19/20) (11/20)  (5/20)  (4/20)

Fertility index (%) 95.0 72.2 90.0 84.2 54.5 60.0 25.0

(No. pregnant/no. copulated) (19/20) (13/18) (18/20) (16/19) (6/11)  (3/5) (1/4)
At 56 weeks of age

Copulation index (%) 90.0 60.0 60.0 79.8

(No. copulated/no. mated)  (18/20)  (12/20) (12/20) (15/20)

Fertility index (%) 72.2 66.7 83.3 66.7

(No. pregnant/no. copulated) (13/18) (8/12) (10/12) (10/15)

At 68 weeks of age

Copulation index (%) 57.9 47.4 55.6 55.6
(No. copulated/no. mated) (1 1/19) (9/19) (10/18) (10/18)
Fertility index (%) 66.7 80.0 50.0

{No. pregnant/no. copulated) (8/11) (6/9) (8/10) (5/10)

IR LEBR L THEE GRBLU1%) 5L ERT.
7 SIS ELEM L ORREERbE TN L.

F2 FMERYICDESE#H/E5LASDRBS v NOWTHRE

DES (ug/kg) 0 0.05 0.5 5
At the 1st parturition
Number of dams 18 13 16 0
Gestation length in days 221 +0.3 222 £0.7 221 +05
Number of newborns 139 +£34 129 +3.9 14.1 +3.6
Pup weight (g) Male 6.9 0.3 6.8 +06 6.7 =07
Female 6.5 £0.3 64 +06 6.3 £07
Viability index on PND 4 99.7 £15 98.5 +3.0 99.0 +£3.0
At the 2nd parturition
Number of dams 16 7 8 0
Gestation length in days 223 +05 229 £04 * 225 +05
Number of newborns 12.8 +3.9 127 +3.7 76 +58*
Pup weight (g) Male 7.2 +0.8 6.9 =07 74 +09
Female 6.7 +0.7 6.8 +0.7 6.6 +06
Viability index on PND 4 93.3 +25.1 100.0 = 0.0 100.0 0.0
At the 3rd parturition
Number of dams 6 3 1 0
Gestation length in days 224 £05 227 £0.6 22.0
Number of newborns 12.0 =43 110 +6.6 14.0
Pup weight (g) Male 7.1 £05 72 x£1.2 6.8
Female 66 =05 68 =14 6.7
Viability index on PND 4 965 +59 100.0 + 0.0 100.0

FANEHELRBRLTERE 6%) 552 L2RT. SETFY - EREELRT.
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HEOMBRRICEEL RIZE W EHTI LS.

5 uglkg 5B TIX 8 BED O IEE A%
R MW IIED N2 o7z, CORREPSL,
F# T DESH 5 & b MR ORI ES
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RTEYOEETRD L7z, TCDD O K
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