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Table 1 Subject characteristics

Groups Control Oral cancer Breast cancer Pancreatic cancer Periodontal diseases
Age
Min-Max (median) 20-75 (43) 34-87 (59.5) 29-77 (57) 11-87 (67) 23-76 (60)
Missing 2 5 10 2 2
Sex
Male 42 41 N/A
Female 27 23
Missing 18 5 30 18 11
Race or ethnic group
Total 87 69 30 18 11
Caucasian 37 41 N/A
Asia 15 5
African-American 12
Hispanic 5 5
Missing 18 14 30 18 It

N/A not available

of the subjects are summarized in Table 1. Except for age,
clinical parameters were not collected for the non-oral
cancer groups.

Frozen saliva was thawed and dissolved at room tem-
perature, and 27 pl of each sample (69 patients with oral
cancer and 70 healthy control samples) were added to a
1.5-ml Eppendorf tube, to which 3 pl of water containing
2 mM methionine sulfone and 2 mM 3-aminopyrrolidine
as internal standards was added and mixed well. Similarly,
individual thawed saliva samples (24 pl) from patients
with breast or pancreatic cancer, and patients with peri-
odontal disease and 17 healthy controls were admixed with
6 ul water containing internal standards (I mM each of
methionine sulfone and 3-aminopyrrolidine). These inter-
nal standards were selected because they were not included
in the human endogenetic metabolites. Furthermore, they
migrated to the center of the metabolite distribution, which
was used to confirm the quality of the alignment results.
Even though a unified dilution was preferred for the
preparation of all samples, a greater dilution ratio was
required for the control, breast, pancreatic cancer, and
periodontal disease samples because of their high electro-
lyte content, which decreases the electrical current during
the measurement.

2.3 Metabolite standards, instrumentation,
and CE-TOF-MS conditions

The metabolite standards, instrumentation and CE-TOF-
MS condition were used in this study as previously
described (Soga et al. 2006), with slight modifications in
the lock mass system setting. All chemical standards were
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of analytical or reagent grade and were obtained from
commercial sources. They were dissolved in Milli-Q water
(Millipore, Bedford, MA, USA), 0.1 mol/l HCI or 0.1 mol/
1 NaOH to obtain 1, 10 or 100 mmol/l stock solutions. The
working solution was prepared prior to use by diluting with
Milli-Q water to the appropriate concentration.

All CE-MS experiments were performed using an Agi-
lent CE capillary electrophoresis system (Agilent Tech-
nologies, Waldbronn, Germany), an Agilent G3250AA LC/
MSD TOF system (Agilent Technologies, Palo Alto, CA,
USA), an Agilent 1100 series binary HPLC pump, and the
G1603A Agilent CE-MS adapter and G1607A Agilent CE-
ESI-MS sprayer kit. System control and data acquisition
were done with G2201AA Agilent Chemstation software
for CE and Analyst QS software for TOF-MS (ver. 1.1).

All samples were measured in single mode (see below);
separation was done in fused~s§'lica capillaries (50 pm
i.d. x 100 cm total length) filled with 1 M formic acid as
the background electrolyte. Sample solutions were injected
at 50 mbar for 3 s and a voltage of 30 kV was applied. The
capillary temperature was maintained at 20°C and the
temperature of the sample tray was kept below 5°C using
an external thermostatic cooler, The sheath liquid, com-
prising methanol/water (50% v/v) and 0.5 uM reserpine,
was delivered at 10 pl/min. ESI-TOF-MS was conducted
in the positive ion mode. The capillary voltage was set at
4 kV; the flow rate of nitrogen gas (heater temperature
300°C) was set at 10 psig. In TOEF-MS, the fragmentor,
skimmer and OCT RFV voltage were set at 75, 50 and
125 V, respectively. In the present study, we used a
methanol dimer adduct ion ([2MeOH + H]*, m/
65.059706) and hexakis phosphazene ([M + H}*, m/z
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622.028963) to provide the lock mass for exact mass
measurements. Exact mass data were acquired at the rate of
1.5 cycles/s over a 50-1000 m/z range.

2.4 Processing of CE-TOF-MS data

Raw data were analyzed with our proprietary software
called MasterHands, which has already been used in sev-
eral CE-TOF-MS-based profiling studies (Hirayama et al.
2009; Minami et al. 2009; Saito et al. 2009). The data
analysis workflow starting with the raw data included
noise-filtering, baseline correction, peak detection and
integration of the peak area from sliced electropherograms
(the width of each electropherogram was 0.02 m/z). Such
functions are commonly used by data processing software
such as MassHunter from Agilent Technologies, or XCMS
(Smith et al. 2006) for liquid chromatography-MS or gas
chromatography-MS data, The accurate m/z value for each
peak detected within the time domain was calculated with
Gaussian curve-fitting to the mass spectrum on the m/z
domain peak. The alignment of peaks in multiple mea-
surements was done by dynamic programming (DP)-based
techniques (Baran et al. 2006; Soga et al. 2006) with slight
modifications. The method picked up a few representative
peaks using the Douglas-Peucker algorithm (Wallace et al.
2004) from unit m/z electropherograms, found corre-
sponding peaks across multiple samples by DP, and opti-
mized the numerical parameters of the normalization
function for CE-migration (Reijenga et al. 2002). Instead of
representative peaks, we used the detected peaks with
accurate m/z values and regarded the peaks whose m/z
difference was less than 20 ppm as ones that were derived
from the same electropherograms.

All peak areas were divided by the area of the internal
standard (relative area) to normalize the signal intensities,
and to avoid injection-volume bias and mass-spectrometry
detector sensitivity bias among multiple measurements.
Undetected peaks with a threshold signal-to-noise ratio of 2
were given a peak area of 0. The relative areas of the 17
healthy control samples and of the pancreatic and breast
cancer, and the periodontal disease samples were multi-
plied by 1.25/1.1 to standardize the sample concentration.

The peaks derived from salt and neutral molecules were
found in the first and the last few minutes, respectively.
Then, isotopic compounds, ringing, spikes and fragment
and adduct ions were eliminated and the peak data sets
were compared across the sample profiles and aligned
according to m/z and migration time. Although all of the
metabolites were quantified separately, the sum of the
quantified values of leucine and isoleucine were counted as
a single marker owing to the low separation of these peaks.
Peaks showing P < 0.05 in the non-parametric, multiple
comparison Steel-Dwass test, between the controls and at

least one disease cohort were selected as candidate
markers.

2.5 Metabolite identification

The peaks were identified based on the matched m/z values
and normalized migration times of the corresponding
standard compounds if available. Of the peaks that did not
match with any standard compounds, the concomitant
peaks, such as isotopic peaks and fragment peaks, were
removed based on the difference in m/z values and the
normalized migration time of the two peaks with an error
tolerance of 20 ppm and 0.01 min to yield only the peaks,
or referred to as components, which might be derived from
metabolites (Brown et al. 2009). Although CE-TOF-MS
provides accurate molecular mass at the milli m/z level, the
m/z alone is seldom successful to identify the metabolite
(Kind and Fiehn 2006, 2007). Therefore, we used their m/z
values and the migration times predicted by the Artificial
Neural Networks (ANNs) (Sugimoto et al. 2005) to iden-
tify the metabolite. Briefly, the ANN model was first
trained using the measured migration times of standard
compounds and molecular descriptors with the net charge
calculated from the pKa values. The trained ANN model
then predicted the migration times of the candidate
metabolites. Here, we used compounds available from the
Kyoto Encyclopedia of Gene and Genomics (KEGG)
database (Goto et al. 2002) and the Human Metabolome
Database (HMDB) (Wishart et al. 2007) as candidates. The
composition formulae obtained using the measured mass
spectrometry and the matched candidates were confirmed
by their isotope distribution patterns.

2.6 Statistical analysis

To evaluate the ability of the detected peaks to discriminate
diseases, we conducted an unsupervised method, principal
component analysis (PCA). The same analyses were also
conducted to discriminate only between controls and oral
samples between males and females, and between race and
ethnic groups. The analyses were not performed for the
other patient groups due to the unavailability of clinical
parameters. Supervised classification techniques, such as
partial least squares-discriminant analysis (Jonsson et al.
2005; Michell et al. 2008; Woo et al. 2009), support vector
machine (SVM) (Mahadevan et al. 2008) and multiple
logistic regression (MLR), are commonly used to separate
subjects and to identify important features for the separa-
tion. Here, we developed independent MLR models to
discriminate healthy individuals and each disease cohort
using a stepwise variable selection method (backward
procedure to eliminate non-predictive peaks with a
threshold of P > 0.10) to construct the predictive models.
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The models were trained with the complete dataset and we
evaluated their versatilities by tenfold cross-validation
(CV). The data were randomly separated into training sets
and remaining data and this process was repeated ten times
for all of the values selected in the training set. The non-
parametric Mann—Whitney test was used to compare two
groups, e.g. comparison of metabolites in males and
females. :

Statistical analyses using the Steel-Dwass test were
performed using the R package with the Design, Hmisc,
and Lexis libraries (available at http://lib.stat.cmu.edu/
R/CRANY/). Statistical analyses using the Mann-Whitney
test and the heat maps were generated with TM4 software
(Saeed et al. 2003). The CV data were generated using
WEKA (Witten and Frank 2005). The PCA and MLR
models were developed using JMP Version 7 (SAS Insti-
tute Inc., Cary, NC, USA, 1989-2007; http://www jmp.
com/software/jmp.shtml).

3 Results and discussion
3.1 Statistical results of discriminative metabolites

On average, CE-TOF-MS detected 3041 peaks (minimum
1585, maximum 8400, standard deviation (SD) 1137) in
each saliva sample. After removing the concomitantly
observed peaks such as the isotopic and fragment peaks,
and noise peaks including spike and ringing peaks, an
average of 90 peaks were derived from the metabolites
(minimum 48, maximum 128, SD 15). The standard devi-
ation of the relative peak areas of the metabolite-derived
peaks was 1.14 (no unit), and the SDs of the migration
times before and after the time normalization procedure
were 1.75 min and 3.02 x 1072 min, respectively. Of the
remaining peaks, we identified 57 metabolites that were
significantly different between the patients and healthy
controls (P < 0.05; Steel-Dwass test).

The marker pool used to discriminate between individ-
uals with oral cancer and healthy controls revealed 28
metabolites; namely pyrroline hydroxycarboxylic acid,
leucine plus isoleucine, choline, tryptophan, valine, threo-
nine, histidine, pipecolic acid, glutamic acid, carnitine,
alanine, piperidine, taurine, and two other metabolites with
a significance of P < 0.001 (Steel-Dwass test); piperidine,
alpha-aminobutyric acid, phenylalanine and an additional
metabolite with a significance of P < 0.01 (Steel-Dwass
test); and betaine, serine, tyrosine, glutamine, beta-alanine,
cadaverine, and two other metabolite with a significance of
P < 0.05 (Steel-Dwass test). The overlaid electrophero-
grams of these CE-TOF-MS peaks with a 2-dimensional
map (migration time and m/z) visualizing the difference in
intensity between the averaged control and oral cancer
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samples are shown in Fig. 1. The vertical smear lines in the
first few minutes (5—7 min) and those at a later time (at
19 min) were derived from salt ions and neutral molecules,
respectively, and most of the peaks derived from charged
metabolites were distributed between these times. Using a
similar strategy, we identified 28 metabolites for breast
cancer, 48 for pancreatic cancer and 27 for periodontal
disease (P < 0.05; Steel-Dwass test) as biomarker candi-
dates. The detected markers and the statistical results are
listed in Table 2; dot plots of the quantified peak areas are
shown in Fig. 2 and Supplementary Fig. S1. Although,
several metabolites in the dot plots achieved a statistically
significant difference, individual metabolites could not
separate any two groups with high sensitivity and speci-
ficity. The score plots of the PCA analyses for all indi-
viduals are shown in Fig. 3 and in Supplementary Fig. S2.
Although the PCA developed using the metabolite profiles
of all subjects showed no unequivocal group-specific
clusters, PCAs developed individually for the control and
each disease group showed partial discriminative separa-
tion of the subjects, which might be attributed to the
reduced complexity of the given datasets, or the extinction
in the overlap between the distribution of the score plots for
all disease groups.

The MLR model developed for oral cancer yielded a high
AUC (0.865), and the trained models also showed high
separation ability in the CV (AUC = (.810). The receiver
operating characteristic (ROC) curves and selected param-
eters of the MLR models for each disease are shown in
Fig. 4 and Supplementary Table S1, respectively. The
MLR models for pancreatic cancer and periodontal disease
yielded high AUCs in the CV test (0.944 and 0.954,
respectively), using only five and two metabolic markers,
respectively; while oral and breast cancers (0.810 and
0.881, respectively) used 9 and 14 metabolites, respec-
tively, with lower AUCs. On the metabolite heat map
(Fig. 5), the control group and the periodontal disease group
were relatively lower and the pancreatic cancer group ten-
ded to be homologically higher, ‘while the oral and breast
cancers exhibited more diverse profiles compared with the
other groups. This suggests that our MLR models for oral
and breast cancer require additional parameters for accurate
classification. The heterogeneous nature of oral cancers,
including oral squamous cell carcinoma (OSCC), oropha-
ryngeal, tongue and neck cancer, may produce different
profiles; this diminishes the discriminative capability of a
single classification model. The diverse profiles associated
with breast cancer may result in a similar situation because
breast cancer comprises structurally differing types
according to the expression of hormone receptors such as
estrogen and progesterone, and is affected by clinical
parameters, such as the patient’s age or menopause status.
Three metabolites, taurine, piperidine, and a peak at
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Fig. 1 A summary of the different metabolome profiles of cations
obtained from CE-TOF-MS analyses of salivary metabolites from
control (n = 87) and oral cancer samples (n = 69). The X and Y axes
represent the migration time and the m/z value, respectively. The
color density reflects the difference in intensity between the averaged

120.0801 m/z, were oral cancer-specific markers (different
from all of the other groups at P < 0.05; Steel-Dwass test)
and eight metabolites (leucine with isoleucine, tryptophan,
valine, glutamic acid, phenylalanine, glutamine, and
aspartic acid) were pancreatic cancer-specific markers.
Although several metabolites in breast cancer patients
yielded a statistically significant difference between breast
cancer and healthy controls, including taurine and lysine
(P < 0.001 for both; Steel-Dwass test), there were no dif-
ferences in metabolites between breast cancer and other
cancer, and they were not unique for breast cancer.

3.2 Comparison of the obtained metabolites
with previous studies

Of the metabolite profiles obtained, the annotated metab-
olites included carnitines (betaine, choline, carnitine,

beta-Alanine

control and oral cancer samples. Black circles indicate peaks that are
significantly different between healthy control and oral cancer
samples (P < 0.05; Steel-Dwass test). The small linked figures
include overlaid electropherograms of control (blue) and oral cancer
samples (red)

glycerophosphocholine), polyamines (cadaverine and
putrescine), a purine (hypoxanthine), amino alcohols (eth-
anolamine), aliphatic and aromatic amine (trimethyla-
mine), and amino acids (the others), in accordance with the
defined chemical class category in HMDB. Because each
MLR model developed to discriminate between control and
patient groups reached high accuracy by incorporating
quantified multiple metabolites, the quantitative associa-
tions between the multiple metabolites and the individual
markers are important. Changes in the individual metabo-
lites were generally consistent with those of earlier studies.
For example, polyamines are correlated with cell growth
and proliferation (Casero and Marton 2007; Gerner and
Meyskens 2004; Tabor and Tabor 1984), and with tumor
growth in oral cancer (Dimery et al. 1987), while putres-
cine is used to monitor the effect of chemotherapy on
oral cancer cells (Okamura et al. 2007). The serum
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Fig. 2 Representative dot plots for the relative area of detected
metabolites in samples from all groups. The colored dots denote
healthy controls (blue), oral (red), breast (pink), pancreatic cancer
(green), and periodontal disease (purple). The Y- and X-axes denote
the relative peak area (no units) and the group name, respectively. The
horizontal, center long bars and the short top/bottom bars indicate the

Fig. 3 Score plots of principal A
components (PC) analyses. The
subjects in all groups are shown
in 3-dimensional (a) and
2-dimensional (b) plots without
outliers. The cumulative
proportions of the first, second
and third PCs (PCI1, PC2, and
PC3) were 44.8, 57.6 and
67.0%. The same analyses
presented for all datasets are
shown in Supplementary

Fig. S2

concentration of putrescine and cadaverine are decreased in
cancer patients undergoing radiotherapy but remain higher
than those in healthy individuals (Khuhawar et al. 1999).
There were no significant differences in urinary polyamine
levels between the healthy individuals and breast cancer
patients; however, the levels of putrescine, spermine and
other metabolites were significantly higher in patients with
breast cancer (Byun et al. 2008). Oral polyamine levels are
also affected by periodontitis and gum healing (Silwood
et al. 2002). We found that the levels of ornithine and

@ Springer

HC oC BC PC PD
Pipecolic acid

=4
o

o
ES

o
w

Relative Area
°
0

Relative Area

o
b

-3
X,

o

°

HC oC BC PC PD
Leucine + Isoleucine

HC ocC BC PC PD
Histidine

et

HC oc BC PC PD
Glutamic acid

aan
04 020
3 03 $ o1s
e o
< <
Loz £ o0
= =
& S
& o1 & o005
o
0.0 d_Ep 86 0.00 W2 %
HC oC BC PC PD HC OoC BC PC PD
Threonine Carnitine

means and standard deviations, respectively. The stars indicates
* P <0.05 ** P <0.0l, and **¥* P < 0.001 (Steel-Dwass test).
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are displayed. The dot plots of the other metabolites are shown in
Supplementary Fig. S1
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putrescine were higher in patients with breast or pancreatic
cancer, and were markedly higher in patients with oral
cancer, than in our healthy controls, while there was no
significant difference between patients with periodontal
disease and the controls. Although the quantitative level of
polyamines is associated with regulation of tumor growth
and with periodontitis, our results indicate that salivary
polyamines are affected by the cancer type and by peri-
odontitis, and that their levels were markedly higher in
patients with oral cancer.
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Fig. 4 ROC curve analysis of A B
the ability of salivary 1.0 1.0 1 P
metabolites to discriminate | ‘J.J“"“':‘l‘.. S
between samples from patients 0.8 0.8 oont
with a oral (n = 69), b breast - > 3
(n = 30) or ¢ pancreatic cancer Z 06 S 06 J
(n = 18), and d samples from =2 = -
patients with periodontal S 04 G 04 [
diseases (n = 11) and the 2] L :
controls (n = 87). The solid 0.2 - 0.2 }=
(red) and dotted (blue) ROC
curves were obtained using the 0.0 Ay N S S 0.0 — — e
complete data as a training set 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
and with a tenfold cross- 1-Specificity 1-Specificity
validation, respectively. Using a
cut-off probability of 50%, the Cio0-
calculated area under the ROC | e e o 4
curves were 0.865 (0.810) for 0.8 ,—'- i
oral, 0.973 (0.881) for breast
and 0.993 (0.944) for pancreatic 2 0.6 -
cancer, and 0.969 (0.954) for £ |
periodontal diseases. The non- 2 o04f
parenthetic values were & ;
obtained with the full-training 0.2 :
data and parenthetic values by o
tenfold cross-validation 00 ) — . B o - S

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0 8 1.0

1-Specificity 1-Specificity
Contrel Oral Cancer Breast Cancer I f;ull‘(rlr(;llll I ;:i::)‘i:xxt;\l
§ C2HIN? (59.0616 @/

Fig. 5 Heat map of 57 peaks showing significantly different levels
(P < 0.05; Steel-Dwass test) between control samples (n = 87) and
samples from patients with at least one disease (n = 128). Each row

In addition to polyamines, the level of tryptophan
(Carlin et al. 1989), which is increased in oral and pan-
creatic cancer, is a direct marker for tumor development. In
terms of an indirect connection between the detected
metabolites and human cancer, the repeat peptide Pro-Pro-

C321148013 (214, HAOn/z)

CIHIN02 (90. 0553 w/2)
04“ 2N5 (131. 1174 m/2)
C4H9NO2 (104 0705 m/2)
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H11N0Z (1180864 l/z 10 05 ain )
C31H62N1608S (409, 2 ©/2)
C30Hi55N2703S (437, 7442 2)
cmmnsoe (215 1269 a/z.
alpha-Aainobutyric acid

llnlne

Putr

klhylllldnnleamtlc ocid
rinethylemine

5Hll)l5 (|45 1332 a/2)

C8HON (120.0801 m/2)
’yrmlln« hydroxycarboxyllc acid

AH?N (70. 0655 @/2)

C6HEN202 (139.0500 n/2)
eucine + Isoloucine

mnylaunlnc

istidine
rol ine
slnc

I7l|2$l|406 (3671017 l/l)
0-Gly-Pro or Pro-Pro-Gly
1mzmm (173 0919 m/2)

gomna. -A-mobulytlc scid
cn;mrtlc acid
a

Carnit

C5HHPK)2 (118.0863 a/z 13.42 min )

Glycerophosphochaline

C'l 3S (1230285 m/2)
HB0S2C5HIN206PS2 (288. 9691m/2)

shows data for a specific metabolite and each column shows an
individual. The colors correspond to the relative metabolite areas that
were converted to Z-scores

Gly, which is expressed at high levels in breast cancer, is
an inhibitor of matrix metalloproteinase-2 (MMP-2, gela-
tinase A), which plays an important role in tumor invasion
and metastasis (Jani et al. 2005). The expression levels of
the amino acid transporters ACST2 and LAT1 are elevated
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in primary human cancers, and cancer cells optimize their
metabolic pathways by activating the extra- to intracellular
exchange of amino acids. Peptides and acids are derived
from various sources, such as fragmented proteins, and the
saliva metabolome profiles comprising these compounds
may reflect the integrated results.

A significantly decreased level of arginine was observed
in plasma samples from several cancers including breast,
colonic and pancreatic cancer, which might be due to
increased uptake of arginine by tumor tissues with high
arginase activity (Vissers et al. 2005). However, salivary
arginine was hardly changed, and there were no differences
among the groups (Supplementary Fig. S3 and Table S2).
A trend for decreasing levels of amino acids, including
leucine, isoleucine, valine and alanine, has been reported in
pancreatic cancer samples (Fang et al. 2007). The levels of
amino acids in breast cancer tissue samples showed similar
patterns, with low levels of isoleucine, leucine, lysine and
valine (Yang et al. 2007). The decreased amino acid levels
appear to be the result of enhanced energy metabolism or
upregulation of the appropriate biosynthetic pathways, and
required cell proliferation in cancer tissues. However, the
observed salivary amino acid levels showing significant
differences in the cancer groups (in Table 2) were higher
than in the controls. The heterogeneous systems that
transport amino acids from blood to saliva via the salivary
gland, such as kinetic differences, or the dependence or
independence of small ions such as potassium and sodium
(Mann and Yudilevich 1987), altered the concentration of
these ions because of water movement through the para-
cellular route (Melvin 1999) or channels (Ishikawa and
Ishida 2000). Metabolism in the salivary gland itself might
also play a major contribution to the differences in profiles
between saliva and blood. Further validation of these
findings by comparing saliva profiles with blood and tissue
profiles is needed to understand the reason for the different
saliva amino acid profiles.

Choline, a quaternary amine, is an essential nutrient that
is predominantly supplied by the diet; and choline-con-
taining metabolites . are . important - constituents  of
phospholipid metabolism = of cell membranes and are
associated with malignant transformation, such as breast,
brain and prostate cancers (Ackerstaff et al. 2003). Mag-
netic resonance spectroscopy (MRS) is routinely used to
quantify choline-based metabolism in malignancies such as
head and neck cancer and breast cancers (Bolan et al.
2003). Choline is highly metabolized in tumors to phos-
phocholine and is also highly oxidized to betanine; hence,
the low concentration of choline and high concentrations of
phosphocholine and betaine (Katz-Brull et al. 2002) were
observed, Furthermore, the levels of choline metabolites
were higher in tumors than in benign lesions or normal
tissues (reviewed in Haddadin et al. 2009). In tumor cells,

4 Springer

an excessive increase in plasma choline levels in patients
with breast cancer was also shown (Katz-Brull et al. 2001).
Aberrant choline metabolism can be explained as a result
of enhanced membrane synthesis and degradation, which
represent excessive proliferation of cancer cells, Pancreatic
cancer tissue had a unique profile showing decreased levels
of phosphocholine and glycerophosphocholine, but not
choline (Fang et al. 2007). We found that the levels of
phosphocholine (Supplementary Fig. S3 and Table S2) and
glycerophosphocholine (Table 2) were increased in the
saliva samples from oral cancer patients and were
decreased in the other groups. ‘

Creatine phosphate acts as a store for high-energy
phosphates. Therefore, its concentration might be altered in
energy-demanding tissues (Maheshwari et al. 2000). Pre-
vious studies showed an increase in the choline-creatinine
ratio in tumor tissues and in the serum of patients with
OSCC (Maheshwari et al. 2000; Tiziani et al. 2009). Cre-
atine is converted to creatine phosphate by creatine kinase.
Increased creatine phosphate levels were also found in other
tumors, such as breast and gastrointestinal tract tumors. In
our study, the salivary choline level was significantly higher
in subjects with oral and pancreatic cancers (P = 2.30 x
107> and P = 1.91 x 107, respectively; Steel-Dwass
test), but not in the other groups. Therefore, the salivary
choline-creatinine ratio showed oral cancer-specific ele-
vation (Supplementary Table S2 and Fig. S3). However,
this finding needs to be interpreted with care because cho-
line is a nutrient present in most foods.

Compared  with oral cancer, breast and' pancreatic
tumors are physically remote from the oral cavity. There-
fore, it can be questioned why salivary metabolite profiles
reflect the aberrant localized tumour metabolism. Systemic
biofluids, such as blood and lymph fluid, are one of the
routes. that readily bypass: these tumors and the salivary
gland, which blends saliva with contaminating blood.
Several metabolites in tumor tissues, such as lactate, which
is derived from tumor exposed to hypoxia, were altered
both with and without metastasis (Hirayama et al. 2009;
Walenta et al. 2000). Although abnormal arginine levels in
breast cancer without metastasis were observed, the same
metabolic changes. were shown in a pooled group of
patients: with colonic and pancreatic cancer with/without
metastasis (Vissers et al. 2005). In OSCC patients without
metastasis from the primary tumor, cancer-specific changes
in serum and salivary mRNA levels (Li et al. 2006; Pick-
ering et al. 2007) and blood metabolome levels (Tiziani
et al. 2009; Zhou et al. 2009) were shown. Although this
does not constitute direct proof that the aberration in sali-
vary metabolites is attributed to a remote tumor, evidence
that the salivary metabolite profiles reflects the systemic
and localized tumor status or its response to chemothera-
pies, such as breast and lung cancer, has accumulated



Saliva metabolomics identified cancer-specific profiles

91

(Emekli-Alturfan et al. 2008; Gao et al. 2009; Harrison
et al. 1998; Streckfus et al. 2006, 2008). Although previous
studies have demonstrated an increase in choline metabo-
lites in blood in various cancers, the increase in choline
metabolites in oral cancer patients in study indicate that the
transportation of these metabolites from the blood to the
saliva through the salivary gland is low, even though their
levels in blood are elevated. Alternatively, these metabo-
lites were diffused from the oral malignancy to the salivary
gland via a route other than the blood vessel. We
acknowledge that the current study merely mined the data
and showed that the changes in salivary metabolites had
cancer-specific features. Further biological studies to
compare the metabolite profiles obtained concurrently from
saliva, blood and cancer tissue is needed to provide rational
evidence for the systemic metabolite links.

3.3 Bias derived from cﬁnical parameters

We evaluated the metabolite bias introduced by relevant
clinical parameters (age, gender, race and ethnicity). The
PCA score plots showed poor separation between male and
female subjects among healthy controls and patients with
oral cancer (Supplementary Fig. S4). Statistical compari-
sons of the relative area are presented in Supplementary
Table S3. Takeda et al. (2009) measured the gender-spe-
cific differences in salivary metabolites and found that
formate, lactate, propionate and taurine were significantly
higher in males. Compared with these metabolites, the
gender-specific level of taurine, which was the only
metabolite observed in our measurement condition, showed
little difference between the subjects in the control and oral
cancer groups. By contrast, in the control group, tyrosine
and a metabolite at 214.4440 m/z were significantly higher
in females than in males (P = 0.0492 and p = 0.0261,
respectively; Mann-Whitney test). In the oral cancer
group, threonine and serine were significantly higher in
males and piperidine was higher in females (P = 0.0340,
P = 0.0462, and P = 0.0221, respectively; Mann-Whit-
ney test). Takeda et al. (2009) discussed that these gender-
specific differences might be attributed to dental care,
hormones such as estrogen, and oral pathogenesis carriers
such as microflora. Indeed, infection of the oral environ-
ment with viruses such as human papillomavirus or micro-
organisms is known to be a risk factor for the development
of oral cancer (Meurman and Uittamo 2008). Although we
found that the gender-specific differences in metabolic
profiles differed between the tumor types, the number of
metabolites showing significant differences was low, which
implies that the disease-specific variation is predominantly
embedded in the 57 metabolites identified here.

In the control and oral cancer groups, the PCA based on
race and ethnicity were visualized using score plots

(Supplementary Fig. 85) and the statistical analytical
results are presented in Supplementary Table S4. In the
control group, there were no significant differences
between African-Americans and Caucasians, or African-
Americans and Hispanics. Meanwhile, 11 and 12 signifi-
cantly different (P < 0.05; Steel-Dwass test) metabolites
were observed between African-Americans and Asians,
and Asians and Caucasians, respectively. Similarly, the
profiles between Asians and Hispanics, and Caucasians and
Hispanics revealed three and seven significantly different
metabolites (P < 0.05; Steel-Dwass test). Of particular
note, levels of putrescine, proline, glycine and unannotated
metabolites at 118.0864 m/z and 10.05 min were low in
Asians, while the level of burimamide was high in African-
Americans. A country-dependant bias in human urinary
metabolite profiles has also been reported elsewhere
(Holmes et al. 2008). In their study, positively charged
metabolites, such as alanine-related metabolites, showed
discriminative characteristics and were correlated with
several dietary factors such as energy intake, dietary cho-
lesterol and alcohol intake. However, in our study, there
were no differences in alanine levels in either the control or
the oral cancer subjects. In the control group, there were no
differences in 34 out of 57 marker candidates among the
race or ethnic groups. In subjects with oral cancer, only a
metabolite at 211.4440 m/z showed a significant difference
(P = 0.0386; Steel-Dwass test). Although biases based on
race or ethnicity-were found in the 57 metabolic profiles,
the number of the metabolites showing significant differ-
ences were less than the number of peaks showing signif-
icant differences in cancer-specific profiles, which implies
that this bias might be more moderate than disease-specific
differences.

Age-related differences have been reported in a tran-
scriptome study of the salivary gland (Srivastava et al.
2008). The coefficients of regression lines for age and
relative area for all 57 metabolite markers are presented in
Supplementary Table S5. It has been reported that other
commonly used methods for standardization of metabolites
in biofluid yield different statistical results (Schnackenberg
et al. 2007); therefore, consistent decreases or increases in
levels of metabolites among subjects with correlated clin-
ical parameters should be accounted for. In the control
subjects and patients with pancreatic cancer, there was a
positive correlation between metabolites and age, whereas
the opposite was true for patients with oral or breast cancer
or periodontal diseases. Accordingly, it is unlikely that
age is correlated with the concentrations of salivary
metabolites.

Several limitations in this study need to be acknowl-
edged. First, the metabolite profiles in saliva might fluc-
tuate to similar or greater levels compared with other omics
profiles, such as the proteome and transcriptome, in
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response to systemic conditions such as stress, and oral
conditions including gingival crevicular fluid and oral
microbiota (reviewed in Fabian et al. 2008). Therefore, the
reproducibility of the sample collection protocol used in
this study should be rigorously verified under various
conditions. Circadian rhythms in salivary flow rate and
components have been reported (Dawes 1972). Levels of
putrescine and cadaverine, which correlate with oral mal-
odor, were markedly altered during waking time, even in
healthy donors (Cooke et al. 2003). Although, the samples
were collected within a limited period of time in the
morning, levels of these metabolites were generally higher
in patients with most types of cancer in the present study.
The variance in the concentrations of these metabolites
should be validated in future studies. Another external
factor that alters saliva contents is the time-course of
fluoride concentration, which has been tracked, and the
changes in concentrations continued for 30 min after eating
food (Hedman et al. 2006). Therefore, the 1-h period before
sample collection should be evaluated in terms of food
intake. Smoking is also known to affect salivary metabo-
lites such as citrate lactate, pyruvate and sucrose (Takeda
et al. 2009). The metabolites identified in this study could
not be compared with these metabolites because they were
not positively charged in our measurement condition.
Therefore, the profiles of positively charged metabolites
should be explored in further analyses.

Second, the sample sizes, particularly the number of
patients with breast or pancreatic cancer or periodontal
diseases, were relatively small. A larger cohort, including
samples from an independent institute, would allow for
statistical comparisons with greater power and a more
rigorous validation. In addition, samples from patients with
systemic diseases showing similar symptoms, such as oral
leukoplakia and oral cancer (Zhou et al. 2009), chronic
pancreatitis and pancreatic cancer (Fang et al. 2007;
Kojima et al. 2008), should be compared with evaluate the
sensitivity and specificity of the detected metabolites. In
this study, the patients’ age was collected for all samples
and only a few additional parameters, namely sex and race,
or ethnic group, were collected for the control and oral
cancer group. Analyses and validation studies taking into
account the complete clinical and pathological parameters,
including menopausal status, estrogen and progesterone
receptors for breast cancer, and risk factors including
smoking and alcohol drinking for oral cancers are essential
before actual diagnostic application of the classification
model obtained in this study. In this study, although we
used stepwise feature selection and an MLR model to
identify classifiers, other feature selection and classification
methods are also applicable, such as regression tree models
(Li et al. 2004, 2006) and concurrent use of ANN with
SVM (Ayers et al. 2004). Instead of developing a
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classification model only based on the salivary metabolome
profiles of matched subjects, the construction of a marker
model incorporating related clinical features or risk factors
and biomarkers can be used to visualize the probability of a
specific diseases status; for example, nomograms are a
commonly used strategy (Brennan et al. 2004; Gross et al.
2008; Katz et al. 2008).

A metabolomic study using serum samples from patients
with oral cancer showed stage-specific profiles (Tiziani
et al. 2009). The profiles obtained in this study were simply
categorized into the type of cancer. Therefore, future
studies are needed that integrate histological and clinical
features. Simultaneous analyses of the metabolic profiles in
blood and tissue collected from the same patients are also
needed to track the biological sources of the disease-spe-
cific signatures in salivary metabolite profiles. Although
there are still several limitations to be addressed, the
methodology used in this study to detect salivary metabo-
lite profiles are not limited to early diagnosis but offer the
potential to aid the characterization of malignant neo-
plasms or tumors by integrating histological or clinical
features, such as staging.

4 Concluding remarks

This is the first study to comprehensively analyze salivary
metabolites and to identify metabolic profiles specific to
oral, breast and pancreatic cancers. A larger number of
patient samples, particularly those from different institutes,
and additional clinical variables are needed for further
validation and future clinical application of our method. In
addition, integrating the knowledge obtained from other
omics studies may help us to understand the biological
basis of these disease-specific metabolic profiles.

In conclusion, our study has demonstrated that CE-TOF-
MS can readily and effectively be applied to salivary
metabolomics. We have propesed an alternative use for
salivary diagnosis to be applied for the detection of oral,
breast and pancreatic cancers.
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Detection of internal body time (BT) via a few-time-point assay has
been a longstanding challenge in medicine, because BT informa-
tion can be exploited to maximize potency and minimize toxicity
during drug administration and thus will enable highly optimized
medication. To address this challenge, we previously developed
the concept, “molecular-timetable method,” which was originally
inspired by Linné’s flower clock. In Linné&’s flower clock, one can
estimate the time of the day by watching the opening and closing
pattern of various flowers. Similarly, in the molecular-timetable
method, one can measure the BT of the day by profiling the up and
down patterns of substances in the molecular timetable. To make
this method clinically feasible, we now performed blood metabo-
lome analysis and here report the successful quantification of
hundreds of clock-controlled metabolites in mouse plasma. Based
on circadian blood metabolomics, we can detect individual BT
under various conditions, demonstrating its robustness against
genetic background, sex, age, and feeding differences. The power
of this method is also demonstrated by the sensitive and accurate
detection of circadian rhythm disorder in jet-lagged mice. These
results suggest the potential for metabolomics-based detection of
BT (“metabolite-timetable method”), which will lead to the real-
ization of chronotherapy and personalized medicine.

chronotherapy | circadian | metabolome | jet-fag | LC-MS

I n the 18th century, the Swedish botanist Karl von Linné designed
a “flower clock” comprising a series of plant species arranged
according to the respective time of the day their flowers open or
close. Watching this flower clock, one can estimate the time of the
day by noting the pattern of flower opening and closing. Since
Linné’s early times, it has been a well known fact that plants have
an internal clock and thereby can open or close their flowers at a
precise time of the day. Similarly, animals possess an internal
molecular mechanism, a “circadian clock,” which underlies endog-
enous, self-sustained oscillations with a period of ~24 h manifest in
diverse physiological and metabolic processes (1). In mammals,
several clock genes, including Clock, Bmall, Perl, Per2, Cryl, Cry2,
RevErbA, Rora, Csnkle, Csnkld, and Fbxl3, regulate, at least in part,
gene expression in central and/or peripheral clock tissues (2-4).
Reflecting the temporal changes in gene expression in central and
peripheral clock tissues (5-8), the potency and/or toxicity of
administered drugs depend on the individual’s present body time
(BT) (9-13). It has been suggested that administrating a drug at a
specific BT improves the outcome of pharmacotherapy by maxi-
mizing its potency and minimizing its toxicity (14). In contrast,
administrating a drug at an inappropriate BT can result in severe
side effects (15). Despite the importance of such BT-dependent
therapy (also known as “chronotherapy”) (9-13), its application to
clinical practice has been obstructed by a lack of clinically feasible
methods for measuring BT.

To overcome this problem, we previously developed the concept
of a “molecular-timetable method (16),” which was originally
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inspired by Linné’s flower clock. In Linné’s flower clock, one can
estimate the time of the day by watching the opening and closing
pattern of various flowers. Similarly, in molecular-timetable
method, one can measure the BT of the day by profiling the up and
down pattern of substances in the molecular timetable. This con-
cept was proven using the expression profile of clock-controlled
genes in a target organ (16). However, estimates of BT from the
expression profile of oscillating substances within a target organ (in
this case, the liver) are hard to apply directly to clinical situations.
To make the molecular-timetable method more clinically relevant,
we decided to determine BT from blood samples, which are more
available in clinical practice.

In the blood of mammals, several small chemical substances such
as metabolites and hormones have been reported to exhibit circa-
dian oscillations. For example, the concentration of the steroid
hormone, corticosterone, is rhythmically controlled by circadian
clock with a peak in the evening (17), and an amine-derived
hormone, melatonin, show circadian rhythm with a peak in the early
morning in mice (18). In humans, several peptide hormone levels
show daily variations; growth hormone increases during sleep (19),
leptin increases during the evening (20), and prolactin increases at
night (21). Concentrations of amino acids, including tryptophan,
tyrosine, phenylalanine (22), methionine (23), cysteine, glutathione
(24), and homocysteine (25), also exhibit daily variations in human
blood plasma. Despite these findings, comprehensive profiling of
circadian dynamics of chemical substances in mammalian blood has
not yet been reported, and until now a comprehensive molecular
timetable of such chemical substances has not been constructed.

Metabolomics technology aims to comprehensively identify
and/or quantify the dynamic chemical substances present in bio-
logical samples. It is gaining interest in the fields of drug discovery,
disease diagnostics, and treatment (26-28). The present metabo-
lomics technology was developed rapidly by coupling advanced
separation technology with highly sensitive and selective mass
spectrometry—gas chromatography mass spectrometry (GC/MS)
(29-31), liquid chromatography mass spectrometry (LC-MS) (32-
34), and capillary electrophoresis mass spectrometry (CE-MS) (35,
36). To construct the molecular timetable from clinically available
samples, we have performed blood metabolome analysis in this
study. Using the LC-MS technique, we quantified hundreds of
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clock-controlled metabolites in mouse plasma and successfully
constructed a molecular timetable of blood metabolites. This
metabolite timetable allowed us to measure individual BT under
various conditions and was robust enough to be used in mice with
different genetic backgrounds, sex, age, and feeding conditions. It
was also sensitive and accurate enough to detect circadian rhythm
disorders in jet-lagged mice. Our preliminary results suggest that
other metabolomics techniques such as CE-MS can also be applied
to the molecular-timetable method, demonstrated by the quantifi-
cation of hundreds of clock-controlled metabolites, the identifica-
tion of substantial portion of these metabolites, and successful
measurement of BT from independent blood samples. Thus,
metabolomics-based measurement of BT will contribute to the
potential areas of chronotherapy and personalized medication

regimens.

Results

Construction of the Metabolite Timetable from Blood Plasma by
LC-MS. Samples of blood plasma were taken from young male
CBA/N mice every 4 hours over 2 days during light-dark (LD) or
constant darkness (DD) conditions. Plasma corticosterone was
used as a quality control because it exhibits a clear circadian
oscillation when quantified by radio immunoassay (Fig. 14). Small
chemical substances in the plasma were quantified by LC-MS
analysis to construct the metabolite timetable. LC-MS analysis
detected 695 negative ion and 938 positive ion peaks in the plasma.
Of these, 176 negative and 142 positive ion peaks exhibited signif-
icant circadian oscillations in LD and DD conditions [Fig. 1B; false
discovery rate (FDR) <0.01; see also Materials and Methods]; these
peaks accounted for the ~19.5% of the peaks detected in mouse
plasma. These substances served as “time-indicating metabolites,”
because they oscillate considerably even under constant environ-
mental conditions (DD). For instance, at zeitgeber time 0 (ZT0; the
beginning of day) or circadian time 0 (CTO; the beginning of a
subjective day), concentrations of dawn-indicating metabolites,
which peak at approximately ZTO0 or CTO (Fig. 1B, green color bars
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Zeitgeber / Circadian Time (hr)

(D). Mean value was set to 1.0.

in the molecular peak time), are high, whereas those of dusk-
indicating metabolites, which peak at approximately ZT12 or CT12
(Fig. 1B, red color bars in the molecular peak time), are low.
Conversely, at ZT12 or CT12, concentrations of dawn-indicating
metabolites are low, whereas those of dusk-indicating metabolites
are high; this suggests that time-indicating metabolites can repre-
sent BT (BT), the endogenous state of circadian clock. In fact, the
oscillations of these time-indicating metabolites are directly or
indirectly controlled by circadian clock, because the disruption of
functional molecular clock in Cryl —/—, Cry2—/— mice (37) results
in the alteration of circadian oscillations of these metabolites (Fig.
S1). We used these LC-MS data to construct the molecular
timetable of time-indicating metabolites (a “metabolite timetable”)
in mouse plasma (Table S1 online). We also note that, among these
time-indicating metabolites (i.e., oscillatory peaks detected by
LC-MS), 14 oscillatory peaks were identified as various types of
lysophosphatidylcholines with different unsaturated fatty acids
(Fig. 1 C and D).

Measurement of BT from Independent Samples. To verify whether the
metabolite timetable was a good indicator of BT, we attempted to
estimate the BT from the metabolite profiles of independently
sampled mice. We collected fresh blood plasma from individual
young male CBA/N mice every 4 h over 24 h under both LD or DD
conditions because of the possibility that sampling time and/or light
conditions would affect the accuracy of BT estimation. LC-MS
analysis was performed to profile the time-indicating metabolites in
the plasma samples (Fig. 2.4 and B). After measured profile of the
time-indicating metabolites was normalized by using the metabolite
timetable, we filtered out outliers, fitted the normalized profile to
cosine curve, and calculated the significance of its fitness (see also
Materials and Methods). This metabolite-timetable method could
successfully detect significant circadian rhythmicity in all metabolite
profiles of these samples (P < 0.01, Fig. 2 4 and B). The estimated
BT closely matched with the environmental time when sampled
(ZT under LD condition or CT under LD condition) with estima-
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tion errors of 1.0 + 0.49 h for LD and 1.3 £ 0.45 h for DD (mean *+
SD, Table S2). Estimation error was here defined as time difference
between estimated BT and sampling time (environmental time).
These results suggest that BT can be accurately determined from
the metabolite profiles of independently sampled mice.

Differences in Genetic Backgrounds. In clinical situations, methods
for BT detection must apply to populations with heterogeneous
genetic backgrounds. To demonstrate the suitability of the metab-
olite-timetable method for individuals with different genetic back-
grounds, we applied the method to other inbred mouse strain with
genetic backgrounds that differed from the original CBA/N strain.
‘We chose C57BL/6, because C57BL/6 and CBA/N are genetically
remote from each other and classified into 2 completely different
clusters among 55 mice strains according to SNP-based study (38).
‘We collected the blood plasma samples from individual young male
C57BL/6 mice every 4 h over 24 h under LD and DD conditions and
quantified the time-indicating metabolites in the plasma by LC-MS
(Fig. 3 A and B). The metabolite-timetable method detected
significant circadian rhythmicity (P < 0.01) in all metabolite profiles
both under LD (Fig. 34) and DD conditions (Fig. 3B) even if we

The dashed vertical lines show the BT (red) or environ-
mental time (ZT/CT, blue). See Table S2 for statistics.

used the metabolite timetable constructed from CBA/N mice. The
estimated BT closely matched with the environmental time with the
estimation errors of 1.6 = 0.36 h for LD and 1.7 * 0.24 h for DD
(mean * SD, Table S2). These results suggest that BT can be
accurately determined from the metabolite profiles of mice with
heterogeneous genetic backgrounds.

Differences in Age and Sex. We constructed the metabolite timetable
from young male mice only, so it was possible that age and sex
factors might affect the accuracy of the metabolite-timetable
method. To determine the influence of age and sex, we also applied
the metabolite-timetable method to aged male and young female
mice of the same strain. Blood plasma from individual aged male
or young female CBA/N mice was sampled at 2 time points, ZT0
(the beginning of the day, i.e., time of light on) and ZT12 (the end
of the day, i.e., time of the light off) under LD condition. These time
points were considered as 2 “noisiest” time points, because light
conditions were dramatically changed at these points. Time-
indicating metabolites in the plasma were quantified by LC-MS
(Fig. 44) and significant circadian rhythmicity (P < 0.01) was
detected in all metabolite profiles of both the aged male mice and

Fig. 3. Genetic background. BT measurement using
C57BL/6 mice plasma collected under LD (A) and DD (B)

conditions. Colors of the dots indicate the molecular
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the young female CBA/N mice (Fig. 44). The estimated BT from
individual mice sampled at ZT0 and ZT12 were BT23.0 and BT11.0
in aged male mice and BT1.2 and BT13.2 in young female mice
(Table S2). These results demonstrate that BT can be accurately
determined from the metabolite profiles of mice of different age
and sex.

Differences in Feeding Conditions. The circadian rhythmicity of food
intake is well known (39); therefore, feeding conditions may
severely affect the accuracy of the metabolite-timetable method. To
validate the use of the metabolite timetable in individuals with
different feeding conditions, we applied the metabolite-timetable
method to CBA/N mice deprived of food (food deprivation). This
feeding condition differed greatly from the original feeding con-
dition where CBA/N mice were allowed ad lib feeding. We collected
the blood plasma from individual young, male, food-deprived
CBA/N mice every 4 hours over 24 h under LD condition. LC-MS
analysis was performed to quantify the plasma metabolites (Fig.
4B). The metabolite-timetable method detected significant circa-
dian rhythmicity (P < 0.03) in all metabolite profiles. The estimated
BT matched with the environmental time with the estimation errors

Molecular peak time (h)
12 16

A C

ZT12 ZT24

3

20

Time (h)

(red) or environmental time (ZT, blue). Results for
young male mice (A) are replotted from Fig. 2A for
comparison. See also Table S2 for statistics.

of 2.2 + 0.50 h (mean * SD, Table S2). These results suggest that
BT can be determined from the metabolite profiles of mice even
under severe feeding conditions.

Detection of Jet Lag. The final stage of the study was to evaluate the
use of the metabolite-timetable in the diagnosis of circadian rhythm
disorders. Jet lag is a common disorder of circadian rhythm, in
which there is a difference between the internal BT and environ-
mental time. To mimic jet lag, we kept the mice for 2 weeks under
normal LD conditions and then rapidly advanced the lighting
schedule by 8 h (40). Plasma samples were analyzed at 2 time points
(ZT0 and ZT12 of the original LD cycle, termed as “Time 1” and
“Time 2”) on 3 separate days: on day 1 (before entrainment to the
new cycle), day 5 (during entrainment), and day 14 (after entrain-
ment) (Fig. 5 4 and B). On day 1, the estimated BTs were 23.8 h
(Time 1) and 11.8 h (Time 2), suggesting that the internal BT still
follow the original LD cycle. By day 14, estimated BTs were 8.8 h
(Time 1) and 20.8 h (Time 2), suggesting that the internal BTs had
shifted by ~8 h from the original LD cycle and had therefore
become entrained completely to the advanced cycle. Notably, on
day 5, estimated BTs were 3.5 h (Time 1) and 15.5 h (Time 2), a shift
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Fig. 5. Detection of jet lag. (A) Schematic view of
lighting conditions. White bars indicate light on, and
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12 16 20 24 curve is the environmental time (post shift). See also

Table S2 for statistics.
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