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Table 1. Differences in the immunohistochemical staining
of 8-nitroguanine and HIF-1u« between deceased and living
patients with malignant fibrous histiocytoma.

8-Nitroguanine HIF-lq
Living Deceased Living Deceased
Staining patients patients patients patients
rate (%) (n=20) (n=16) (n=20) (n=16)
00-75 9(4500) 1 (6.25) 11(5500) 3(18.7%)
7.5-150 9 (4500) 2 (1250) 525000 2(12.50)
150-22.5 2 (10.00) 9 (56.25) 4(20.00) 4(25.00)
225-300 0 (0.00) 2 (1250) 0 (0.00) 5(31.25)
>30.0 0 (0.00) 2 (1250) 0O (0.00) 2(12.50)
P-value 0.00075 0.01359

“No. of patients (%).

life-table method of Kaplan-Meier, and then statistically
analyzed by the generalized Wilcoxon test. P-values of <0.05
were considered to be statistically significant.

Results

Histopathological findings, 8-nitroguanine formation and
HIF-1a expression in tumor tissues of MFH patients. Fig. 1A
shows the histopathological observations of 8-nitroguanine
formation and HIF-1a expression in the specimens from MFH
patients. 8-Nitroguanine was predominately observed in the
nuclei of the tumor cells and inflammatory cells within the
MFH tissue specimens. HIF-la expression was detected in the
cytoplasm and nuclei of tumor cells. Little or no immuno-
reactivity of 8-nitroguanine and HIF-la was observed in
adjacent non-tumor tissues (Fig. 1A, right). Significantly
higher levels of both 8-nitroguanine and HIF-1a were observed
in the tissue specimens of deceased patients than in those of
living subjects (Fig. 1A and Table I).

Fig. 1B shows the colocalization of 8-nitroguanine (red)
with HIF-1a (green) visualized using a double immuno-
fluorescence technique. The expression of HIF-1a was strongly
detected in the nucleus of tumor cells and was co-localized
with 8-nitroguanine (Fig. 1B). In addition, immuno-
reactivities of 8-nitroguanine and HIF-1a were observed in
giant cells and inflammatory cells from MFH tissues (data
not shown).

Comparison of the immunoreactivity of 8-nitroguanine and
HIF-1q, in relation to prognosis. Table 1 demonstrates that the
immunoreactivity of 8-nitroguanine was significantly stronger
in the tumor tissues of deceased patients than in those of
living patients. The generalized Wilcoxon test, using the
Kaplan-Meier method, was used to evaluate the association
of 8-nitroguanine and HIF-la with the prognosis of MFH
patients (Fig. 2). MFH patients with high-grade staining
(=15%) of 8-nitroguanine (p=0.00003) had a significantly
shorter survival than those with low-grade staining (<15%)
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Figure 2. The survival curves of MFH patients as determined by the Kaplan-
Meier method. Solid lines, patients with high-grade staining (=15% detected
by Lumina Visjon) of 8-nitroguanine (A) or HIF-1« (B). Broken lines.
patients with low-grade staining (<15%).
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Figure 3. The proposed mechanism of inflammation and hypoxia-induced
8-nitroguanine formation leading to tumor progression.

i

(Fig. 2A). Meanwhile, patients with high-grade staining of
HIF-1a (p=0.01104) also exhibited a significantly poor
prognosis in comparison to those with low-grade staining
(Fig. 2B).
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Discussion

The accumulation of 8-nitroguanine formation and HIF-1u
expression was examined in surgical specimens of MFH
patients and was found to correlate with the prognosis of
inflammation-related cancer. 8-Nitroguanine was clearly co-
localized with HIF-1« in the nuclei of tumor cells, giant cells
and inflammatory cells in MFH tissues. There was a signi-
ficant difference in the immunoreactivity of 8-nitroguanine
(p=0.00075) between the deceased and living patients, with
HIF-1a (p=0.01359) exhibiting similar differences. The
survival curves of MFH patients, according to the Kaplan-
Meier method, differed more clearly between the groups
distinguished by 8-nitroguanine (p=0.00003) rather than by
HIF-1a (p=0.01104).

Intratumoral hypoxia induces a rapid increase of HIF-1
protein (22,23), a heterodimer consisting of « and B subunits,
in tumor cells. HIF-1a expression is related to cellular oxygen
status (24). Under hypoxic conditions, the degradation of
HIF-1a is suppressed ‘and, subsequently, HIF-1a dimerizes
with HIF-18 in the nucleus, thus promoting the expression of
numerous target genes (18). INOS is one of the known HIF-1-
inducible proteins. Previous studies have shown that HIF-1a
is expressed in the nuclei of tumor cells, suggesting that
HIF-1u is activated in MFH tumor tissues under hypoxic
conditions. HIF-1a expression in tumor cells correlated with
iNOS expression in MFH tissues (R=0.58923, p=0.00194),
and double immunofluorescence revealed that 8-nitroguanine
and HIF-1a were colocalized in cancerous tissues. In addition,
our previous findings demonstrated that 8-nitroguanine was
formed via HIF-1u-dependent iNOS expression in relation to
the progression of cholangiocarcinoma (25). It therefore
appears likely that tumor hypoxia induces HIF-1u expression,
which mediates iNOS expression and results in 8-nitroguanine
formation.

NF-xB is considered to be a key player in inflammation
since it regulates the expression of various genes involved in
controlling inflammatory response, including iNOS expression
(26). NF-«B functions as a tumor promoter in inflammation-
associated cancers (27). Previous studies have reported that
8-nitroguanine is colocalized with iNOS and NF-xB in tumor
cells of MFH patients (10). Therefore, 8-nitroguanine can
be formed through iNOS expression, mediated by NF-xB
activation.

8-Nitroguanine is formed under inflammatory conditions
and plays a substantial role in inflammation-related carcino-
genesis, including MFH (10). Chemically unstable 8-nitro-
guanine formed in DNA can be spontaneously released,
thereby causing the formation of an apurinic site (5). This
can form a base-pair with adenine during DNA synthesis,
resulting in G-T transversions (28). Translesion DNA
synthesis past an apurinic site mediated by DNA polymerase §
may contribute to point mutations (29). As a result, inflam-
matory responses may participate in tumor progression
through the formation of mutagenic DNA lesions, such as 8-
nitroguanine.

Based on these findings and previous research, a
mechanism of tumor progression by hypoxia and inflam-
mation can be proposed, as illustrated in Fig. 3. One pathway
is initiated by ‘hypoxia in tumor growth’, where HIF-1a

HOKI et al: §-NITROGUANINE AS A BIOMARKER FOR TUMOR PROGRESSION

triggers the iNOS expression. and then 8-nitroguanine
formation facilitates tumor progression. The other pathway
starts with the ‘inflammatory response’, where NF-kB is
activated by a variety of stimuli including inflammatory cyto-
kines, and iNOS is expressed. These pathways converge into
a common pathway. namely iNOS-dependent 8-nitroguanine
formation. Consequently 8-nitroguanine, together with HIF-
la, is considered to be an excellent candidate prognostic and
predictive biomarker in inflammation-related cancer, including
MFH.
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Abstract

Background: Diagnosis of soft tissue sarcomas (STS) is challenging. Many remain unclassified (not-otherwise-specified, NOS)
or grouped in controversial categories such as malignant fibrous histiocytoma (MFH), with unclear therapeutic value, We
analyzed several independent microarray datasets, to identify a predictor, use it to classify unclassifiable sarcomas, and
assess oncogenic pathway activation and chemotherapy response.

Methodology/Principal Findings: We analyzed 5 independent datasets (325 tumor arrays). We developed and validated a
predictor, which was used to reclassify MFH and NOS sarcomas. The molecular “match” between MFH and their predicted
subtypes was assessed using genome-wide hierarchical clustering and Subclass-Mapping. Findings were validated in 15
paraffin samples profiled on the DASL platform. Bayesian models of oncogenic pathway activation and chemotherapy
response were applied to individual STS samples. A 170-gene predictor was developed and independently validated (80-85%
accuracy in all datasets), Most MFH and NOS tumors were reclassified as leiomyosarcomas, liposarcomas and fibrosarcomas.
“Molecular match” between MFH and their predicted STS subtypes was confirmed both within and across datasets. This
classification revealed previously unrecognized tissue differentiation lines (adipocyte, fibroblastic, smooth-muscle) and was
reproduced in paraffin specimens. Different sarcoma subtypes demonstrated distinct oncogenic pathway activation patterns,
and reclassified MFH tumors shared oncogenic pathway activation patterns with their predicted subtypes. These patterns
were associated with predicted resistance to chemotherapeutic agents commonly used in sarcomas.

Conclusions/Significance: STS profiling can aid in diagnosis through a predictor tracking distinct tissue differentiation in
unclassified tumors, and in therapeutic management via oncogenic pathway activation and chemotherapy response
assessment.
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Introduction

Soft tissue sarcomas (STS) are a heterogeneous group of
mesenchymal tumors traditionally classified according to their
morphological resemblance to presumptive cells of origin such as
fibroblasts, muscle cells, adipocytes or peripheral nerve-sheath
cells [1,2,3]. Given their heterogeneity, sarcomas are ideal
candidates for molecularly targeted therapies [4,5]. However,
the therapeutic value of current histology-based classification
remains unclear. In addition, precise classification is only partially
possible, because current histopathologic classification criteria are

@ PLoS ONE | www.plosone.org

often inconclusive reflecting the overlapping boundaries between
conventional diagnostic groups [6]. This is best exemplified in the
case of malignant fibrous histiocytoma (MFH), the second largest
subtype by conventional criteria (approximately 20% of cases [7]),
a controversial diagnosis which has lately been called in doubt
[2,8]. Furthermore, a significant fraction of STS tumors are
unclassifiable, presently called “not otherwise specified” (NOS)
[8].

Gene expression profiling has been used in the study of STS
{9,10,11]. However, these studies were limited by sample size or
sample selection, thus clinically applicable diagnostic classifica-
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tion models either have not been reported or have not been
independently validated, particularly for the MFH, NOS, and
pleomorphic subtypes [12,13]. Furthermore, the therapeutic
utility of their findings was limited by the inability to predict
activation status of relevant oncogenic pathways in a given
individual tumor specimen, as opposed to presenting average
expression patterns in predefined tumor subgroups. In order to
address these challenges, we integrated five publicly available
microarray datasets originating from different laboratories
around the world, to develop and validate a class predictor,
which we then used to molecularly characterize and reclassify
MFH and uncategorized sarcomas. Further, we validated these
findings in a new group of paraffin derived tumors. Finally, in
order to assess the therapeutic relevance of genomic classifica-
tion, we used computational models to determine the activation
status of oncogenic pathways, for which specific targeted
inhibitors are in clinical development in sarcoma, and studied
the association of pathway activation with histologic subtype and
chemoresponse.

Results

Development of a multi-gene predictor in the training
dataset

We used study cohort 1 (NCI, the largest dataset including all 6
aforementioned subtypes) in order to train a nearest centroid
classifier of the 6 subtypes (LEIO, LIPO, RHAB, MPNST, SYN
and FIBRO) frequently presenting differential diagnosis problems,
(Figure 1). A single step 6-class model could not be developed
because of the significant gene expression overlap between
MPNST and SYN classes. Therefore a two-step classifier was
defined (Figure 2). In the first step, a 138-gene model distinguished
LEIO, LIPO, FIBRO, RHAB and a composite class including
MPNST and SYN. In the second step, the composite class is
separated into MPNST and SYN tumors using a 35-gene model.
Due to a partial gene overlap between the two-step predictors the
combined model included 170 genes.

This optimal predictor was 85% accurate for the 6 classes
(Figure 2 and Table S1). The genelists of the 1 and 2°% step
predictors are shown in Tables S3 and S4. The distinct expression
patterns of the first step and second step classifiers in the NCI
dataset are displayed in Figures 3 and 4 respectively. Detailed
training accuracies for all classes for the nearest centroid predictor
are shown in Tables S1 and S2.

Importantly, the predictor included several genes associated
with distinct differentiation states (i.e. fibroblastic, smooth muscle,
adipocytic and peripheral nerve differentiation) (Figure 3). Ap-
propriately, these genes were overexpressed in the corresponding

subtypes.

The 170-gene predictor accurately classifies STS subtypes
in four independent datasets

We mapped the 170-gene set across the different platforms of
the 4 datasets in study cohort 2, and despite the many technical
differences among them we were able to reproduce its perfor-
mance. Specifically, its accuracy was 86%, 78%, 79%, and 84% in
the MSKCC, Stanford, Japan and UK datasets, respectively by
leave one out cross validation (permutation p<<0.001 in all cases)
(Figure 2, Table S1). Detailed accuracy, sensitivity and specificity
for each class in the training and validation datasets are shown in
Tables St and 2. Due to platform differences, a more direct
validation of the predictor accuracy was only possible among the 3
U 133 datasets, after allowing for gene content mismatch
compared with the NCI ¢cDNA original predictor. Thus, training
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the (modified) predictor on each of the U 133 datasets and
applying it to the other U 133 datasets, we obtained 70-75%
accuracy.

Reclassification of MFH and NOS samples using the
170-gene STS predictor

We used the 170-gene predictor in study cohort 3, to reclassify
76 MFH and 10 NOS samples. As noted, the MFH and NOS
samples were not used in the development or validation of the
predictor.

The majority (68 out of 76) MFH tumors were predicted as
liposarcomas (46%-35 samples), fibrosarcomas (29%-22 samples)
and leiomyosarcomas (14%-11 samples), while 7 out of 10 NOS
tumors (in the NCI dataset) were also predicted as liposarcomas
(3), leiomyosarcomas (3) and fibrosarcomas (1). The remaining
MFH and NOS tumors (11 samples) were predicted as malignant
peripheral nerve sheath tumors (4 samples), synovial sarcomas (6
samples) and rhabdomyosarcoma (1 sample).

‘Molecular match’ between reclassified MFH and NOS

samples and their corresponding STS subtypes

We reasoned that if our proposed MFH reclassification using
the 170-gene predictor is valid, it should reflect the overall
molecular similarity between reclassified MFH and their corre-
sponding subtypes, above and beyond the prediction by the 170-
gene predictor. We addressed this question both within each as
well as across datasets.

a. Molecular match by clustering within each dataset

We performed unsupervised hierarchical clustering and
assessed whether the MFH samples preferentially grouped with
samples from their predicted subtype using the top-33% variant
genes, i.e. 4200, 7428, 922 probe-sets in the NCI, Japan and
MSKCC, and Stanford datasets, respectively. Indeed, 58 out of
the 76 reclassified MFH samples (76%) clustered together with
samples from their predicted STS subtypes suggesting that the
170-gene predictor reflects an overall ‘molecular match’ between
them. Figure 5 and Figure S2 show hierarchical clustering of the
four datasets, where MFH samples reclassified as LIPO, LEIO,
FIBRO and SYN, clustered with conventional LIPO, LEIO,
FIBRO and SYN samples respectively. The specific clustering
results for the classification of MFH samples are presented in
Table S7.

Furthermore, MFH-samples predicted as LIPO (MFH-LIPO)
did not cluster exclusively with myxoid or with non-myxoid
liposarcomas; rather certain MFH-LIPO clustered with myxoid
while other MFH-LIPO clustered with non-myxoid liposarcomas
suggesting that our predictor is capturing information associated
with adipocyte differentiation irrespective of the myxoid or non-
myxoid subclassification (Figure SI).

The same analysis was performed for the NOS sample
predictions in the NCI dataset, and 6 out of the 10 NOS samples
clustered with their predicted subtypes (Figure 3).

b. Molecular match by Subclass Mapping across different
datasets

To strengthen the molecular relevance of the MFH reclassifi-
cation we investigated whether MFH samples were molecularly
similar with samples from their predicted STS subtype across
different datasets. To achieve this, we used the Subclass Mapping
(SubMap) methodology, specifically developed to assess the
commonality of subtypes/subclasses in independent and disparate
datasets (a candidate subclass is included in the analysis only if it
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Figure 1. Consort Diagram (Study Design). A multi-class gene expression predictor for 6 major histologic subtypes* was developed in the
training dataset (study cohort 1) and validated in 4 independent datasets (study cohort 2). The predictor was used to reclassify MFH (Malignant
Fibrous Histiocytoma) and NOS (Not Otherwise Specified) tumors (study cohort 3) into known subtypes. The predictor’s performance
and capacity to classify unknown type sarcomas were also validated in paraffin STS samples (study cohort 4). * Liposarcoma (LIPO),
Leiomyosarcoma (LEIO), Fibrosarcoma (FBR), Malignant Peripheral Nerve Sheath Tumor (MPNST), Synovial Sarcoma (SYN), Rhabdomyosarcoma

(RHAB).
doi:10.1371/journal.pone.0009747.g001

contains at least 10% of all the samples of a dataset [14]). As
shown in Figure 6 (upper panel), MFH samples from the NCI and
Stanford datasets matched their predicted subtypes from the
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MSKCC and Japan datasets despite their many technical
differences. Because of small sample size, this analysis could not

be performed for NOS tumors.
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Figure 2. Predictor development and validation. A two-step 6-class predictor was identified in the NCI dataset and validated in the remaining
four datasets. First step: A 138-gene model classifies LEIO, LIPO, FBR, RHAB and a composite class including MPNST and SS. Second step: The
composite class is separated into MPNST and SYN tumors using a 35-gene model.

doi:10.1371/journal.pone.0009747.9002

Reclassified MFH tumors appropriately overexpress
genes associated with distinct differentiation lines

To further demonstrate the molecular basis of reclassifying
MFH, we examined whether MFH samples overexpressed genes
associated with their predicted differentiation lines. Indeed, MFH
tumors predicted as liposarcomas (MFH-LIPO) overexpressed
genes associated with adipocyte differentiation compared to the
rest of the MFH tumors. Similarly, MFH tumors predicted as
leiomyosarcomas (MFH-LEIO) overexpressed genes associated
with smooth muscle differentiation and MFH sarcomas predicted
as fibrosarcomas (MFH-FIBRO) overexpressed genes associated
with fibroblast differentiation (Figure 6). We could not reliably
assess specific marker expression for MFH-MPNST, and MFH-
SYN given the small number of tumors predicted as these
categories. Figure S3 displays the fold upregulation of selected
genes associated with smooth muscle, adipocyte and fibroblast
differentiation in MFH tumors predicted as leio-, lipo- and
fibrosarcomas.

Utility of the STS predictor in unclassifiable paraffin
sarcoma specimens

We next evaluated the ability of our STS predictor to reclassify
formalin fixed paraffin embedded NOS samples in order to assess
its broader applicability for clinical practice and future large scale
clinical research. These NOS samples had been previously

). PLoS ONE | www.plosone.org

evaluated by a sarcoma pathology expert (J.G) using state of the
art current histopathologic methodology and could not possibly be
classified into any of the known STS types.

Before applying our predictor to the unclassified samples, we
verified its accuracy in 10 STS samples with known diagnosis. We
trained the predictor (modified due to partial gene content
mismatch) on the combined U 133 datasets and directly applied it
on the independent DASL paraffin gene expression dataset. The
STS classifier accurately predicted 8 of the 10 samples,
demonstrating accuracy identical to that previously estimated in
the 5 public frozen-tissue based datasets, thus validating its
performance in samples with known diagnosis and in paraffin
tissue. We then directly applied our predictor to the 5
unclassifiable (NOS samples) within the paraffin cohort, and 4 of
them were classified as liposarcomas and 1 as leiomyosarcoma. We
then examined expression of tissue specific genes in the 4 NOS
samples classified as LIPO, and found that they appropriately
overexpressed genes associated with adipocyte differentiation
including adiponectin, insulin-like growth factor 1, and adipocyte
fatty acid binding protein 4 (3.1 fold, 2.4 fold, and 1.5 fold
upregulated (t test p=0.06, 0.15 and 0.07 respectively), respec-
tively, as compared to the known non-LIPO samples, (3 LEIO, 2
SYN and 2 MPNST). These findings confirm the utility of the
classifier in real time and routinely collected paraffin sarcoma
samples and its capacity to detect previously unrecognized tissue
differentiation lineage in truly unclassified sarcoma tumors.
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Figure 3. Distinct expression patterns of the first step 138-gene predictor in the NCl dataset. Selected predictor genes associated with
distinct differentiation states (smooth muscle, peripheral nerve, fibroblast and adipocyte differentiation) based on Gene Ontology or literature evidence.

doi:10.1371/journal.pone.0009747.g003
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doi:10.137 1/journal.pone.0009747.g005

Unique patterns of oncogenic pathway activation in STS
subtypes

In order to evaluate whether STS classification bears potential
biologic or therapeutic implications, we estimated the probability
of activation of known oncogenic pathways in individual samples,
using validated gene expression “‘read outs” previously generated
in vitro as a result of controlled experimental activation of these
pathways. We focused on Src, Ras and PI3K pathways, for which
pharmacologic inhibitors are currently in clinical development in
sarcoma, and we assessed tumors from the 3 Affymetrix
oligonucleotide U133A datasets (Japan, MSKCC and UK
datasets) in our study. Since these gene expression models of
pathway activation were generated using oligonucleotide Affyme-
trix arrays, and most Affymetrix probesets included in these
predictors were not present in the cDNA datasets, we did not
assess pathway activation in tumors from the 2 cDNA datasets as
these predictions would have been less reliable.

The probability of activation of the Src, Ras and PI3K
pathways was statistically significantly different between different
subtypes (Kruskal-Wallis p<0.001, p=0.002, p=0.021 respec-
tively). More specifically, FIBRO demonstrated higher probability
of Ras and PI3K pathway activation (Mann-Whitney p = 0.044
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and p=0.013 respectively) and LIPO demonstrated higher
probability of Src pathway activation (p<<0.001) and lower
probability of PI3K pathway activation {p=0.06) compared to
the rest of the samples (Table S8). Conversely, synovial sarcomas
were associated with statistically significantly lower probability of
Src and Ras pathway activation compared to the rest of the
samples (p=0.005 and p<0.001 respectively). Finally, LEIO
samples did not show any particular pattern of activation of any of
the Src, Ras or PI3K pathways (Table S8).

Reclassified MFH share similar patterns of oncogenic
pathway activation with their corresponding subtypes
In order to assess whether MFH reclassification using our 170-
gene predictor is tracking specific oncogenic pathway activation
patterns, we evaluated the activation status of Src, Ras and PISK
pathways in the 30 MFH samples of the U133 datasets using the
aforementioned gene expression “readouts”. Similar to their
predicted STS subtypes, MFH sarcomas predicted as fibrosarco-
mas (MFH-FIBRO) had similarly high average probability of
PI3K pathway activation (0.99 vs 0.99 in MFH-FIBRO and
FIBRO respectively) and similarly low average probability of Src
pathway activation (0.01 vs 0.13 respectively). Furthermore, MFH
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doi:10.1371/journal.pone.0009747.g006

sarcomas predicted as liposarcomas (MFH-LIPO) had similar
average probability of PI3K pathway activation (0.75 vs 0.73 in
MFH-LIPO and LIPO respectively). Similar to LEIO, MFH-
LEIO did not demonstrate any specific pattern of pathway
activation compared to the rest of the samples. There were only
two MFH samples predicted as synovial, so no firm conclusions
could be reached for this subset.

Distinct patterns of oncogenic pathway activation are
associated with chemotherapy resistance

Given the modest predictive value of histology for chemother-
apy response, we investigated whether patterns of oncogenic
pathway activation are associated with resistance to commonly
used chemotherapy agents in sarcoma. For this purpose, we used
gene expression readouts (previously developed using Affymetrix
arrays from the NCI 60 cancer cell line panel) predicting the
probability of resistance to adriamycin, docetaxel and cyclophos-
phamide, (which was used as a surrogate for ifosfamide, for which
NCI 60 resistance data were not available). The probability of
resistance to each chemotherapy drug was estimated for each
individual sample included in the U133 datasets of our study. As
with pathway activation predictions, we did not assess the

@ PLoS ONE | www.plosone.org

possibility of chemotherapy resistance in tumors from the two
cDNA datasets as these predictions would have been less reliable
{most Affymetrix probesets from these predictors were not present
in the cDNA datasets).

We then performed hierarchical clustering of the samples based
on each sample’s probability of activation of Src, Ras and PISK
pathways, and observed that samples were classified into seven
clusters with distinet pathway activation patterns. As shown in
Figure 7, different patterns of pathway activation were associated
with resistance to different chemotherapy agents. Cluster 7 (Src,
Ras and PI3K activation) was associated with higher probability of
adriamycin resistance (Mann-Whitney p = 0.002), clusters 4 and 5
{Src with or without PI3K activation) were associated with higher
probability of cyclophosphamide resistance (p = 0.01) and clusters
2 and 3 (Ras or no pathway activation) were associated with higher
probability of docetaxel resistance (p =0.01) compared to the rest
of the samples. Finally, we examined the distribution of the
different histologies within the pathway clusters and found that it
was random with the exception of liposarcomas being overrepre-
sented (16 out of 58) in cluster 3 and synovial sarcoma being
overrepresented in cluster 1 (19 out of 30). However, these clusters
did not recapitulate any previously reported associations with
chemotherapy response patterns.
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doi:10.137 1/journal.pone.0009747.9007

Gene expression patterns of tumors with activated Ras
pathway are enriched for targets of the let-7 miRNA
family

It has been postulated that expression profiles may partly be
surrogates for microRINA alterations in sarcoma. Previous in vitro
data indicate that Ras is regulated by the let-7 microRNA family
[15]. In this regard, we tested the hypothesis that the gene
expression pattern of clinical samples with predicted activation of
Ras pathway, were enriched for gene targets of the let-7
microRNA family. We performed microRNA target gene set
enrichment analysis in samples with or without predicted
activation of Ras pathway using the functional scoring method.
Indeed, we found that the gene expression pattern of the samples
with predicted Ras pathway activation was enriched for targets of
all microRNAs of the let-7 family (p<<0.05 for all miRINAs of the
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let-7 family in all 3 datasets — Table S6), suggesting that let-7 may
play a role in Ras activation in human sarcoma tumors.

Discussion

Soft tissue sarcomas are heterogeneous neoplasias, thus
conceptually well-suited for application of targeted therapies
[4,5,16]. Development of such therapies has been limited by the
fact that traditional histopathologic classification has never been
shown to carry substantial therapeutic value. This may be partly
related to the additional challenge that current histomorphologic
classification criteria are frequently inconclusive and do not fully
capture the underlying molecular complexity of these tumors,
leaving a sizable fraction of them unclassified or grouped in
controversial entities, such as MFH (2,6,8,17]. Previous micro-
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array studies have analyzed gene expression patterns {12,18,19]
yielding evidence of substantial differences among sarcoma
subtypes. However, most of the findings were not replicated,
and the single previously reported diagnostic predictor was not
independently validated [13], thus being subject to limitations
related to overfitting {20,21] and single-study bias. Furthermore,
despite its theoretical promise, the therapeutic relevance of
proposed genomic classification of sarcomas has been difficult to
assess, (particularly for those types not associated with a targetable
“necessary and sufficient” molecular abnormality), partly because
of the inability to predict activation status of multiple relevant
oncogenic pathways in a given individual tumor specimen.

In this study, we integrated 3 publicly available sarcoma
microarray datasets [12,13,18,19,22], with the intent to address
current diagnostic as well as therapeutic challenges in sarcoma
management. We, first, identified a 170-gene classifier of six major
subtypes (Figure 2) that frequently pose differential diagnosis
problems, as they can all present with pleomorphic poorly
differentiated variants. This predictor was validated in four
independent datasets derived from different laboratories in
different parts of the world. Despite the significant inter-laboratory
and platform differences (oligonucleotide versus cDNA arrays), the
classifier demonstrated 78-86% accuracy across all 4 independent
datasets (Figure 2). The classifier included several genes associated
with distinct differentiation states (i.e. fibroblastic, myogenic,
adipocytic and neural differentiation) (Figure 3) suggesting that
assignment of a sample to a specific class reflects its molecular
resemblance to differentiated mesenchymal cells such as fibro-
blasts, muscle cells, adipocytes or peripheral nerve-sheath cells, a
resemblance that is otherwise not appreciated by standard
histopathologic criteria. Several classifier genes are potential drug
development targets, for instance the IGF-1 [23], PPAR gamma
[24], NGF beta {25] and FGF receptor 3 genes [26]. While the
biologic program responsible for the behavior of sarcomas is likely
to encompass a much larger number of gene networks, these
observations suggest that the relatively limited classifier gene set
may still capture therapeutically relevant mechanisms.

A particular challenge for sarcoma classification remains the
elusive nature of “MFH” sarcomas. Microarray studies indicated
that MFH tumors comprise a complex group not forming a
distinct cluster, raising the possibility that MFH does not represent
a unique molecular category [12]. Also, previous morphologic
studies have suggested that MFH tumors share similarity with
pleomorphic variants of other known subtypes {2,17]. While it has
been suggested by the WHO cdlassification, that the terminology
“MFH” will be abandoned when criteria for reclassification of
pleomorphic sarcoma can be reproducibly defined [2,8], currently
no such criteria exist, and the similarity between MFH and other
subtypes in these studies was determined by a semi-quantitative
histopathologic stains without regard to genome-wide molecular
resemblance [2,17]. Of note, MFH tumors with myogenic
differentiation behave more aggressively indicating that MFH
reclassification may also be prognostically useful {27].

We showed that our validated multi-gene predictor can
reclassify MFH and other uncharacterized tumors into one of
the major subtypes, the majority predicted as leiomyosarcomas,
liposarcomas and fibrosarcomas. The validity of this reclassifica-
tion was confirmed by sophisticated bioinformatics approaches
(Figures 5, 6) including a recently developed method (SubMap),
uniquely suitable to assess the resemblance of subtypes identified in
multiple, independent, and technically disparate datasets [14].
Furthermore, by examining the expression profiles of the MFH
samples, we identified a number of tissue differentiation genes
above and beyond the 170-gene predictor that were also
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appropriately overexpressed according to their predicted histology.
In the absence of another “gold standard” metric, the finding of
tissue specific genes over expressed in previously unclassified
tumors in accordance to their predicted subtype, serves as
confirmation of the classification potential of our predictor. Of
note, for liposarcomas, we were able to show that our predictor is
tracking adipocyte differentiation of MFH irrespective of the
myxoid or non-myxoid sub-classification. Finally, but no less
importantly, we again validated the performance on the predictor
in real life paraffin specimens, including its capacity to reveal tissue
lineage in specimens that are currently impossible to classify with
state-of-the-art histopathologic examination. These findings, taken
together, suggest that our proposed reclassification is not merely a
mathematical model function; rather it is tracking real underlying
molecular sarcoma “phenotypes” based on tissue differentiation
lines. Our analysis supports the concept, proposed originally by
Fletcher {17], that MFH represents the end stage of dedifferen-
tiation of many sarcoma subtypes rather than a distinct entity.

It should be noted, however, that it is possible that certain MFH/
NOS tumors may be so undifferentiated that they may not harbor
any distinct lineage. In this case, our predictor would result in
“overclassification” of these samples, forcing them into one of the
conventional classes. The extent of this error is not possible to know
with certainty. The fraction of MFH samples that did not co-cluster
with their predicted subtype in Figure 5 (24%) may be an estimate
suggesting that the subset of “overclassified” MFH tumors is small.

The second aim of our study was to explore whether genomic
reclassification of sarcomas using our predictor bears biologic and
therapeutic implications. Several oncogenic pathway inhibitors are
currently undergoing clinical trial evaluation in sarcoma including
drugs targeting the PI3K/mTOR (deferolimus and everolimus),
Src (dasatinib and AZDO0530), and the Ras/Raf pathway
(sorafenib). However, the activation status of these pathways in
individual sarcoma samples and across different histologic
subtypes has not been possible to determine, making it difficult
to prioritize patients for targeted therapies. For this purpose, we
applied previously validated gene expression “read outs” of
oncogenic pathway activation to individual samples, and discov-
ered that different subtypes demonstrate distinct patterns of
activation of these oncogenic pathways. Interestingly, reclassified
MFH demonstrated similar patterns of oncogenic pathway
activation as their corresponding predicted subtypes, providing
further evidence that the 170-gene predictor reflects the overall
molecular program in sarcomas, with therapeutic implications.

Although we showed an association between different histologies
and patterns of oncogenic pathway activation, it is also well-known
that the association between histology and chemotherapy resistance
is only modest, and in many cases unproven, in soft tissue sarcomas.
Our findings suggest that oncogenic pathway activation patterns,
transcending histologic classes, and assessed by gene expression
“read outs”, may serve as useful predictors of resistance to
chemotherapy drugs commonly used in sarcoma (Figure 7), perhaps
overriding previously considered modest associations between
histology and chemoresistance. Although proof of an etiologic
association between specific patterns of oncogenic pathway
activation and chemotherapy resistance, or n witro demonstration
of novel chemoresistance mechanisms were beyond the scope of this
study, our findings reveal interesting therapeutic research strategies
that can be studied in properly designed prospective studies. For
example, prior knowledge of oncogenic pathway activation patterns
in individual sarcoma samples may aid in prioritizing patients for
novel molecularly targeted agents, conventional chemotherapeutic
agents, or combinations thereof. However, our study waslimited by
the lack of clinical data (i.e. chemotherapy response or outcome
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data) linked with the public microarray datasets we used, a fact that
prevented us from being able to further test the chemoresistance
patterns identified in our analysis.

Finally, the finding that the gene expression patterns of Ras-
activated tumor samples are enriched for gene targets of the let-7
microRNA family, consistent with compelling experimental
evidence of Ras regulation by let- 7 miRNAs [15], raises the
possibility that microRINA alterations may contribute to oncogenic
pathway activation, and is consistent with the concept that gene
expression patterns may be partly surrogates for microRNA
alterations {28,29,30] in primary sarcoma tumors.

Our study demonstrates the power of integrated analysis of
multiple and diverse microarray datasets, in order to generate and
validate clinically useful models and concepts, in a cost effective
manner. We identified a multi-gene STS predictor, reproduced for
the first time in multiple independent gene expression datasets,
and in routinely collected paraflin tissue, which could serve as an
aid to standard histopathologic methods, especially in the
diagnosis of pleomorphic tumors that are impossible to classify
based on state of the art histopathology. Our findings support the
concept that MFH and unclassified (NOS) sarcomas can be
reclassified into existing sarcoma subtypes, and proposes a tool for
clinical application that reflects previously unrecognized lines of
sarcoma differentiation. Finally, our results support the notion that
genomic classification may carry potential therapeutic implica-
tions, and provide novel therapeutic research hypotheses regard-
ing individualization of targeted therapies and overcoming
chemotherapy resistance in soft tissue sarcomas.

Materials and Methods

Assembly and processing of Gene Expression Datasets
Our study included five public microarray datasets
[12,13,18,19,22] (Table 1, Figures 1 and 2) with 325 tumors of the
six STS subtypes [liposarcomas (ILIPO), leiomyosarcomas (LEIO),
rhabdomyosarcomas (RHAB), malignant peripheral nerve sheath
tumors (MPNST), synovial sarcomas SYN and fibrosarcomas
(FIBRO)] that frequently present differential diagnosis problems.
Red/green channel expression data were retrieved from 2 ¢cDNA
datasets (NCI, Stanford) and raw data were retrieved from 3
oligonucleotide Affymetrix U133A datasets, (UK, Japan, MSKCC).
cDNA data were normalized using the median normalization
method and Affymetrix .CEL file data were processed using the
Robust Mult-Array Average (RMA) algorithm [31]. Analyses
described below were performed using the BRB Array Tools
package (Dr Richard Simon, NCI), unless noted otherwise.

Sarcoma Genomic Classification

RNA Isolation from paraffin specimens and Hlumina
Whole Genome DASL array hybridization

Paraffin specimens from 15 soft tissue sarcomas including 5
NOS were cut into 1-3 mm cores at the BIDMC Histology Core
facility. These included 10 paraffin STS samples with known
diagnosis (3 LIPO, 3 LEIO, 2 SYN and 2 MPNST) and 5 paraffin
NOS samples that had been previously evaluated by a sarcoma
pathology expert (J.G) using state of the art current histopathologic
methodology and could not possibly be classified into any of the
known STS types. These samples, all archived between 2003 and
2006 at the Beth Israel Deaconess Medical Center Pathology
Department, were chosen on the basis of tissue availability and
adequate RNA yield for microarray studies. IRB approval for
tissue utilization was obtained as per standard institutional
protocols. Total RNA was isolated using the Qiagen RNeasy
formalin-fixed, paraffin-embedded (FFPE) protocol according to
the manufacturer’s instructions. Whole genome DASL (cDNA-
mediated, Annealing, Selection, and Ligation) arrays (Illumina,
CA), containing 24,000 gene transcripts were used to profile the
paraffin specimens on an Dlumina BeadStation. The DASL array
experiments were carried out at the Children’s Hospital (Boston)
Microarray Core facility as per manufacturer’s instructions and as
previously described [32,33].

Classification analysis design

Figure 1 shows our study workflow. We defined 4 “study
cohorts”. Study cohort 1 (NCI) was used to optimize a gene
expression predictor. Study cohort 2 (4 datasets — Stanford, UK,
Japan, MSKCC — not used in step 1) was used to independently
validate the predictor. Study cohort 3 (MFH and NOS samples
from all datasets, not used in prior steps) was used to reclassify
previously uncategorized sarcomas based on the predictor. Finally,
this predictor was applied to study cohort 4, which consisted of 15
paraffin STS samples that were profiled using whole-genome
DASL (cDNA-mediated, Annealing, Selection, and Ligation)
arrays. In this step, we used the predictor to classify NOS samples
that were impossible to classify using current, state of the art
histopathologic evaluation and staining.

Development and validation of a multi-gene predictor
Using the Nearest Centroid algorithm [34,35] we developed a
predictor of 6 subtypes on the NCI dataset —the largest and only
one that included all six subtypes. We trained the classifier
selecting genes differentially expressed between classes by F-test.
Classifier accuracy and statistical significance were assessed using
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Table 1. Content of the 5 microarray expression datasets.

DATASETS PLATFORM SAMPLES HISTOLOGIES

NCt <DNA 133 SYN (16), LEIO (17), LIPO (33), MPNST {6), FIBRO (7), RHAB (6), MFH (38), NOS
(10}

STANFORD <DNA 31 SYN (8), LEIO (11), LIPO (4), MFH (8)

UK U133A 37 SYN (10), LEIO {8), LIPO (10),
MPNST (4), FIBRO (5)

JAPAN U133A 87 SYN (16), LEIO {6), LIPO (37),
MPNST (3), FIBRO (4), MFH {21)

MSKCC U133A 37 SYN (4), LEIO (6), LIPO (11),
FIBRO (7), MFH (9)

TOTAL PATIENTS 325 SYN {54), LEIO (48), LIPO (95), MPNST (13), FIBRO (23), RHAB (6), MFH {76), NOS
(10)

doi:10.1371/journal pone.0009747.1001
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leave-one-out cross-validation and a random permutation test to
control for over-fitting. The best-performing training classifier
included 138 genes (F test cut off, p<4x10™’) and demonstrated
an accuracy of 85%. Sensitivity analysis using an F-test threshold
from p<<10~7 (100 genes) to p<5 %1077 (160 genes) demonstrated
only minimal loss of performance with accuracy of 79-82%. This
classifier was mapped across different platforms using Affymetrix
annotation files and applied to the four independent public
datasets as well as the paraffin based dataset. The overlap of
predictor genes across different platforms was as follows: i) Among
the NCI ¢cDNA platform and the 3 Ul33 datasets there was
complete overlap of the 1™ and 27 step predictor genes (i.e. 138
genes and 35 genes respectively), i) Between the NCI ¢DNA
platform and the DASL Illumina (paraffin) dataset the overlap was
136 genes for the 1* and 34 for the 2" step predictor) and iii)
Between the NCI ¢DNA platform and the ¢cDNA (Stanford)
dataset the overlap was 62 genes for the 1™ and 19 genes for the
2" step predictor).

Allowing for partial loss of classifier genes and the technical
disparity between the different platforms, classifier accuracy was
further assessed using leave one out cross validation and a random
permutation test in each of the 4 independent public datasets.
Further, for a more direct validation of accuracy, we also collated
the 3 U133 datasets into one combined dataset after adjusting for
platform effect using empirical Bayes method [36]. Then, we
trained a modified predictor (using the same genes but creating a
different model due to technical platform differences) in the largest
U133 dataset (JAPAN), and directly applied it to the remaining
datasets (UK and MSKCC) and vice versa. Finally, for prediction
of the paraffin samples we collated all 4 datasets (3 U133 and the
DASL paraffin dataset) after adjusting for platform effect using
empirical Bayes method [36]. The final predictor (modified due to
partial gene content mismatch with the U133 platform) was
trained on the 3 combined U 133 datasets and directly applied to
the DASL dataset.

MFH and NOS reclassification using the multi-gene
predictor

We used the predictor to reclassify the 76 MFH and the 10
NOS samples into the 6 subtypes after mapping the predictor
genes across different platforms (from ¢cDNA to Affymetrix U133)
as above. No mapping was necessary for the NOS samples that
were all contained in the NCI dataset.

Validation of MFH and NOS reclassification within each
dataset using genome-wide hierarchical clustering

In order to assess whether our MFH reclassification reflected
true molecular similarity of the reclassified MFH samples with
their corresponding STS subtypes, we performed unsupervised
hierarchical clustering of all tumors (including MFH samples)
within each dataset using the complete linkage method and the
one minus centered correlation as a distance metric [37]. A large
number of genes (top 33% variant) were included in this analysis in
order to overcome the overfitting bias of the optimized 170-gene
predictor. Then, we assessed whether each reclassified MFH
sample clustered together with the samples of its corresponding
STS class (the class it had been reclassified into) and repeated the
same process for the NOS reclassification.

Validation of MFH reclassification across different
datasets using Subclass Mapping (SubMap)

Hierarchical clustering cannot assess molecular correspon-
dence between phenotypes across different datasets. Thus, we
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examined the molecular similarity between reclassified MFH
samples and their predicted corresponding STS subtypes from
different datasets using the Subclass Mapping (SubMap) meth-
odology as previously described [14] (Gene Pattern Software,
Version 3.0, Broad Institute, details in Data S1). This method
relies on the principle of statistically assessed “enrichment” of the
transcription program of one dataset, for marker gene lists
derived from another dataset, as a function of relative differential
ranking rather than absolute expression values, since the latter
are platform and study-specific. “Mutual enrichment informa-
tion” p values are generated to assess the “molecular match”
between the different phenotypes and summarized in a Subclass
Association Matrix. High mutual enrichment (low p value)
indicates a strong molecular correspondence between subclasses
in different datasets.

Prediction of probability of oncogenic pathway
activation or chemotherapy resistance in individual
samples

We used publicly available and validated gene expression “read
outs” of oncogenic pathway activation previously generated by
experimentally controlled activation of these pathways i witro [38].
Furthermore, we retrieved publicly available and validated gene
expression models predicting the probability of resistance to
individual chemotherapeutic agents that were generated using
U133 Affymetrix array and drug response data from the NCI 60
cancer cell line panel [39,40,41]. Bayesian probit regression
models estimating the probability of activation of each pathway or
resistance to specific chemotherapeutics were trained in the
experimental systems used to develop these signatures and applied
on individual samples included in the Affymetrix oligonucleotide
U133 datasets of our study. Gene expression models (read outs”)
of oncogenic pathway activation and chemoresistance are
available at http://dig.genome.duke.edu/. Since these models
were generated using oligonucleotide Affymetrix arrays and very
few Affymetrix probesets were present in the cDNA datasets, our
analysis was limited to the 3 Affymetrix oligonucleotide datasets of
our study. Non-biological experimental variation between the in
witro arrays and the sarcoma datasets was corrected using a
previously described batch effect adjustment algorithm [36]. Each
individual sample was assigned a probability value (from 0 to 1) of
pathway activation or resistance to a specific chemotherapeutic
agent. A probability value higher than 0.5 was used as cut-off for
predicted pathway activation.

Hierarchical clustering of samples based on their predicted
probability values of oncogenic pathway activation was performed
using the complete linkage algorithm with the Euclidean distance
metric [37}. Non-parametric one-way Kruskal-Wallis and Mann-
Whitney tests were applied to test whether the probability of
oncogenic pathway activation and chemoresistance was different
between different subtypes.

MicroRNA gene-target enrichment analysis

To assess whether the gene expression patterns of STS samples
were enriched for targets of microRNAs of interest, we used the
functional class scoring method which tests the null hypothesis that
the hst of differentially expressed genes from each microRNA
target set is a random selection from the entire project differ-
entially expressed gene list, implemented in the NCI BRB Array
Tools software, as previously described [42].

Additional details of the statistical methodology and bioinfor-
matics algorithms described above are found in Data S1.
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Supporting Information

Data S1 Revised Supplementary Data File.
Found at doi:10.1371/journal.pone.0009747.s001 (0.05 MB

DOC)

Figure S1 MFH-samples predicted as LIPO (MFH-LIPOs)
cluster together with both myxoid and non-myxoid liposarcomas.
Found at: doi:10.1371/journal.pone.0009747.5002 (0.27 MB

TIF)

Figure $2 Complete Clustering Results.
Found at; doi:10.1371/journal. pone.0009747.5003 (0.43 MB TIF)

Figure §3 Fold upregulation of selected genes associated with
smooth muscle, fibroblast and adipocyte differentiation in MFH
tumors predicted as leio-, lipo or fibrosarcoma respectively
(compared to the rest of MFH tumors).

Found at: doi:10.1371/journal.pone.0009747.s004 (0.19 MB TIF)

Table S1 Sensitivity and specificity of the 170-gene Nearest
Centroid predictor for each STS class in the NCI, UK and JAPAN
datasets (actual numbers of individual tumor subtypes are shown

in parentheses).
Found at: doi:10.1371/journal.pone.0009747.5005 (0.02 MB

XLS)
Table S2 Sensitivity and specificity of the 170-gene Nearest
Centroid predictor for each STS class in the STANFORD and

MSKCC validation datasets.
Found at: doi:10.1371/journal.pone.0009747.s006 (0.02 MB

XLS)

Table §3 Genes included in Ist step predictor.
Found at: doi:10.1371/journal.pone.0009747.5007 (0.04 MB

XLS)
Table §4 Genes included in 2nd step predictor.

References

1. Fletcher CD ({1997) Soft tissue tumours: the impact of cytogenetics and
molecular genetics. Verh Disch Ges Pathol 81: 318-326.

2. Nascimento AF, Raut CP (2008) Diagnosis and management of pleomorphic
sarcomas (so-called “MFH™) in adults. ] Surg Oncol 97: 330-339.

3. Goldberg BR {2007) Soft tissue sarcoma: An overview. Orthop Nurs 26: 4-11;
quiz 12-13.

4. Blanke CD, Rankin C, Demetri GD, Ryan CW, von Mehren M, et al. (2008)
Phase Il randomized, intergroup trial assessing imatinib mesylate at two dose
levels in patients with unresectable or metastatic gastrointestinal stromal tamors
expressing the kit receptor tyrosine kinase: $0033. J Clin Oncol 26: 626-632.

. Demewi GD, von Mehren M, Blanke CD, Van den Abbeele AD, Eisenberg B,
et al. (2002) Efficacy and safety of imatinib mesylate in advanced gastrointestinal
stromal tumors. N Engl ] Med 347: 472-480.

6. de Alava E (2007) Molecular pathology in sarcomas. Clin Transi Oncol 9:

130-144.

7. Lawrence W, Jr., Donegan WL, Natarajan N, Meulin C, Beart R, et al. (1987)
Adult soft tissue sarcomas. A pattern of care survey of the American College of
Surgeons. Ann Surg 205: 349-359.

8. Daugaard S (2004} Current soft-tissue sarcoma classifications. Eur J Cancer 40:
543-548.

9. Brenton JD, Aparicio SA, Caldas C {2001) Molecular profiling of breast cancer:

portraits but not physiegnomy. Breast Cancer Res 3: 77-80.

. Hegde U, Wilson WH (2001) Gene expression profiling of lymphomas. Curr
Oncol Rep 3: 243-249.

11, Liowta L, Petricoin E (2000} Molecular profiling of human cancer. Nat Rev
Gener 1: 48-56.

. Baird K, Davis S, Antonescu CR, Harper UL, Walker RL, et al. (2005) Gene
expression profiling of human sarcomas: insights into sarcoma biology. Cancer
Res 65: 9226-9235.

. Henderson SR, Guiliano D, Presneau N, McLean §, Frow R, et al. (2005) A
molecular map of mesenchymal tumors, Genome Biol 6:R76.

. Hoshida Y, Brunet JP, Tamayo P, Golub TR, Mesirov JP (2007) Subclass
mapping: identifying common subtypes in independent disease data sets. PLoS
ONE 2: e1195.

13. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, et al. (2005) RAS is

regulated by the let-7 microRNA family. Cell 120: 635-647.

w

@ PLoS ONE | www.plosone.org

Sarcoma Genomic Classification

Found at: doi:10.1371/journal.pone.0009747.5008 (0.02 MB
XLS)

Table S5 Assessment of MFH reclassification across different
datasets with the Sub Class Mapping methodology.

Found at: doi:10.1371/journal.pone.0009747.s009 (0.02 MB
XLS)

Table 86 Gene expression pattern of the Ras activated samples
was enriched for targets of microRNAs of the let-7 family.
Found at: doi:10.1371/journal.pone.0009747.s010 (0.02 MB
XLS)

Table 87 Detailed clustering results of the classified MFH

samples.
Found at: doi:10.1371/journal.pone.0009747.s011 (0.02 MB
XLS)

Table 88 Patterns of oncogenic pathway activation in different
STS histologies.

Found at: doi:10.1371/journal.pone.0009747.5012 (0.02 MB
XLS)

Acknowledgments

We wish to thank Hal Schneider, PhD, Laboratory Supervisor, and the
personnel of the Children’s Hospital Molecular Genetics Core facility, for
service and support provided in running the DASL microarray
experlmenls.

Author Contributions

Conceived and designed the experiments: PAK JG TAL MCG DS.
Performed the experiments: EF KP. Analyzed the data: PAK EF JG MB
KP NF TAL MCG DS. Contributed reagents/materials/analysis tools:
PAK EF MB NF TAL MCG DS. Wrote the paper: PAK DS.

. Dagher R, Cohen M, Williams G, Rothmann M, Gobburu J, et al. (2002)

Approval y: imaunib mesylate in the treatment of metastatic and/or
unresectable malignant gastrointestinal swomal tumors. Clin Cancer Res 8:
3034-3038.

. Fletcher CD (1992) Pleomorphic malignant fibrous histiocytoma: fact or fiction?
A critical reappraisal based on 159 tumors diagnosed as pleomorphic sarcoma.
Am J Surg Pathol 16: 213-228.

. Nakayama R, Nemoto T, Takahashi H, Ohta T, Kawai A, et al. (2007) Gene
expression analysis of soft tissue sarcomas: characterization and reclassification
of malignant fibrous histiocytoma. Mod Pathol 20: 749-759.

. Nielsen TO, West RB, Linn SC, Alter O, Knowling MA, et al. (2002) Molecular

characterisation of soft tissue twmours: a gene expression study. Lancet 359:

1301-1307.

Simon R (2005) Roadmap for developing and validating therapeutically relevant

genomic classifiers. J Clin Oncol 23: 7332-7341.

Quackenbush J (2006) Microarray analysis and tumor classification. N Engl ] Med

354: 2463-2472.

Detwiller KY, Fernando NT, Segal NH, Ryeom SW, D'Amore PA. et al. (2005)

Analysis of hypoxia-related gene expression in sarcomas and effect of hypoxia on

RNA interference of vascular endothelial cell growth factor A. Cancer Res 65:

5881-5889.

Yuen JS, Macaulay VM (2008) Targeting the type 1 insulin-like growth factor

receptor as a treatment for cancer, Expert Opin Ther Targets 12: 589-603,

Blay JY, Ray-Coquard I Alberti L, Ranchere D (2004) Targeting other

abnormal signaling pathways in sarcoma: EGFR in synovial sarcomas, PPAR-

gamma in liposarcomas. Cancer Treat Res 120: 151-167.

. Adriaenssens E, Vanhecke E, Saule P, Mougel A, Page A, et al. (2008) Nerve
growth factor is a potential therapeutic target in breast cancer. Cancer Res 68:
346-351.

. Martinez-Torrecuadrada J, Cifuentes G, Lopez-Serra P, Saenz P, Martinez A,
et al. (2005) Targeting the extracellular domain of fibroblast growth factor
receptor 3 with human single-chain Fv antibodies inhibits bladder carcinoma
cell line proliferation. Clin Cancer Res 11: 6280-6290.

. Flewcher CD, Gustafson P, Rydholm A, Willen H, Akerman M. (2001)
Clinicopathologic re-evaluation of 100 malignant fibrous histiocytomas:
prognastic relevance of subclassificaton. J Clin Oncol 19: 3045-3050. ’

20.
21.

22.

23.

24,

April 2010 | Volume 5 | Issue 4 | e9747



30.

31.

32.

33.

34,

36.

. Ambros V (2004) The functions of animal microRNAs. Nature 431: 350~-333.
. Blower PE. Chung JH, Verducci JS, Lin S. Park JK. et al. (2008) MicroRNAs

modulate the chemoscensitivity of tumor cells. Mol Cancer Ther 7: 1-9.

Calin GA, Croce CM (2006) MicroRNA-cancer connection: the beginning of a
new tale. Cancer Res 66: 7390-7394.

Irizarry RA. Bolstad BM. Collin F. Cope LM. Hobbs B. etal. (2003) Summaries
of Affymetrix GeneChip probe level data. Nucleic Acids Res 31: ¢15.
Bibikova M. Talantov D. Chudin E, Yeakley JM. Chen J. et al. (2004)
Quantitative gene expression profiling in formalin-fixed. paraffin-embedded
tissues using universal bead arrays. Am J Pathol 165: 1799- 1807.

Bibikova M, Yeakley JM. Wang-Rodriguez J. Fan JB (2008) Quantitative
expression profiling of RNA from formalin-fixed. paraffin-embedded rtissues
using randomly assembled bead arrays. Methods Mol Biol 439: 139- 177.
Dabney AR (2005) Classification of microarrays to nearest centroids. Bioinfor-
matics 21: 41484154,

. Dabney AR, Stworey JD (2007) Optimality driven nearest centroid classification

from genomic data. PLoS ONE 2: ¢1002.
Johnson WE. Li C. Rabinovic A (2007) Adjusting batch effects in microarray
expression data using empirical Bayes methods. Biostatistics 8: 118127

@ PLoS ONE | www.plosone.org

38.

39

40.

41

+2.

Sarcoma Genomic (lassification

7. Eisen MB. Spellman PT. Brown PO. Bowstein D (1998) Cluster analysis and

display of genome-wide expression parierns. Proc Nad Acad S¢i U S A 95:
1486314868,

Bild AH. Yao G. Chang JT. Wang Q, Poui A. et al. {2006) Oncogenic pathway
signatures in human cancers as a guide 1o targeted therapies. Nawre 439:
353-357.

Pord A, Dressman HK. Bild A, Riedel RF, Chan G, ct al. (2006) Genomic
signatures to guide the use of chemotherapeutics. Nat Med 12: 1294-1300.
Acharya CR, Hsu DS. Anders CK, Anguiano A. Salter KH, et al. (2008) Gene
expression signatures. clinicopathological features, and individualized therapy in
breast cancer. JAMA 299: 1574-1587.

Dressman HK, Berchuck A. Chan G, Zhai J. Bild A, et al. (2007} An integrated
genomic-based approach to individualized treatment of patients with advanced-

Pavlidis P. Qin J, Arango V. Mann JJ, Sibille E (2004) Using the genc ontology
for microarray data mining: a comparison of methods and application to age
effects in human prefrontal cortex. Neurochem Res 29: 1213-1222,

April 2010 | Volume 5 | Issue 4 | e9747



OPEN 8 ACCESS Freely available onfine = PLoS ane

Cross Species Genomic Analysis Identifies a Mouse
Model as Undifferentiated Pleomorphic Sarcoma/
Malignant Fibrous Histiocytoma

Jeffrey K. Mito', Richard F. Riedel?, Leslie Dodd? Guy Lahat*, Alexander J. Lazar®, Rebecca D. Dodd®,
Lars Stangenberg’, William C. Eward®, Francis J. Hornicek’, Sam S. Yoon’, Brian E. Brigman®, Tyler
Jacks®'°, Dina Lev®, Sayan Mukherjee'"'?, David G. Kirsch’%*

1 Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carofina, United States of America, 2 Division of Medical Oncology,
Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America, 3 Department of Pathology, Duke University Medical Center,
Durham, North Carolina, United States of America, 4 Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
of America, 5 Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America, 6 Department of Radiation
Oncology, Duke University Medical Center, Durham, North Carolina, United States of America, 7 Department of Surgery, Massachusetts General Hospital and Harvard
Medical School, Boston, Massachusetts, United States of America, 8 Division of Orthopaedic Surgery, Department of Surgery, Duke University Medical Center, Durham,
North Carolina, United States of America, 9 Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America,
10 Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America, 11 Department of Statistical Sciences, Duke University, Durham, North Carolina,
United States of America, 12 institute for Genome Sciences and Policy, Duke University Medical Center, Durham, North Carolina, United States of America

Abstract

Undifferentiated pleomorphic sarcoma/Malignant Fibrous Histiocytoma (MFH) is one of the most common subtypes of
human soft tissue sarcoma. Using cross species genomic analysis, we define a geneset from the LSL-Kras®'?%; Trp53/70Flox
mouse model of soft tissue sarcoma that is highly enriched in human MFH. With this mouse geneset as a filter, we identify
expression of the RAS target FOXM1 in human MFH. Expression of Foxm1 is elevated in mouse sarcomas that metastasize to
the lung and tissue microarray analysis of human MFH correlates overexpression of FOXM1 with metastasis, These results
suggest that genomic alterations present in human MFH are conserved in the LSL-Kras®'?%; p537°%°* mouse model of soft
tissue sarcoma and demonstrate the utility of this pre-clinical model.

Citation: Mito JK, Riede! RF, Dodd L, Lahat G, Lazar AJ, et al. (2009) Cross Species Genomic Analysis Identifies a Mouse Model as Undifferentiated Pleomorphic
Sarcoma/Malignant Fibrous Histiocytoma. PLoS ONE 4(11); e8075. doi:10.1371/journal.pone.0008075

Editor: Syed A. Aziz, Heaith Canada, Canada
Received October 9, 2009; Accepted November 3, 2009; Published November 30, 2009

Copyright: © 2009 Mito et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding;: This study was supported by the Howard Hughes Medical Institute (T} and by KO8 CA 114176 and RO CA 138265 (DGK), T32 GM-07171 (JM), and the
Maria Garcia-Estrada Foundation {RR). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist,

* E-mail: david.kirsch@duke.edu

Human MFH is characterized by a propensity to metastasize to
the lungs and by a range of histologic appearances including spindle
and pleomorphic cells. Although these features are recapitulated in
a mouse model of soft tissue sarcoma initiated by conditional
mutations in Aras and T7p53 [5], it is not clear whether this model is
most similar to human MFH or another soft tissue sarcoma.
Therefore, we sought to more accurately classify the sarcoma
subtype for, this mouse model using gene expression profiling.

Introduction

Malignant Fibrous Histiocytoma was first described in the 1960s
and quickly became the most commonly diagnosed adult soft
tissue sarcoma [1]. Because these tumors do not appear to arise
from histiocytes, the term Malignant Fibrous Histiocytoma has
recently fallen out of favor and many pathologists now classify
these tumors as undifferentiated pleomorphic sarcomas. Despite

this change in nomenclature, undifferentiated pleomorphic
sarcoma (referred to here as MFH) remains one of the most
common adult soft tissue sarcomas encountered in the clinic.
However, the cell(s) of origin of MFH is unknown. Indeed, some
have suggested that MFH is a collection of undifferentiated
mesenchymal tumors sharing a common morphology rather than
a single clinical entity [2,3,4]. This debate could be clarified by
identifying the cell(s) of origin of a mouse model for MFH.
Whether MFH describes a cancer that is a single pathogenic entity
or an undifferentiated state shared by several sarcoma subtypes,
the survival of patients with MFH has not improved for decades.
Therefore, identifying a mouse model of MFH may also lead to
better treatments for patients with this diagnosis.

@ PLOS ONE | www.plosone.org

Methods

Mouse Genotyping, Tumor Generation, and
Determination of Metastatic Potential

Both mouse genotyping and generation of tumors was carried
out as described previously [5] in accordance with Duke
University and MIT Institutional Animal Care and Use
Committee approved protocols. Sarcomas were induced in the
lower left limb and allowed to grow until ~200 mm® in volume.
Tumors were then surgically excised via amputation of the limb
and animals followed for a minimum of 4 months to determine the
metastatic potential of the primary tumor.

1 November 2009 | Volume 4 | Issue 11.] e8075



RNA Isolation

RNA was extracted from LSL-Kras™??; Trp53™/™ tumors or
normal muscle using TRIzol reagent (Invitrogen) and was purified
using RINeasy mini kit (Qiagen).

Microarray Processing and Analysis

Full details can be found in supplementary methods S1. Briefly,
gene expression was determined using Affymetrix 430A 2.0 arrays
(Affymetrix) as described in detail online (http://www.genome.
duke.edu/cores/microarray/). CEL files were processed using the
RMA algorithm [6,7] to normalize the data. Genesets were
identified using a signal-to-noise metric.

Human and Mouse datasets [8,9,10] were downloaded from
GEO (GSE6461, GSE6481, GSE2553, and GDS1209), normal-
ized with RMA (when appropriate). Genesets and array data were
used in GSEA as described previously [11]. Classes were defined
as one soft tissue sarcoma subtype versus controls (other sarcoma
or normal muscle) present in their respective datasets.

Database Accession Numbers

Microarray data was generated in conformity to MIAME
guidelines and has been deposited in the GEO database under
accession number GSE16779.

Oncogenic Pathway Predictors

Human soft tissue sarcoma datasets {9,10] were combined using
ComBat [12] and normal tissue samples removed from the
combined dataset. An oncogenic pathway classifier for Ras
pathway activity was developed as described previously [13]. This
classifier was used to compare undifferentiated pleiomorphic
sarcoma/MFH samples (n=29) against all other soft tissue
sarcomas. Significance was determined using a non-parametric
Mann-Whitney test.

Histology and Immunchistochemistry and Image Analysis

Al human samples were obtained from tissue repositories at
Duke and MD Anderson. These samples were used in accordance
with Duke and MD Anderson Cancer Center Institutional Review
Board (IRB) approved protocols under a waiver of consent. Five
micron thick sections were cut from formalin fixed paraffin
embedded samples. Samples were subjected to standard hema-
toyxlin and eosin staining or immunohistochemistry. Immunohis-
tochemistry was performed with the following antibodies:
phospho-ERK  (Invitrogen 29-2389) and FOXMI {Abcam
ab47808), using the Vectastain ABC Rabbit IgG kit with
Vectastain Elite ABG Reagent (Vector Labs).

Brightfield images of slides taken at 40x were used for analysis using
Image Pro AMS v6.1. The counting module was trained using both
positive and negative nuclear staining for phospho-ERK. A minimum
of 3000 nuclei were counted per sample and a ratio between total
nuclei with positive nuclei to total nuclei was determined using a
minimal and maximal area of 100 and 1000 pixels respectively.

Tissue Microarrays (TMAs)

TMAs were generated at MD Anderson Cancer Center and
contained a clinically annotated set of 214 soft tissue sarcoma
samples including: 166 MFH/Unclassified sarcomas, 19 synovial
sarcomas, 6 leiomyosarcomas, 8 pleomorphic liposarcomas, 8
myxoid liposarcomas, 6 atypical lipomatous tumors, and 1
dedifferentiated liposarcoma. TMAs were stained as above and
scored semiquantitatively on a scale from 0-3+ by a musculoskel-
etal pathologist (L.D.) blinded to patient outcome. Scores were
correlated with both diagnosis and clinical outcome.

@ PLoS ONE | www.plosone.org
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Statistical Analysis of TMAs

Scoring of TMAs was correlated with diagnosis, and metastasts-
free survival.

Correlation of immunohistochemical staining with diagnosis was
tested for normality using a chi-square test. This did not reach statistical
significance, therefore comparison between MFH and other soft tissue
sarcomas was performed using the non-parametric Mann-Whitney test.

Metastasis free survival analysis was performed on MFH samples
comparing 3+ staining to 0-2+ staining. Survival was determined by
Kaplan-Meier analysis.

Results

Cross-Species Genomic Analysis of LSL-KRas®'?;

Trp5371°7Fox Mouse Model of Soft Tissue Sarcoma

We hypothesized that genes most differentially expressed
between mouse sarcoma and normal muscle would provide a
useful molecular signature to interrogate human sarcoma datasets
(Fig. 1A). To test this approach, we first analyzed published gene
expression data from a previously validated mouse model of
synovial sarcoma [14]. After identifying a geneset of 100 genes
highly overexpressed in synovial sarcoma compared to normal
muscle (Table S1) we used Gene Set Enrichment Analysis (GSEA)
{11] to probe gene expression data from three studies of human soft
tissue sarcomas [8,9,10]. We demonstrated strong statistical
enrichment (p<<0.001, FDR<0.02) of this geneset in human
synovial sarcomas, but not in other subtypes of soft tissue sarcoma
(Fig. S1, Table S2). This result is in agreement with GSEA for the
mouse model of synovial sarcoma that was previously reported {14].

Having validated this approach, we identified a geneset of 100
genes highly overexpressed in the LSL-Kyas®'?P; Tip53™/ " mouse
model of soft tissue sarcoma (n = 17) compared to normal muscle
(n=4) (Table S3). When this geneset was analyzed in the three
human datasets of soft tissue sarcoma [8,9,10], only MFH samples
showed statistical enrichment (p=0.001; FDR=0.012) (Table 1,
Fig. 1B). Enrichment was seen in all three datasets [8,9,10], which
represent 325 sarcoma samples and two types of array platforms.
Moreover, genesets derived from human MFH (Table S4) also
enriched in the mouse sarcoma data (p<<0.001; FDR<0.001)
(Fig. 1C). These data indicate that this mouse sarcoma model and
human MFH share common genomic features.

Ras Pathway Activity Is Enriched in Human MFH

The initiating events of human MFH are not well understood.
Previous studies have shown mutations in p53 occur in 36% of
human MFH {15] while the rate of canonical R4S mutations in
human MFH varies from 0-50% [16,17]. We hypothesized that the
RAS pathway may be activated in human MFH even in the absence
of canonical RAS mutations. To explore a link between MFH and
Ras, we utilized previously described oncogenic pathway predictors
that correlate with R4S activity [13]. The Ras oncogenic signature is
enriched in human MFH samples compared to a panel of other soft
tissue sarcomas (p = 0.002) (Fig. 2A). Moreover, in human MFH
(n=28) lacking canonical RAS mutations, we observed nuclear
staining of phospho-ERK by immunohistochemistry in greater than
30% of tumor cells in 7 of 8 samples (Fig. S2).

FoxM1 Is a Novel Marker of Metastasis in MFH

Because human MFH and the LSL-Kras™?P; Tip53™ /™ mouse
model of soft tissue sarcoma share common genomic features, we
wanted to determine if these shared features could be used to identify
diagnostic or prognostic factors for human MFH. As MFH is
considered a diagnosis of exclusion, we initially attempted to identify a
marker that is specific to MFH. We identified a panel of 10 candidate
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Table 1. GSEA results for the LSL-Kras®'??; Trp5371o/Flox geneset derived from the mouse model of soft tissue sarcoma (Table S3).

Nakayama ({10}

Detwiller [9]

Baird {8]

Malignant Fibrous Histiocytoma
Myxofibrosarcoma

Fibrosarcoma

Leiomyosarcoma

Synovial Sarcoma

Myxoid Liposarcoma
Dedifferentiated Liposarcoma
Rhabdomyosarcoma

Ewing’s Sarcoma

0.001 (0.012)
0.162 (0.559)
0.177 (0.326)
0.262 (0.673)
DNE

DNE

DNE

0.014 (0.149)
0.159 (0.784)
0.854 (0.981)
DNE

0.024 (0.190)
DNE

0.401 (0.715)
DNE

0.586 (0.781)
DNE

marks represent insufficient data points to do comparison.
doi:10.1371/journal.pone.0008075.1001

',:@: PLoS ONE | www.plosone.org

The mouse sarcoma geneset was used to examine three human soft tissue sarcoma datasets [8,9,10]. Only undifferentiated pleomorphic sarcoma/MFH demonstrated
statistically significant enrichment. Table denotes p-values with FDR in parentheses. Bolded results note significance with p<0.05; FDR<0.25. DNE = Did Not Enrich, dash
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Figure 2. The LSL-Kras®'?%; Trp537“F°* mouse model of soft
tissue sarcoma provides insight into human MFH. A An
oncogenic Ras signature is enriched in human MFH samples compared
to other types of soft tissue sarcoma (p =0.002, non-parametric Mann-
Whitney test). 8, Q-RT-PCR for Foxm1 in murine soft tissue sarcomas
correlates with metastatic potential of primary tumors (p=0.01, two-
tailed student’s T-test, scale bars represent one standard deviation). C,
FOXMT1 expression in a tissue microarray correlates with metastasis free
survival in human MFH (p=0.038).
doi:10.1371/journal.pone.0008075.g002

biomarkers based on their common upregulation in both human MFH
and the mouse sarcoma model (Table S5). Expression of 9 of these
candidates was validated in an independent cohort of mouse sarcomas
by Q-RT-PCR (Fig. S3).
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FOXM], which is a member of the forkhead transcription
factor family that enhances tumorigenesis in other solid tumors
[18], was selected for further analysis because it is downstream of
Ras [19]. Immunohistochemistry for FOXM1 in a panel of 8
human MFH samples demonstrated nuclear staining for FOXM]
in all 8 tumors (Fig. S2). We next analyzed the expression of
FOXMI in a clinically annotated tissue microarray (TMA)
containing 166 MFH samples and 48 other soft tissue sarcomas.
Although 84% of the MFH samples stained positive for FOXM1
(p=0.02, Fig. $4), this marker was also expressed, but to a lesser
degree, in other sarcoma subtypes. Therefore, FOXM1 may not
be a useful diagnostic marker for human MFH.

Because FoxM1 has previously been shown to regulate the
expression of matrix metalloproteases MMP-2 and -9, which are
key mediators of cell invasion [20], we hypothesized that high
FOXM1 expression may correlate with metastasis. We measured
Foxml gene expression in murine soft tissue sarcomas and found a
correlation with the ‘development of lung metastases (Fig. 2B,
p =0.01). Likewise, human MFH with high FOXM!I expression
correlated with decreased metastasis-free survival compared to
sarcomas with low to no FOXM1 expression (Fig. 2C). In contrast,
overexpression of another candidate marker MELK (Table S5) did
not correlate with metastasis-free survival (Fig. S3).

Discussion

We used cross species genomic analysis to determine which
human sarcoma subtype is represented by the LSL-Kras®'?2;
Tip53"™ 7 mouse model of soft tissue sarcoma. We identified a
geneset in the mouse sarcomas that is highly enriched in human
MFH. This geneset was not enriched in other human sarcomas,
such as fibrosarcoma or leiomyosarcoma, which can be difficult to
distinguish from MFH. Furthermore, we have identified enrichment
of Ras pathway activity in human MFH compared to other t;pes of
soft-tissue sarcoma. Additionally, the LSL-Kras®'?%; Tip53" st Flox
mouse model of soft tissue sarcoma has a propensity to metastasize
to the lungs much like human MFH [5]. Based on this genomic
analysis, the pattern of lung metastasis, and the similarity of the
mouse sarcomas to human MFH at the histological level (Fig. S6),
we conclude that this model closely resembles MFH.

We recognize that the diagnosis of undifferentiated pleomorphic
sarcoma (MFH) has recently been questioned as a distinct clinical entity
[2,3,4]. Our results do not exclude the possibility that MFH is a
collection of mesenchymal tumors derived from different cell types that
share an undifferentiated state. However, our finding of a sarcoma
geneset conserved between mouse sarcomas and human MFH suggests
that this subtype of human sarcoma shares an underlying biology
beyond a common histologic appearance. Moreover, the use of cross-
species analysis to identify FOXM]I as a marker of metastasis-free
survival in human MFH supports the use of this mouse model to
understand mechanisms of metastasis, to investigate the cell(s) of origin,
and to develop novel therapies for human MFH.

Supporting Information

Supplementary Methods S1 Supplementary Methods
Found at: doi:10.1371/journal.pone.0008075.5001 (0.07 MB
DOCG)

Table S1 Geneset derived from mouse model of synovial
sarcoma versus control (normal muscle). Geneset was derived
using signal-to-noise metric.

Found at: doi:10.1371/journal.pone.0008075.5002 (0.04 MB
DOC)
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