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Reverse Response of an Jon-Recognition Polyampholyte to Specific
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ABSTRACT: We synthesized and characterized for the first time an ampholytic ion-recognition linear copolymer
of [3-(methacryloylamino)propyl jtrimethylammonium chloride (MAPTAC), acrylic acid (AA), and benzo[ 18]crown-
6-acrylamide (BCAm). In this copolymer, the MAPTAC unit has a positive charge. The AA unit has a negative
charge that depends on the pH. The crown receptor of the BCAm unit forms a complex with specific ions such
as Ba?" because of the high complex formation constant which behaved like a fixed positive charge. Thus, the
copolymers behaved as an ion-recognition polyampholytes and shrank at a pH equal to the isoelectric point
(IEP), which shifted to a higher pH when the BCAm complexed with a cation. At that time, the BCAm also
became hydrophilic with water of hydration accompanied by the cation. As a result of the combination of these
two effects, we found that the reverse behaviors of swelling and shrinking occurred at different pHs in response

to the same ion signal.
Introduction

Biopolymers such as protein, DNAs, and RNAs are known
to have various intramolecular interactions, such as electrostatic,
hydrophilic, and hydrophobic interactions, as well as hydrogen
bonds. These interactions are considered to be among the
important factors in determining the structures and functions
of biopolymers. Biopolymers also show many functions in
response to molecular signals. In the case of proteins, phos-
phorylation/dephosphorylation usually changes the polymer’s
function. In the case of DNAs, polymer function is mainly
controlled by methylation.

Some synthetic molecular-signal-responsive polymers and
hydrogels have also been reported, insprired by the functions
of biopolymers. A lectin-loaded cross-linked polymer network
of N-isopropylacrylamide (NIPAM) showed distinct swelling
behavior in response to different saccharides.' A temperature-
sensitive hydrogel copolymerized via molecular imprinting
showed a volume change in response to specific molecules.”
An antigen—antibody semi-IPN hydrogel showed reverse swell-
ing behavior in a buffer solution in response to a specific
antigen.” These previous researches utilized the change in cross-
linking density or hydration condition induced by molecular
signals but did not utilize the electrostatic interaction.

Recently, there has been much interest in polyampholytes
because they have many similarities to biopolymers such as
proteins.* The polymer chain of polyampholytes contains both
cationic and anionic groups, and the balance of positively and
negatively charged groups can be controlled by changing the
monomer content in the feed solution>® The balance of
positively and negatively charged groups also changes when
these charged groups are sensitive to the pH of the solution.
Synthetic polyampholytes have an isoelectric point (IEP) at a
specific pH, where the polymer chain is electroneutral and
shrinks.” The synthetic polyampholytes also show the antipoly-
electrolyte effect, in which the polymer chain is soluble at the
IEP because of the electric shielding of the fixed charges due

* Corresponding author: Tel +81-45-924-5254; Fax -+81-45-924-5253;
e-mail yamag @res.titech.ac.jp.

" The University of Tokyo.

*Tokyo Institute of Technology.

10.1021/ma801936t CCC: $40.75

to a high salt concentration.® However, this electrostatic
interaction has not been controlled by molecular signals.

Many synthetic host compounds such as crown ethers® and
cryptand complexes'®!' have been designed and analyzed in
the field of supramolecular chemistry.'® Benzo[18]crown-6-
acrylamide (BCAm), one of the molecular recognition com-
pounds, has a crown ether receptor and traps specific ions such
as K* and Ba?"."? The copolymer of NIPAM and BCAm was
synthesized, and the shift in the lower-critical-solution temper-
ature was observed when the BCAm captured specific ions.'?
Recently, we hypothesized on the basis of our previous
researches that captured ions behaved like fixed positive charges
when the BCAm formed a complex with a specific ion because
of the osmotic pressure generated by the Donnan exclusion-
like effect under a specific ion concentration gradient.'* In
addition, we found that the complex of a BCAm and a specific
ion retains about 70—80 water molecules and makes the polymer
chain more hydrophilic.'®

In this research, we synthesized a linear copolymer of
MAPTAC, AA, and BCAm (Figure 1). Its phase-separation
behavior in response to pH, ion species, and salt concentration
was investigated. The effect of the composition of the copoly-
mers was also studied. MAPTAC has a stable quaternary
ammonium base, amide bond, and propyl group, while AA has
a pH-sensitive carboxylic acid group.'® The molecular structure
of poly-MAPTAC-co-AA-co-BCAm contains both positively
and negatively charged groups and well-balanced molecular
interactions, such as electrostatic, hydrophilic, and hydrophobic
interactions, as well as hydrogen bonds. In addition, complex
formation between BCAm and ions has the above-mentioned
unique physicochemical effects, which are expected to trigger
unique phase-separation phenomena of the copolymer.

Experimental Section

Materials. [3-(Methacryloylamino)propyl]trimethylammonium
chloride (MAPTAC, 50 wt % aqueous solution) was purchased from
Aldrich Co., Ltd.; inhibitor was removed using an adsorption
column before polymerization. Acrylic acid was purchased from
Wako Chemical Co., Ltd., and purified by distillation. BCAm was
synthesized according to reported procedures.’? 2,2’-Azobis(2-
methylpropionamidine) dihydrochloride (V-50) was purchased from
Wako Chemical Co., Ltd., and used as an initiator, Standard aqueous

© 2009 American Chemical Society
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Figure 1. Chemical structure, intramolecular interactions, and concept of molecular-recognition response of poly-MAPTAC-co-AA-co-BCAm.

solutions of hydrochloric acid and sodium hydroxide were pur-
chased from Wako Chemical Co., Ltd., and used for IEP measure-
ments and turbidimetric titrations.

Preparation of the Linear Copolymer. Poly-MAPTAC-co-AA-
co-BCAm was synthesized by free-radical copolymerization. The
molar copolymerization ratios were controlled according to Table
1. Aqueous solutions of MAPTAC, AA, and BCAm were prepared
from degassed RO water. The ratio of initiator was fixed at 0.5
mol % for all monomers, and the weight percentage of monomers
was fixed at 15 wt %. The aqueous solution was kept at 50 °C for
48 h under N, after initiating polymerization by visible light for
12 min. The copolymer was dissolved in RO water, purified by

dialysis—using a dialysis membrane for which the molecular weight
cutoff was about 12 000—and dried under vacuum. Chloride ions
contained in the aqueous monomer solution of MAPTAC were also
removed by dialysis after polymerization,

Characterization. The synthesized linear copolymers were
characterized by FT-IR, elemental analysis, and UV—vis spectros-
copy. The FT-IR spectrum of the linear copolymer was measured
using the KBr disk technique with an MGNA 550 (Nicolet).
Elemental analysis was performed on a 240011 (Perkin-Elmer). The
UV—vis spectrum of the linear copolymer was measured using a
U-3310 (Hitachi). The absorption intensities in the UV—vis
spectrum were measured using an agueous solution of copolymers.
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Table 1. Molar Compositions of the Monomer Selutions and
Copolymers, with MAPTAC, AA, and BCAm Content as 100
mol %“

composition of monomer solutions copolymerization ratio

[mol %) MAPTAC AA BCAm MAPTAC AA BCAm

(a) 100 100

(b) 38 62 39 61

(c) 24 76 25 75

(d) 18 82 18 82

(e) 14 43 43 12 39 49
(24) (76) (76) (23) a7 (96)

(f) 12 57 30 9 65 26
(18) (82)  (42) (12) (88), (35

“ Compositions with MAPTAC and AA content as 100 mol % are shown
in parentheses.

(a) poly(MAPTAC)

(c) poly(MAPTAC-co-AA) (24/76)

| {d) poly(MAPTAC-co-AA) (18/82)

L

(e) poly(MAPTAC-co-AA-co-BCAm) (24/76/76) :

-

() poly(MAPTAC-co-AA-co-BCAm) (18/82/43) |

ADS0roance 1-]

1 " L " ] n 1 n 1 x n i

1800 1600 1400 1200 1000 80(I
Wavenumber [cm!]

Figure 2, FT-IR spectra of poly(MAPTAC), poly(MAPTAC-co-AA),
and poly(MAPTAC-co-AA-co-BCAm).
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Figure 3, UV spectra of poly(MAPTAC-co-AA) and poly(MAPTAC-
co-AA-co-BCAm).

Turbidimetric Measurement. Copolymer solutions change
turbidity when copolymer chains shrink, and this behavior was
measured spectrophotometrically as the optical density at 650 nm.
Turbidimetric titration of the linear copolymer solution was
performed in 0.2 wt % copolymer concentration at 25 °C. The pH

Macromolecules, Vol. 42, No. 4, 2009

was first changed to about pH 2 by adding 0.01 M HCI aqueous
solution, and it was then changed to pH 12 by adding 0.01 M NaOH
aqueous solution in 10 L aliquots. Each time, the pH was measured
using a pH meter HM21P (TOD-DKK), and the optical density
was measured. Measurements were carried out a few minutes after
titration to obtain a stable optical density value. The turbidimetric
titration of the linear copolymer solution was also carried out with
various concentrations of CaCl,, SrCl,, and BaCl,. Turbidity
changes were also measured by adding 0.1 M aqueous solution of
CaCl, SrCly, and BaCl, in 10 uL aliquots in both acid and base
conditions and by alternately adding 0.1 M aqueous solution of
BaCl; and [18]crown-6.

Results and Discussion

Characterization of Copolymers. Figure 2 shows the FT-
IR spectra of the copolymers. Copolymerization of MAPTAC,
AA, and BCAm was determined by FT-IR measurements. The
peaks are 1650 cm™' from the amide bond of MAPTAC, 1720
cm™! from the carboxyl group of AA, and 1133 cm™! from the
ether group of BCAm. Figure 3 shows the UV spectra of
copolymers of BCAm, which had an absorbance peak at 255
nm. The copolymerization ratio of BCAm was estimated from
the following proportional relationship between the absorbance
at 255 nm and concentration of poly-BCAm:

Cicam = 1.21 x 10~%a mol/L 1)

where a is the absorbance at 255 nm and Cgcan is the
concentration of poly-BCAm."” The copolymerization ratio of
MAPTAC to AA was determined by the weight ratio of carbon
and nitrogen atoms obtained from elemental analysis. The total
molar copolymerization ratios MAPTAC:AA:BCAm determined
from these measurements are shown in Table 1. These molar
copolymerization ratios are in close agreement with those used
in the synthesis. The molar copolymerization ratios are shown
for MAPTAC, AA, and BCAm content as 100 mol %.

pH Dependence of Poly(MAPTAC), Poly(MAPTAC-co-
AA), and Poly(MAPTAC-co-AA-co-BCAm). In general, a
polyampholyte shrinks at a pH equal to the IEP, where the
positive and negative charges balance and the solution of linear
copolymer becomes turbid.”'® The monomer of MAPTAC is a
chloride ion salt, and poly(MAPTAC) acts as a positive charge
whose amount is not affected by pH (Figure 1). AA is a weak
acid, and it acts as a negative charge whose magnitude is
affected by the degree of dissociation. Thus, the balance of
positive and negative charges changes depending on the pH
of the solution. The amount of negative charge is low because
of the low degree of dissociation of AA at pHs below the IEP,
while negative and positive charges balance when the pH equals
the IEP, and negative charges exceed positive charges at pHs
above the IEP. Since the dissotiation degree a of weak acid
relates to pH by the following equation

= @

pH = pK, + log(

the pH of the IEP where the ratio of the positive and the negative
charges inside the linear polymer balance can be estimated.
Using pK, = 4.25 previously reported for poly(acrylic acid),'’
the pH of the IEP was calculated as 4.5, 3.9, 3.7, 3.9, and 3.7
for copolymer (b), (c), (d), (e), and (f) respectively, for (e) and
(f) without considering the effect of the copolymerized BCAm.

Figure 4 shows the pH dependencies for the turbidimetric
titrations of the 0.2 wt % aqueous copolymer solutions of
poly(MAPTAC), poly(MAPTAC-co-AA), and poly(MAPTAC-
co-AA-co-BCAm). The absorbance of the aqueous polymer
solution of (a) poly(MAPTAC) is low over the entire pH range.
This is because poly(MAPTAC) contains only positive charges
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Figure 4. pH dependence of poly(MAPTAC-co-AA) and poly(MAP-
TAC-co-AA-co-BCAm).

inside the polymer chain and is always swollen by electrostatic
repulsion. The absorbance of copolymers of poly(MAPTAC-
co-AA) varied according to the pH of the solution. A 0.2 wt %
aqueous solution of copolymer (b) turned turbid at about pH
5.4; copolymers (¢) and (d) turned turbid and resulted in
precipitation below pH 4.4 and 4.2, respectively. Copolymers
(e) and (f) have the same ratio of MAPTAC to AA as
copolymers (c) and (d) and contain BCAm with 43 and 30 mol
%, respectively. The 0.2 wt % aqueous solution of copolymer
(e) turned turbid at about pH 5.0; copolymer (f) turned turbid
and resulted in precipitation at about pH 4.6. However, these
values of pH were higher than the pH of the IEP estimated by
the calculation; their trends were almost the same according to
the monomer compositions. Therefore, behavior as a polyam-
pholyte was confirmed for the aqueous solution of both
poly(MAPTAC-co-AA) and poly(MAPTAC-co-AA-co-BCAm).
Their differences are expected to be due to the different value
of pK, from the reported value with different component of the
copolymerization.

Thus, a solution of copolymer (b) tumed turbid when the pH
equaled the IEP. Solutions of copolymers (c) and (d) turned
turbid and resulted in precipitation because the copolymer of
high AA content could reach the IEP with low degree of
dissociation and also because of the hydrogen bond between
dissociated AA?® and the relatively hydrophobic uncomplexed
BCAm. The pH of the IEP of copolymers (e) and (f) were
measured to be about 0.5 higher than those of copolymers (c)
and (d). Copolymers (e) and (f) were more soluble than (c) and
(d), probably because the difference of the value of pK, and
the ratio of hydrogen bonds was decreased by copolymerization
with BCAm.
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of BaCl,.

The concentration of the Na* ion after turbidimetric titration

‘was about 10 mM. The peak of the turbidity of the IEP was

observed at the same pH reproducibly by multicycle measure-
ment of the titration; however, the peak height slightly decreased
because of the increase of the concentration of the added salt,
which is called the anti-polyelectrolyte effect.

Different Ion Species Changed the IEP Shift. The result
for copolymer (e) will be explained after the next two sections.
Figure 5A shows the pH dependence for the turbidimetric
titrations of 0.2 wt % aqueous polymer solution of poly(MAP-
TAC-co-AA-co-BCAm) in the presence of various salts. The
concentration of the salts CaCl,, SrCl,, and BaCl, was controlled
to 3.0 mM at the beginning of the titration. BCAm forms
complexes with various ions, and the complex formation
constants increase in the order Ca>*, Sr**, Ba>™ 2! The balance
of charges inside the polymer chain is also estimated from the
complex formation constant K and eq 2 by considering the
complexed divalent ions into positive charges. Using log K =
1.1 and 1.6 for Sr** and Ba®', respectively, which were
previously reported for poly-NIPAM-co-BCAm,'” the pH of the
IEP shifted higher by 0.1 and 0.5 in the presence of 3.0 mM
ions.

An aqueous solution of copolymer in the presence of 3.0 mM
Ca’* ions turned turbid at about pH 4.9. The pH at the IEP did
not shift from that of the same titration without Ca?t ions
because the complex formation constant of BCAm and Ca®*
ion is low, and the positive charges were not introduced inside
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the polymer chain. The copolymer also became soluble, and
the absorbance decreased because of the anti-polyelectrolyte
effect in the presence of CaCl, salt. An aqueous solution of the
copolymer in the presence of 3.0 mM Sr** ions turned turbid
at about pH 5.9. The pH at the IEP shifted by about 1.0
compared with that of the same titration without Sr** ions. This
was because BCAm and Sr** ions formed complexes and
positive charges were introduced inside the copolymer chain.
The solution of the copolymer also became soluble, and the
absorbance decreased because of the hydrophilic change of
complexed BCAm and the antipolyelectrolyte effect. An aque-
ous solution of copolymer in the presence of 3.0 mM Ba! ion
turned turbid at a pH of about 6.0. This is because the complex
formation constant of BCAm and Ba®* ion is high. The total
positive charges of MAPTAC and those introduced inside the
copolymer chains are in balance with the negative charges of
dissociated AA, and the polymer chain remained at the IEP in
the higher pH range. Although the observed shift range of the
pH is wider than the calculated values, their trends are well
consistent with the order of the complex formation constant.
Their differences are expected to be due to the difference of
the values of complex formation constant, which are widely
different according to the copolymerization systems and other
effects such as hydrophilic change of complexed BCAm.

Figure 5B shows the pH dependence for the turbidimetric
titrations of 0.2 wt % of aqueous polymer solution of poly-
(MAPTAC-co-AA-co-BCAm) in the presence of various con-
centrations of BaCl,, namely 2.5, 3.0, and 4.0 mM. An aqueous
solution of the copolymer in the presence of 2.5 mM Ba?* ion
turned turbid at about pH 5.9 by complexation of BCAm and
Ba®* ions. An aqueous solution of the copolymer in the presence
of 4.0 mM Ba** ions became slightly turbid above a pH of
about 6.0. The number of total positive charges on MAPTAC
and those introduced inside the copolymer chains exceeds the
number of negative charges on the dissociated AA. The polymer
chain did not reach the IEP, and the solution turned slightly
turbid. The anti-polyelectrolyte effect with high salt concentra-
tion and hydrophilic change of complexed BCAm were also
reasons for the low absorbance.

From these results, positive charges were introduced into the
polymer chain by complex formation of BCAm and cations
depending on the complex formation constant and the concen-
tration of the cation. The behaviors of swelling and shrinking
of polymer chains and the amount of positive charge inside the
polymer chains were controlled by the species and the concen-
tration of the ion.

Ion Recognition Changed by an Anti-polyelectroyte Effect.
Figure 6A shows the turbidimetric measurements of 0.2 wt %
aqueous copolymer solutions upon gradually adding 0.1 M
solutions of various salts at pH 5.0, where the copolymer was
at the IEP without salt. The polymer initially shrank at the IEP
and gradually changed to swelling by the addition of salt
solution. The absorbance decreased in the order of Ba?t, Sr?™,
Ca’*, which is the order of the complex formation constants.
This is because of the IEP shift to higher pH by complex
formation of BCAm and the cation, and there is also the
influence of the anti-polyelectrolyte effect.

Figure 6B shows the turbidimetric measurements of 0.2 wt
% copolymer solution upon gradually adding 0.1 M solution
of various salts at pH 11.6. The copolymer was initially swollen
and gradually changed to shrinking by the addition of salt
solution. The absorbance increased in the order Ba**, Sr**, Ca?*,
which is the order of the complex formation constants. The
carboxylic groups of AA are all dissociated at pH 11.6, and
negative charges are initially in excess. Positive charges are
introduced into the copolymer chain by complex formation
between BCAm and the cation. The polymer chain started to
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Figure 6. Salt concentration dependence of the copolymer (e) (poly-
MAPTAC-co-AA-co-BCAm) (24/76/76). (A) Different ion species of
CaCly, SrCl,, and BaCl,. (B) Concentration dependence of CaCl,, StCls,
and BaCl,.
shrink at the point where the positive charges balanced the
negative charges. When the number of positive charges exceeded
the number of negative charges, the polymer chain started
swelling again. We also deduce from these results that the
number of positive charges inside the polymer chain was
controlled by the species and the concentration of ions, and the
antipolyelectrolyte effect crucially affected the behavior.
There is another expected effect of adding divalent ions,
which dissociated carboxylic groups can be cross-linked by
divalent ions above the pH of the IEP. It is understood mainly
by electrostatic interaction on their charge size ratio measured
in terms of ionic radii.?? Thus, the interaction of added
divalent ions decreases in the order of Ca®*, Sr**, and Ba?".
This interaction is expected to exist in the copolymer chain
when divalent ion is added into the solution. However, from
the Figure 6B, the copolymer chain shrank more in the order
of high complex forming constant with BCAm, not in the order
of the strength of the cross-link of the divalent ion. From this
result, the effect of complex forming of BCAm with Ba®* is
thought to be stronger than the effect of the cross-link of the
divalent ion. Therefore, we speculate that the effect of the cross-
link by divalent ions is not obvious because the electrostatic
interaction between the dissociated AA and the complexed
BCAm is thought to be dominant in this copolymer system.

Reverse Response of Poly(MAPTAC-co-AA-co-BCAm)
to Specific Ions at Different pHs. Parts A and B of Figure 7
show the alternate salt addition of BaCl, and [18]crown-6 to
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Figure 7. Turbidity change of the aqueous solutions of copolymérs
(e) and (f) by alternately adding BaCl, and [18]crown-6 aqueous
solutions.

0.2 wt % aqueous copolymer solutions of (e) and (f), respec-
tively. Turbidity was measured both at the IEPs and higher pHs
of alkaline conditions. [18]Crown-6 can remove Ba** ions from
the polymer chain because the complex formation constant of
[18]crown-6 is higher than that of BCAm. Therefore, Ba>* ions
can be alternately introduced into the polymer chain by adding
a 0.1 M aqueous solution of Ba** and [18]crown-6.

In this measurement, the behavior of swelling and shrinking
was observed for both copolymers (e) and (f). The copolymer
initially shrank when the pH was at the IEP and then changed
to swelling by adding Ba** ions. The copolymer began shrinking
again by adding [18]crown-6, and this behavior was observed
alternately. The copolymer initially swelled in alkaline condi-
tions then changed to shrinking by adding Ba?" ions. The
copolymer changed to swelling again by adding [18]crown-6,
and this behavior was also observed alternately. The absorbance
of the copolymer solution in the shrinking condition gradually
decreased because of the anti-polyelectrolyte effect caused by
the increase in the concentration of salt-and [18]crown-6. The
response of the absorbance change to salt concentration of
copolymer (e) was more sensitive than for copolymer (f). This
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is because copolymer (e) has a higher molar composition of
BCAm than copolymer (f).

Thus, we demonstrated the alternate swelling and shrinking
behavior of an aqueous solution of poly(MAPTAC-co-AA-
co-BCAm) by alternately adding a 0.1 M aqueous solution
of Ba?* and [I8]crown-6. The behaviors of swelling and
shrinking in response to the same ion addition were com-
pletely opposite under acidic and alkaline conditions.

Conclusions

We synthesized and characterized for the first time an ion-
recognition polyampholyte. The copolymers of poly(MAP-
TAC-co-AA-co-BCAm) showed the behavior of polyam- -
pholytes and shrank when the pH equaled the IEP, which
was shifted by the ion signal recognized by BCAm, which
can form a complex with specific ions depending on the
complex formation constant and the concentration of the ions.
The intramolecular interactions, mainly electrostatic interac-
tions, were controlled by ion recognition of BCAm and the
pH of the solution, which led to the swelling and shrinking
behaviors of the copolymer in response to both pH and ion
recognition. We found that the reverse behaviors of swelling
and shrinking occurred at a different pHs in response to the
same ion signal. These phenomena are complicated and
interesting, especially in terms of similarity to biopolymers,
which respond to the same signal in different ways depending
on changes in the external environment such as pH and
temperature. The concept of macromolecular design in the
present research is expected to be utilized in fields such as
separation technology, biomaterials, and drug-delivery sys-
tems in the future.
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