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Diesel exhaust {DE) is a major.airborne pollutant in urban
areas. In this study, we estimated the systemic effect of
diesel exhaust inhalation by investigating mutations in ex-
traplumonary organs such as the testis and liver. gpt delta
Transgenic mice carrying the guanine phosphoribo-
syltransferase (gpt) transgene for the detection of muta-
tions in genomic DNA were exposed to inhalation of 3 mg
m~3 diesel exhaust {as suspended particulate matter) for
12 or 24 weeks. Compared to the control mice, DE result-
ed in a 2.0-fold increase in mutant frequency in the testis
of mice that were exposed to DE for 24 weeks (inhaled
group, 1.17 x 10-5; control group, 0.57 X 10~5), but notin
the testis of mice exposed for 12 weeks (0.61Xx1075),
The mutant frequency in the lungs was 2.6-fold higher in
mice exposed to DE for 24 weeks than the control group,
but it was not elevated in the liver (0.67 X 1075}, In the tes-
tis, the major mutations on the gpt gene were G:C—T:A
transversions, 1 base deletions and G:C— A:T transitions,
while the major mutation in the lung was G:C— A:T transi-
tions. The mutations on nucleotide nos. 402, 406, 409
and 416-418 in the gpt gene in testis seemed to be char-
acteristic of DE inhalation in the testis. Our results suggest
that inhalation of diesel exhaust is genotoxic to the testis
as well as respiratory organs.

Key words: diesel exhaust emission, testis, gpt delta trans-
genic mouse, 6-thioguanine selection

Introduction .

Diesel exhaust (DE) emission is a major source of air
pollutant in urban areas, and has been implicated in
causing allergic respiratory disease and lung cancer
(1,2). Diesel exhaust particles (DEP) have been known
to contain potent carcinogens and mutagens, such as
polyaromatic hydrocarbons (PAH; e.g., benzo[d]py-
rene (B[¢]P)) and nitrated PAH (e.g., 1,6-dinitropyrene
(1,6-DNP)), of which mutagenicity has been evaluated
in vitro using a Salmonella typhimurium TA98 assay
(3,4). Exposure to DEP through inhalation or in-
tratracheal instillation have been shown to cause oxida-
tive DNA damage (5,6) and DNA adduct formation

’
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(7,8) in rat and mouse lungs, and long periods of inhala-
tion of DE resulted in respiratory tract tumors in rats
(9-12). These observations suggest that mutagens in DE
induce mutations in the lung, a primary target organ of
inhalation, and are responsible for inducing lung can-
cer. Furthermore, we have previously demonstrated that
typical mutagens such as B[a]P (13) and 1,6-DNP (14),
as well as inhalation of DE (15,16), caused mutations in
the lungs using transgenic rodents for analyzing in vivo
mutagenesis (Big Blue® rat and gpr delta mouse).
Metabolites of PAH contained in suspended particulate
matter in ambient air have been detected in human urine
(17), suggesting that mutagenic PAH in DE are ab-
sorbed in the lungs and transported to extrapulmonary
organs, such as the testis and liver, where they could ex-
ert possible genotoxicity. Watanabe ef a/. showed that
the number of daily sperm and Sertoli cells in fetuses
and male rats was decreased by DE exposure (18,19).
However, the mutagenic effect of DE on the extrapul-
monary organs has remained unclear.

We intended to evaluate the in vivo mutagenicity of
DE in testis and liver to obtain fundamental data for as-
sessing the health risks of air pollution. In order to
evaluate in vivo mutagenicity, we used the gpt delta
transgenic mice carrying the lambda phage EG10 as a
transgene for detecting mutations on genomic DNA
(20,21). When the rescued phage is infected into E. coli
expressing Cre recombinase, the phage DNA is convert-
ed into plasmids harboring the chloramphenicol (Cm)-
resistance gene and guanine phosphoribosyltransferase
(gp?) gene. The gpt mutants can be positively detected as
colonies arising on plates containing Cm and 6-thiogua-
nine (6-TG). Our study revealed an elevated mutant fre-
quency and alterations in the mutation spectrum in the
testis of DE-inhaled gpt delta transgenic mice in which

3Correspondence to: Yasunobu Aoki, Research Center for Environ-

mental Risk, National Institute for Environmental Studies, 16-2
Onogawa, Tsukuba, Ibaraki 305-8506, Japan. Tel: +81-29-850-2390,
Fax: +81-29-850-2588, E-mail: ybaoki@nies.go.jp
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the mutant frequency in the lung has already been
reported to increase (16).

In this study, we show that inhalation of 3 mgm~
DE (as suspended particulate matter (SPM)) for 24
weeks resulted in a 2.0-fold increase in mutant fre-
quency in the testis of gpt delta mice compared to the
controls, but the inhalation for 12 weeks did not elevate
the mutant frequency in the testis. The mutant fre-
quency in the liver was not increased by inhalation of
DE under conditions where the mutant frequency in the
testis and lungs were significantly increased. The
predominant mutation spectrum in the testis in response
to DE inhalation included G:C—T:A transversions, 1-
base deletions and G:C—A:T transitions, while the
major mutations in the lungs were G:C-A:T transi-
tions (16). These data suggest that DE inhalation exerts
genotoxicity on testis systemically.

3

Materials and Methods

Treatment of mice: gpt delta Mice carry ca. 80 co-
pies of lambda EG10 DNA on each chromosome 17 in a
C57BL/6J background (22). Exposure to DE (12hd~!,
7 d week ') was performed in chambers equipped by the
National Institute for Environmental Studies (16,23)
under the same conditions as those in our previous
report on in vivo mutations in the lung (16). Three to
five 7-week-old mice were exposed to 3 mgm™3 DE (as
SPM) for 12 or 24 weeks. Seven mice were maintained
in filtered clean air (control group), The animals were
sacrificed 3 days after the last exposure and their testis
and liver were removed, frozen in liquid nitrogen and
stored at —80°C for this study.

Gpt mutation assay: The gpf assay was performed
as described previously (20). Genomic DNA was ex-
tracted from the testis and liver tissue using the
RecoverEase DNA Isolation Kit (Stratagene Co., La
Jolla, CA) and Lambda EG10 phages were rescued us-
ing the Transpack® Packaging Extract (Stratagene). E.
coli YG6020 was infected with the phage, spread on M9
salt plates containing Cm and 6-TG (19), and then incu-
bated for 72 h at 37°C for selection of the colonies har-
boring a plasmid carrying the chloramphenicol
acetyltransferase (CAT) gene and a mutated gpt gene.
Isolates from the 6-TG-resistant phenotype were cul-
tured in LB broth containing 25 ug/mL~! Cm at 37°C
overnight, harvested by centrifugation (7,000 rpm, 10
min) and stored at —80°C.

PCR and DNA sequencing of the 6-TG-resistant
mutants: A 739 bp DNA fragment containing the gpt
gene was amplified by PCR and sequenced as described
previously (13,20). Sequencing was performed using the

Big Dye Terminator v3.1 Cycle Sequencing Kit (Applied

Biosystems, Foster City, CA) on an Applied Biosystems
model 3730xl DNA analyzer.
Statistical analysis: All of the data are expressed as

the mean=®SD. The statistical significance of the DE
treatment was analyzed using the Student’s #-test.
p<0.05 was considered to be statistically significant.
Mutational spectra were compared using the Adams-
Skopek test (24,25).

Results

Gpt mutations in the testis, lung and liver of DE in-
haled gpt delta mice: In order to estimate the muta-
genicity of DE, gpt delta mice inhaled DE (3 mg m™? as
SPM) for 12 or 24 weeks and mutations in the testis and
liver were analyzed (Table 1). While the mutant fre-
quencies in the testis of the control mice for 12 and 24
weeks inhalation were 0.57 £ 0.04 X 10~* and 0.58 £0.07
X 1073, respectively, inhalation of DE for 12 and 24
weeks resulted in 1.1 and 2.0-fold increases in mutant
frequency (0.61£0.08 X 107 and 1.17+0.45 X 1075, re-
spectively) compared with the controls (Table 1). Sig-
nificant increases in the mutant frequency in the testis
were observed in the group that inhaled DE for 24 weeks
compared with the control group and the group that in-
haled DE for 12 weeks. Our previous report demon-
strated that inhalation of 3 mgm™3 DE for 24 weeks
resulted in a 2.6-fold increase in the mutant frequency in
the lung (Table 1) (16); however, the mutant frequency
in the liver (0.67 £0.23 X 10~°) was not elevated even af-
ter inhalation for 24 weeks compared with the control
(0.56£0.14x 1077,

Alterations in the mutation spectrum in testis are
induced by DE inhalation: In order to determine the
mutation spectrum induced by DE inhalation, 170 6-
TG-resistant mutants in a total were sequenced. As
shown in Table 2, mutations of the gpf gene were de-
tected in 149 mutants obtained from the testis of DE-in-
haled and control mice (Table 1). The mutation type
analysis indicated that the percentages of G:C—T:A
transversions and 1-base deletions were increased in DE-
inhaled mice (DE all) comparing to control mice (Con-
trol all). To characterize DE-induced mutagenesis pre-
cisely, the frequency of each mutation was calculated
from data in Table 2 (Fig. 1). In the groups that inhaled
DE for 24 weeks, the mutant frequency of G:C-T:A
transversions, 1-base deletions and G:C—A:T transi-
tions was 3.8 X 1076, 2.9x 10~% and 2.4 X 1075, whereas
that of the control mice was, 1.0x 1075, 0.6 x 1075 and
1.9x 1075, respectively. DE inhalation for 24 weeks
caused a significant difference in the types of mutation
in the control and DE inhalation groups (p=0.04,
Adams-Skopek test).

The spectrum of gpz mutations in the testis that were
induced by DE inhalation for 12 weeks and 24 weeks
(Table 3) indicated a prevalence of G:C—T:A transver-
sions with three mutation sites (nucleotide nos. 402, 406
and 409) being identified as hotspots in three or more
mice, as well as G:C—A:T ftransition hotspots on
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Table 1. Summary of mutant frequencies in the testis, lung and liver of gpt delta mice after inhalation of DE
DE Exposure ID of Number of colonies Mutant Average mutant
Organ. concentration time animals frequency frequency £ SD
(mg m™%) (weeks) Mutant Total (x107%) (X 107%
Testis 0 12 1 7 1,265,600 0.55
2 9 1,428,800 0.63
3 10 1,792,000 0.56
4 10 1,820,800 0.55
Total 36 6,307,200 0.57+0.04
3 12 1 12 1,996,800 0.60
2 12 1,984,800 0.61
3 14 1,881,600 0.74
4 14 2,318,400 0.60
5 7 1,374,400 0.51
Total 59 9,556,000 0.61+£0.08
0 24 1 9 1,676,800 0.54
2 5 756,800 0.66
3, 7 1,291,200 0.54
Total 21 3,724,800 0.58 £0.07
3 24 1 9 1,409,600 0.64
2 29 1,910,400 1.52
3 16 1,176,000 1.36
Total 54 4,496,000 1.17 +£0.45*
Lung' 0 24 1 13 1,551,000 0.84
2 8 1,074,000 0.74
3 8 903,000 0.89
Total 29 3,528,000 0.82£0.07
3 24 1 10 462,500 2.16
2 11 546,000 2.01
3 16 745,600 2.15
Total 37 1,754,100 2.11£0.08**
Liver 0 24 1 4 952,000 0.42
2 8 1,148,800 0.70
3 4 724,800 0.55
Total 16 2,825,600 0.560.14
3 24 1 2 275,200 0.73
2 2 483,200 0.41
3 8 937,600 0.85
Total 12 1,696,000 0.67+0.23

Significant differences were detected between the control and DE-treated group (*: p<0.05, **: p<0.001).

': data from our previous study (16).

another three sites (nucleotide nos. 64, 110 and 115).
The predominant frameshift mutations induced by DE
were single-base pair deletions in run sequences (22/29
=76%); in this case the hotspot was located at nucleo-
tide nos. 416-418. Therefore, the mutations on nucleo-
tide nos. 402, 406, 409 and 416-418 seem to be charac-
teristic of DE inhalation in testis, but were not hotspots
in the lungs of DE-inhaled mice, while nucleotide no.
402 was a hotspot of G:C— A:T transitions in the lung.

Discussion

In this study we demonstrate that, as a result of inha-
lation of 3 mg m~*® DE, the mutant frequency in the tes-
tis of gpt delta mice increased with the duration of treat-
ment (Table 1), but the mutant frequency in the liver
was not elevated, indicating that DE inhalation exerts
genotoxicity systemically on testis as well as on respira-
tory organs. This article is the first report on an increase
in the mutant frequency in testis in response to DE inha-
lation (Table 1). Indeed, DE inhalation has also been
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Table 2. Classification of gpf mutations from the testis of control
and DE-inhaled mice

Control (weeks) DE (weeks)

Type of mutation in
the gpt gene 12 24 all 12 24 all

% %
Base substitution
Transition
G:C—A:T 42 31 39 24 24 24
A:T-G:C 6 6 6 2 4 3
Transversion
G:C-T:A 12 38 20 24 37 30
G:C-C:G 12 6 10 17 0 9
A:T-T:A 3 0 2 2 2 2
A:T-C:.G 0 0 0 1] 2 1
Deletion
-1 12 13 12 30 28 29
>2 6 6 6 0 2 1
Insertion 6 0 4 2 0 1
Other 0 0 0 0 0 0
Total 100 100 100 100 100 100
Total mymber of 33 16 49 54 46 100

*: 149 of 170 6-TG-resitant mutants have mutation in the gpf gene.
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Fig. 1. Comparison of the 6-TG-resistant mutation spectra in con-
trol and DE inhaled gptf delta mice. The mutant frequencies of control
mice and those exposed to DE for 12 weeks and 24 weeks were calcu-
lated by dividing the number of each type of gpt mutations in the Con-
trol all, DE 12 weeks and DE 24 weeks, respectively, by the corre-
sponding total number of colonies (shown in Table I).

shown to cause a decrease in the number of daily sperm
and Sertoli cells in fetuses and male rats (18,19). Daily
sperm production in the testis decreased dose-depen-
dently in response to DE exposure for 6 months; a 53%
reduction in sperm production was observed in rats ex-
posed to DE (26) at the same concentration (3 mg m™?)
used in this study. These observations indicate that DE

inhalation induces an increase in mutant frequency in
the testis under the same conditions in which the
reproduction of sperm was suppressed.

A significant increase in mutant frequency was ob-
served in the testis after DE inhalation for 24 weeks but
not for 12 weeks, while the mutant frequency in the
lungs was elevated after inhalation for 24 weeks as well
as 12 weeks (16). Delayed mutagenesis in germ cells has
been observed in lacZ transgenic mice after 35 days
treatment with ethyl nitrosourea (ENU) (27). Mutagens
contained in DE were absorbed in the lung, systemically
transported to the testis and possibly caused DNA ad-
duct formation in spermatogonial stem cells and sper-
matogonia. These DNA adducts may be fixed as delayed
mutations in germ cells through errors in DNA replica-
tion in continuous cell division during germ-cell de-
velopment from spermatogenic cells to sperm. On the
other hand, DNA adducts may be formed in the liver,
but might not be fixed as mutations because of the low
rate of cell division and/or high degree of DNA repair.
However, Masumura ef al. (28) showed that a heterocy-
clic amine, PhIP, was metabolically activated and in-
duced point mutations in the liver but not the testis of
gpt delta mice, suggesting that any factors governing the
distribution and metabolism of mutagens in the body
may determine the tissue specificity of mutagenesis.

The predominant mutation spectrum in the testis in
response to DE included G:C—T:A transversions, 1-
base deletions and G:C— A:T transitions (Table 2 and
Fig. 1) as well as mutation hotspots on nucleotide nos.
402, 406 and 409, nos. 416-418 and nos. 64, 110 and
115, respectively (Table 3), while mutations in the lung
were predominantly only G:C—A:T transitions (16).
Mutation hotspots on nucleotide no. 406 and nos.
416-418 were identified in the testis of mice that inhaled
DE for 12 weeks, in which the mutant frequency did not
significantly increase, suggesting that DE acts as muta-
genic agent even after inhalation for 12 weeks.
G:C—T:A transversions have been known to be in-
duced in gpt delta mice by B[g]P treatment (13) and 8-
hydroxy-deoxyguanine (8-OHdG) generated by reactive
oxygen species (ROS) (29). We have shown that the
G:C—T:A transversion was a predominant mutation in
Nrf2 deficient mice (30), in which the levels of the phase
1I detoxification enzymes and ROS-scavenging enzymes
were suppressed (31,32) and DNA adduct formation
was accelerated in the lung (33). These observations sug-
gest some contribution of ROS to inducing mutation
hotspots of G:C—T:A transversions (nucleotide nos.
402, 406 and 409) in the testis of mice subjected to DE
inhalation. Nucleotide nos. 64, 110 and 115 were muta-
tion hotspots of G:C— A:T transitions in the testis of
DE-inhaled mice as well as in 1,6-dinitropyrene (DNP)-
instilled lungs of gpt delta mice (14), and were also mu-
tation hotspots in non-treated mice (34). The compo-
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Table 3. DNA sequence analysis of gpf mutations obtained from the testis of DE-treated and control mice
Number
T; f Mutation Control DE
ype 0 . Amino acid change
mutation N ebad®  Sequence Change 12 2 12 24
weeks weeks weeks weeks
Base substitution
Transition
G:C—A:T 3 atG —  atA Met — le 1
64 Cga — Tga CpG Arg - Stop 1 4'
82 Caa — Taa Gin - Stop 1
86 tGg — tAg Trp — Stop 1
107 aGc - aAc Ser — Asn 1
110 cGt — CcAt CpG Arg — His 2* 2 2%
113 gGc - gAc Gly — Asp 1 1
115 Ggt — Agt CpG Gly - Ser 1 3* 3*
116 gGt —  gAt Gly — Asp 2% 1 1 1
145 Gaa — Aaa Glu - Lys 1
176 tGt — tAt Cys — Tyr 1
202 Cag — Tag Gln — Stop 1
401 tGg — tAg Trp - Stop 1
402 tgG — tgA Trp — Stop 1 1
418 Gat — Aat Asp — Asn 3t 1 3*
451 Ggt — Agt CpG Gly - Ser 1
A:T-G:C 56 cTe - cCc Lew - Pro 1 1
410 cAg — cGg Gln — Arg 1
415 Tgg — Cgg Tip — Arg 1
419 gAt — gGt Asp — Gly 1 1
Transversion
G:C-~T:A 7 Gaa — Taa CpG Glu - Stop 1
59 gCa — gAa Ala - Glu 1
110 cGt — Tt CpG Arg — Leu 1
127 Ggt - Tgt Gly - Cys 1
140 gCg — gAg CpG Ala - Glu 2 1 1
145 Gaa — Taa Glu - Stop 1
189 taC - taA CpG Tyr — Stop 1 1
208 Gag — Tag CpG Glu - Stop 1
287 aCt — aAt Thr — Asn 1
304 Gaa — Taa Glu - Stop H 1 1
401 tGg — tTg Trp — Leu 1 1
402 tgG — tgT Trp — Cys 1 2* 1
406 Gaa — Taa Glu - Stop 4 4*
409 Cag — Aag Gln — Lys 1 2*
413 ¢Cg — cAg CpG Pro — Gln 1 2% 1
418 Gat — Tat Asp = Tyr 1 2%
G:C~C:G 3 atG - atC Met — lle 1
6 agC — agG CpG Ser — Arg 1
109 Cgt — Ggt CpG Arg - Gly ’ 1
143 cGt - cCt CpG Arg - Pro 1
145 Gaa — Caa Glu - GIn 1
262 Gat — Cat Asp - His 1
289 Geg — Ceg Ala - Pro 1
340 Gea —+ Ceca CpG Ala - Pro 2*
401 tGg - tCg Trp — Ser 1
402 tgG — tgC Trp —= Cys 1
413 cCg — cGg CpG Pro — Arg 2%
418 Gat — Cat Asp — His 1
A:T-T:A 35 tTg — tAg Leu - Stop 1
146 gAa - gTa Glu - Val 1
179 aTt -  aAt Ile — Asn 1
A:T-C:G 106 Agc — Cgc Ser — Arg 1
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Table 3. cont.
Number
n];zf:ti?)f-l Nucleotide Sequence Change Control DE
12 24 12 24
weeks weeks weeks weeks
Deletion 8-12 gAAAAAL — gAAAAt 1 2 1
-1 base 126-128 ¢GGGt - GGt 1
133-134 gTTa — gTa 1
155-156 aTTc — aTc 1
179-181 aTTTc — aTTc
230 gCa — ga 1
237 gCg — gg 1 1
244 cGa — «ca 1
249 gCt — gt 1
277 tAc — tc 1
387-389 tCCCg — tCCg 1
416-418 tGGGa — tGGa 1 7t st
420 aTa — aa 1
426 gCg — gg 1
431 gla — ga 1
442-443 gCCa - gCa 1
451-452 ¢cGGt - cGt 1
454 tCg — tg 1
>2 26-34 tGGGACATGTTg — tg 1
170-171 aCCg — ag 1
238-249 cGATGGCGAAGGCt - «ct 1 1
Insertion 75 ct — CcAt 1
107 ag — aTg 1
214-216 taaag — tAaaag 1
Total 33 16 54 46

* and ¥ Mutations found in 2 and 3 different mice, respectively.

nents in DE, such as 1,6-DNP and related compounds,
may also contribute to enhance spontaneous mutations
via the generation of ROS in the lung and also in the tes-
tis in response to DE inhalation.

Potent mutagens such as B[a]P and 1,6-DNP in DE
are suspected to cause tumors in the lung, but their
effect on the germline remains to be investigated. Previ-
ously, B[a]P was shown to induce a dominant-lethal
mutation in the germ cells of male mice (35). We show
that inhalation of DE, a major air poilutant in urban
air, induces mutations in the testis, suggesting that
mutagenic PAH and other mutagenic compounds in DE
cause germline mutations. Previously, a germline muta-
tion has been reported to occur in herring gulls living in
an urban area (36). Recently, heritable DNA mutations
in micro-satellite DNA were identified in mice that in-
haled polluted ambient air in an industrial area (37,38);
exposure to polluted ambient air for 10 weeks, followed
by 6 weeks in the laboratory, was required for a sig-
nificant increase in the sperm mutant frequency in these
mice (38). This observation (38) corresponds to the
delayed induction of point mutations in the testis in our
study. Mutagenic compounds in ambient air may con-
tribute to the induction of germline mutations.

However, further studies are required to confirm that
DE and other air pollutants cause mutations in germline
cells, which are good markers for assessing the health
risk of air pollution.
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