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Dysbindin Regulates the Transcriptional Level of
Myristoylated Alanine-Rich Protein Kinase C Substrate
via the Interaction with NF-YB in Mice Brain
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Abstract

Background: An accumulating body of evidence suggests that Dtnbp1 (Dysbindin) is a key susceptibility gene for
schizophrenia. Using the yeast-two-hybrid screening system, we examined the candidate proteins interacting with
Dysbindin and revealed one of these candidates to be the transcription factor NF-YB.

Methods: We employed an immunoprecipitation (IP) assay to demonstrate the Dysbindin-NF-YB interaction. DNA chips
were used to screen for altered expression of genes in cells in which Dysbindin or NF-YB was down regulated, while
Chromatin IP and Reporter assays were used to confirm the involvement of these genes in transcription of Myristoylated
alanine-rich protein kinase C substrate (MARCKS). The sdy mutant mice with a deletion in Dysbindin, which exhibit
behavioral abnormalities, and wild-type DBA2J mice were used to investigate MARCKS expression.

Results: We revealed an interaction between Dysbindin and NF-YB. DNA chips showed that MARCKS expression was
increased in both Dysbindin knockdown cells and NF-YB knockdown cells, and Chromatin IP revealed interaction of these
proteins at the MARCKS promoter region. Reporter assay results suggested functional involvement of the interaction
between Dysbindin and NF-YB in MARCKS transcription levels, via the CCAAT motif which is a NF-YB binding sequence.
MARCKS expression was increased in sdy mutant mice when compared to wild-type mice.

Conclusions: These findings suggest that abnormal expression of MARCKS via dysfunction of Dysbindin might cause
impairment of neural transmission and abnormal synaptogenesis. Our results should provide new insights into the
mechanisms of neuronal development and the pathogenesis of schizophrenia.
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Introduction

Schizophrenia is a common and devastating psychiatric
disorder. Lack of patient compliance, due to undesirable side
effects and efficacy restricted to positive symptoms, highlights the
need to develop novel therapeutics. The etiology of the disease
remains unknown, but in recent years a convergence of genetic,
pharmacological, and neuroanatomical findings suggest that
neural transmission [1-4] and synapse formation [5-11] are
involved in schizophrenia. Recent studies suggest that disturbances
of Dyshindin (dystrobrevin-binding protein 1; DTNBPI) are
involved in this abnormal neural transmission.

@ PLoS ONE | www.plosone.org

The cause of schizophrenia is thought to involve the combined
effects of multiple gene components. Genetic linkage and association
studies have identified potential susceptibility genes such as Dysbindin
[12,13], Neuregulin [14,15], Catechol-O-methyltransferase [16-18]
and RG4 [19-22]. In particular, it has been reported that
chromosome 6p is one of the highest susceptibility regions in linkage
studies of schizophrenia [23,24]. Among them, genetic variants in a
gene 6p22.3 expressing Dysbindin, which is identified as a protein
interacting with dystrobevins [25], have been shown to be strongly
associated with schizophrenia [12].

In studies on postmortem brain tissue, decreased levels of
Dysbindin protein [26] and mRNA [27] have been shown in
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patients with schizophrenia compared with controls. Chronic
treatment of mice with antipsychotics did not affect the expression
levels of Dysbindin protein and mRNA in their brains [26,28],
suggesting that evidence of lower levels of Dysbindin protein and
mRNA in the postmortem brains of schizophrenics is not likely to
be a simple artifact of antemortem drug treatment. In addition,
previous reports have shown that diverse high-risk single
nucleotide polymorphisms (SNPs) and haplotypes could influence
Dysbindin mRNA expression [27,29). These data indicate that the
Dysbindin gene may confer susceptibility to schizophrenia through
reduced Dysbindin expression.

Several lines of evidence suggest that Dysbindin may be
associated with brain function. SNPs in Dysbindin have been
associated with intermediate cognitive phenotypes related to
schizophrenia such as IQ) and working and episodic memory,
and a Dyshindin haplotype has been associated with higher
educational attainment [30,31]. In addition, several reports
suggest the involvement of Dysbindin in cognitive functions
[32-34]. These findings strongly suggest the importance of
Dysbindin in brain function. At the cellular level, Dysbindin is
located at both pre- and post-synaptic terminals [26,35], and is
thought to be involved in postsynaptic density (PSD) function and
the trafficking of receptors (NMDA, GABAergic, and nicotinic).
Over-expression of Dysbindin increases glutamate release from
pyramidal neurons in cell culture, possibly because of its role in
vesicular trafficking [36]. Decreases in Dysbindin mRNA and
protein levels have been reported in regions previously implicated
n schizophrenia: the prefrontal cortex, midbrain, and hippocam-
pus [26,27]). However, the molecular mechanisms of how
decreases in Dysbindin expression may contribute to vulnerability
to schizophrenia remain unknown.

Thus, we examined the interacting partners of Dysbindin
using yeast two-hybrid analysis in order to help elucidate the
function of Dysbindin. These interacting-protein data suggest
that Dysbindin is involved in such processes as neurotransmis-
sion, cell signaling, the cytoskeleton and transcription. (Matsu-
zaki S ef al. in submission). In addition, our previous reports
suggest the following; (1) decreased expression of Dyshindin
might increase dopamine release in the brain resulting in the
observed abnormal behavior in sdy mice (Dysbindin KO mice)
[37,38], (2) Dysbindin is likely involved in dopaminergic or
glutamatergic transmission [36,39], (3) Dysbindin is likely
involved in neurotransmission by binding with the BLOCI
complex, and with transcription by binding with transcription-
related genes (Matsuzaki S ef al. in submission), (4) the expression
level of Dyshindin may affect the expression of SNAP25 {36,39],
(5) Dysbindin may play a key role in coordinating JNK signaling
and actin cytoskeleton required for neural development [40].
These findings suggest that Dysbindin may influence neuro-
transmission and neural development »ia interaction with other
factors or by regulation of transcription.

In a previous paper, we identified several Dysbindin interacting
partners including the transcription factor, nuclear transcription
factor Y beta (NF-YB) (Matsuzaki S ¢ a/. in submission). NF-YB
belongs to a family of CCAAT-binding transcription factors,
which are important for the basal transcription of a class of
regulatory genes and are involved in cellular reactions [41-44).
Subsequently, in this study, we examined the functional involve-
ment of Dysbindin in transcription via its interaction with NF-YB.
As a result, we showed that the NF-YB/Dysbindin complex
regulates the transcription of MARCKS wia interaction with
certain CCAAT sequences, and abnormal NF-YB/Dysbindin
interaction could cause alterations such as impaired neural
transmission and abnormal development of neurons.

'.'l@'. PLoS ONE | www.plosone.org
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Results

Dysbindin Exists within the Nucleus in Addition to the
Cytoplasm

We examined the existence of Dysbindin in the nucleus,
because Dysbindin should exist within the nucleus to play a
functional role in transcriptional regulation. We wused an
overexpression vector for Dysbindin tagged with -FLAG or -V5
to check the intracellular localization of Dysbindin. The
fractionation  study using Dysbindin-FLAG-overexpressing
HEK?293 cells shows that Dysbindin exists mainly in the cytosol
while a small amount exists in the nucleus (Figure 1A), and
Dysbindin-V5 showed the same results (data not shown). These
results are in accordance with a previous report [45]). Morpho-
logically, Dysbindin is localized mainly in the cytoplasm with a
perinuclear high density region in HEK293 cells and SY5Y cells;
however, a faint immunoreaction was also seen within the nucleus
(Figure 1B -a and -b). Furthermore, pretreatment with leptomy-
cine-B (LPB), which inhibits export from the nucleus to the
cytoplasm, caused a slight Dysbindin increase in cells, which then
showed nuclear localization of Dysbindin (Figure 1B -c and -d ).
These findings suggest that Dysbindin protein is shuttled between
the nucleus and the cytoplasm.

Dysbindin Binds to the Transcription Factor NF-YB

Using yeast two-hybrid screening, we identified several transcrip-
tional factors as candidates that may interact with Dysbindin. We
selected NF-YB, one of the candidates, and confirmed a Dysbindin-
NF-YB interaction by immunoprecipitation assay using HEK293T
cells which express NF-YB endogenously (Figure 14). HEK293T cells
were transfected with expression vectors for Dysbindin-V3, and cell
lysates were subjected to immunoprecipitation with anti-V5 or anti-
NF-YB antibodies, followed by Western blot analysis with a reciprocal
antibody. NF-YB was detected in the immunoprecipitates with an
anti-V5 body, comparing to the immunoprecipitates with control IgG
(Figure 2A), while Dysbindin-V5 was detected in the immunoprecip-
itates with an anti-NF-YB antibody, comparing to control IgG (data
not shown). Thus, Dysbindin and NF-YB are physiologically
associated with each other in transfected mammalian cells.

To further our research, we produced a specific anti-Dysbindin
antibody with high titer. The antibody detects endogenous
Dysbindin in cell and mouse brain samples, though it did not
detect any bands corresponding to Dysbindin from the lysates of

(A) w C N (kDa) (B)

Dysbindin -
SFLAG T
NF-YB === alils — 43

Bcl-2 =26

Histon H3 =17

Figure 1. The nuclear localization of Dysbindin. (A) HEK293 cells
overexpressing Dysbindin-FLAG were separated into nuclear and
cytosolic fractions. Anti-Bcl2 antibody was used for the cytosolic
fraction marker and anti-Histone H3 antibody was used for the nuclear
fraction marker. W: Whole cell lysates, N: Nuclear Fraction, C; Cytosolic
fraction. Dysbindin-FLAG was slightly present in the nuclear fraction. (B)
Dysbindin-GFP was overexpressed in HEK293 cells (a and ¢) or in SH-
SYSY cells (b and d). Dyshindin was usually localized in the cytoplasm
and slightly in the nucleus (a and b). After treatment with LMB, a potent
inhibitor of CRM1-dependent nuclear export, Dysbindin-GFP accumu-
lated in the nucleus (c and d).

doi:10.1371/journal.pone.0008773.g001
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Figure 2. The interaction between Dysbindin and NF-YB. (A)
HEK293 cells were transfected with Dysbindin-VS. immunoprecipitates
(P} of lysates of HEK293 cells expressing Dysbindin-V5 obtained by
antibodies to tag proteins (V5) 2" lane), or nonspecific rabbit IgG (IgG)
(1** lane) were subjected to Western blot with anti- NF-YB antibody
(upper panel). Dilutions of the lysate (5%, HEK293 cells) were subjected
to Western blot with anti-f-actin antibody (lower panel). (B)
Immunoprecipitates (IP) of lysates of SH-SYSY cells obtained by
antibodies to Dysbindin (upper panel 2" lane), NF-YB (lower panel
2" lane), or nonspecific rabbit IgG (IgG) (1** lane of both panels) were
subjected to Western blot with anti- NF-YB antibody (upper panel) or
Dysbindin antibody (lower panel). Dilutions of the lysate (5%, HEK293
cells) were subjected to Western blot with anti-NF-YB antibody (3" lane
of upper panel) or Dysbindin antibody (3¢ lane of lower panel).
doi:10.1371/journal.pone.0008773.g002

Dysbindin  knockout mouse brain [40]: The = existence of
endogenous Dysbindin and endogenous NF-YB in lysates from
SH-SY5Y cells was confirmed by Western Blot (Figure 2B, 3™ lane
of both panels). Immunoprecipitation using the lysates with
antibodies for Dysbindin and NF-YB and subsequent Western
blot revealed the interaction of endogenous Dysbindin with
endogenous NF-YB (Figure 2B, 2™ lane of both panels), and this
binding was also confirmed using adult mouse brain lysates (data
not shown).

Downregulation of Dysbindin Causes Upregulation in
Expression Levels of Myristoylated Alanine-Rich Protein
Kinase C Substrate (MARCKS)

As shown above, we had revealed an interaction between
Dysbindin and NF-YB. This result suggests that Dysbindin may be
functionally involved in transcription of some genes regulated by
NF-YB: We screened for genes displaying: altered expression by
means of a DNA chip, using RNA extracts from the Dysbindin or
NF-YB knockdown human neural cell line, SH-SY5Y. The
expression of either Dyshindin or NF-YB was decreased by the
corresponding siRNA for each gene, and the effects of siRNA on

@ PLOS ONE | www.plosone.org
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Dysbindin or NF-YB were confirmed by Western blot analysis
(Figure S1). The genes showing increased expression in the
Dysbindin knockdown cells, as well as in the NF-YB knockdown
cells, are listed in Table 1A, while those showing decreased
expression are listed in Table 1B. Next, using the DANASIS 2.0
system or sequencing of the promoter region, we screened for
genes having the CCAAT sequence in the promoter region,
because NF-YB is known to bind with high specificity to the
CCAAT motif in the promoter region of a variety of genes (Table
1, gene names shown in red). We then focused on three genes;
Myristoylated alanine-rich protein kinase C substrate (MARCKS)
[46-48], Phospholipase C beta 4 (PLCB4) [49] and Synaptotagmin
1 (§YT17) [50], because an accumulating number of reports point to
the involvement of impaired neural transmission in the schizo-

Table 1. The list of genes altered by Dysbindin as well as NF-
YB.

) Upiegulated ge@és

Dysbindin  NF-YB
2h 24h 2h  2ah

Gene name

1343 1393 1.234 1409 “Chaperonin containing TCP1, subunit 4 (delta)”
1344 1325 1232 1352
1.296 1406 1485 1394

1315°1476 1261 1295

:,,'Bcpz-éssotiated athanogene
Thymine-DNA glycosylase

nine-rich protein kinase ¢
Homer homolog 3 (Drosophila)
Hypothetical protein MGC2749

Secretagranin Il ( chromograninC)

1355 1550 1430 1434
1411 1400 1368 1224

1238 2037 1368 1259

Dysbindin NF-YB
2h 2ah 2h  24h ‘G’e,nenya'm‘e

Brain protein 44-like

0768 0701 0762 0.642
0747 0649 0757 0677

Jun d/merlzatlén protein 2
Kinesin family membekr 3A
$§r¢6sine deﬁydroge@asg
P)rn;#}:ﬁalmase C beta 2”
5yﬁébtatagmln I

0761 0645 0670 0699
0815 0518 0741 0780
T G
0.763
P

B cell RAG associated protein

Hyﬁoth,étiggl protein FLI39
SEC63-like (S. cerevisiae)
Al gﬁ-llbbiylatloh'llk‘:e, factor 6 Interacting

0.732..0.588.. 0.608 Prothymosih, alpha (gene sequence 28"
0693 0645 0769
0710 0711 0.744
0772 0759 0762 0682
0.833 “ 0651 * 0819 0753

H¢mebdalhain interacting protein kinase 3
Simifar to AV028368 protein

fiéé’omVyo.‘s‘inV 4 S '

Lactate dehydrogenase A

(A) The genes upregulated by the knockdown of Dysbindin that were in
common with those upregulated by the knockdown of NF-YB are listed. The
genes showed by bold and italic format have the CCAAT motif:

(B} The genes downregulated by the knockdown of Dysbindin that were in
common with those downregulated by the knockdown of NF-YB are listed. The
genes showed by bold and italic format have the CCAAT motif.
doi:10.1371/journal.pone.0008773.t001
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phrenia pathology. In addition, we considered the mvolvement of
the genes in psychiatric diseases and we narrow down to
MARCKS [51] and SYT1 [52]. Interestingly, a previous report
suggests the alteration of SYT in schizophrenia patients [52]. The
paper shows increase of SYT! mRINA in younger schizophrenia
patients group, while it shows decrease of SYT1 mRNA in older
schizophrenia patients. These results suggest the complicated and
multiple regulation of SYT1 transcriptional regulation. Thus, we
examined the functional involvement of the Dysbindin-NF-YB
interaction in MARCKS transcription.

To confirm the involvement of the knockdown of Dysbindin or
NF-YB in the upregulation of MARCKS, we performed Western
blot analysis using Dysbindin or NF-YB knockdown SH-
SY5Ycells. Comparing the expression level of the MARCKS
protein with that of control cells, Dysbindin knockdown cells
showed upregulation of MARCKS protein (Figure 3A). To
confirm the effect of Dysbindin on MARCKS in vivo, we examined
the expression of MARCKS protein in the hippocampus with
advancing age of the Dysbindin knockout mice, comparing with
that found in wild-type mice. In the wild-type mice, a peak in
MARCKS protein expression in the hippocampus was identified
at postnatal day 15 and 20 (Figure 3B), and then decreased
markedly over time. However, such a decrease was not observed in
the Dysbindin knockout mice, where large amounts of Dysbindin
protein were still expressed in the hippocampii of older mice
(Figure 3B). These findings suggest that downregulation of
Dysbindin may enhance transcription of the MARCKS gene,
resulting in the upregulation of MARCKS protein.

We performed chromatin IP analysis using SH-SY5Y cells over-
expressing Dysbindin-Flag, to explore the possibility that the
Dysbindin-NF-YB complex could affect the transcription of
MARCKS via interaction with the promoter region of MARCKS.
The cells were stimulated by retinoic acid to induce MARCKS, and
were collected as the samples for chromatin IP. PCR products
from the chromatin IPs suggest that Dysbindin and NF-YB
simultaneously interact with the promoter region of AJARCKS, but
control IgG experiments did not show this result (Figure 3C).

(A) (B)

Dysbindin and Transcription

These findings indicate that the Dysbindin-NF-YB complex
interacts with the promoter region of the AJARCKS gene resulting
in inhibition of AMARCKS transcription.

The Transcriptional Level of the MARCKS Gene Is
Regulated by Dysbindin via the NF-YB Binding Motif,
CCAAT-2

As shown in Figure 4A, the 5'—UTR region of the MARCKS
gene has two kinds of CCAAT sequences; one CCAAT motif
located between UTR —1152 and —700 and the other located
between UTR —700 and —614. In this study, we tentatively
named the former CCAAT sequence “CCAAT-1” and the latter
“CCAAT-2.” It is well known that NF-YB binds to the CCAAT
motif to regulate transcription of target genes. Thus, we examined
whether CCAAT muotifs are essential to the regulation of MARCKS
transcription by means of a luciferase assay, using the following
five vectors containing shorter RNA probes; UTR(1152)-Luc,
UTR (953)-Luc, UTR(700)-Luc, UTR(614)-Luc, and UTR(462)-
Luc (Figure 4A). These constructs were transiently transfected into
SH-SY3Y cells which express Dysbindin and NF-YB endogenous-
ly, and luciferase activity in each cell line was measured 24 hours
after stimulation with retinoic acid. As baseline, we used luciferase
activity detected in the SH-SY5Y cells expressing the UTR(1152)-
Luc after retinoic acid stimulation (Figure 4A). In the cells
transfected with UTR (953)-Luc containing both CCAAT
sequences and UTR(700)-Luc containing the CCAAT-1 sequence
but lacking the CCAAT-2 sequence, luciferase activity remained
at baseline level after stimulation with retinoic acid (Figure 4A).
However, luciferase activity was markedly increased in the cells
expressing UTR(614)-Luc after retinoic acid stimulation
(Figure 4A). These results suggest that the CCAAT-2 motif plays
an important role in inhibition of AARCKS transcription.
Furthermore, the SH-SY5Y cells transfected with UTR(462)-Luc
lacking CCAAT-1, CCAAT-2 and the Spl region showed very
low luciferase activity (Figure 4A), indicating that Spl is
indispensable for MARCKS transcription.

©

o S WT KO
c‘?@é & S 005 1)
MARCKS = s wer Q Dysbindin -
~r-ve R
£20, oG I
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[fE .17 ..é 0.6 wasmn \WT \
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Figure 3. The effects of Dysbindin on MARCKS expression levels. (A) SH-SYSY cells were transfected with scrambled siRNA or siRNA for
Dysbindin. Cell lysate’ of non-treated cells (Cont.), scrambled RNAi-transfected celis (Scr) and RNAi for Dysbindin-transfected cells (siRNA) were
subjected to Western blot with anti-MARCKS antibody. Columns and vertical bars denote the means =+ SEM (triplicate independent experiments).
Dysbindin knockdown cells exhibited. significant reduction of MARCKS expression compared with control cells (P<0.001, Student's t-test). (B)
Hippocampus lysates were collected from wild-type mice or Dysbindin KO mice at P15, P20 and P45, The lysates were subjected to Western blot with
anti-MARCKS antibody. Graphs and vertical bars denote the means. + SEM (triplicate independent experiments). At P45, Wild-type mice showed
significant decreased MARCKS. expression, while Dysbindin KO mice showed a maintained MARCKS expression. These data were confirmed by
triplicate independent experiments (P<<0.01, Student’s t-test). (C)Chromatin IP (ChiP) was performed using SH-SY5Y cells under the stimulation of
retinoic acid. The promoter region of MARCKS was detected both in the IPs of anti-Dysbindin antibody (1** panel) and those of anti-NF-YB antibody
(2" panel), but not in the IPs of IgG (3™ panel).

doi:10.1371/journal.pone.0008773.g003
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Figure 4. Dysbindin regulates the transcription of MARCKS via the CCAAT2 sequence. (A} The following five vectors were used for
luciferase assay, containing shorter DNA probes; UTR(1152)-Luc; UTR (953)-Luc, UTR(700)-Luc, UTR(614)-Luc, and UTR(462)-Luc, were transfected into
SH-SY5Y cells and Luciferase activity was measured. UTR(614), which facks CCAAT1, showed incréased luciferase activity. The luciferase activity of
UTR(1152) was used as control. Columns and vertical bars denote the means % SEM (triplicate independent experiments). (B) UTR(1152)-Lu¢ vector
and deleted or point mutation of UTR(1152)-Luc vectors, [D1-UTR(1152)-Luc], [D2-UTR(1152)-Luc], [D3-UTR(1152)-Luc] [D4-UTR(1152)-Luc] and [M-
UTR(1152)-Luc], were transfected into. SH-SY5Y cells and' Luciferase activity was measured. [D4-UTR(1152)-Luc], which. lacks CCAAT2, and [M-
UTR(1152)-Luc]; which has a point mutation in the CCAAT2 sequence, showed increased luciferase activity, The luciferase activity of UTR(1152) was
used as the control. Columns and vertical bars denote the means = SEM (triplicate independent experiments). (C and D) Scrambled RNAi-transfected
SH-SY5Y cells ‘and Dysbindin: RNAi-transfected : SH-SY5Y cells were transfected with the UTR(1152)-Luc vector {C) or D4-UTR(1152)-Luc (D) and
Luciferase activity was measured. UTR(1152)-Luc vector-expressing cells showed the effect of Dysbindin expression levels on liiciferase activity, but
D4-UTR(1152)-Luc expressing. cells did not. Columns and vertical bars denote the means + SEM (triplicate independent experiments; P<0.001,
Student’s t-test).

doi:10.1371/journal.pone.0008773.g004

To confirm that the CCAAT-2 region is important in regulation Luc, D2-UTR(1152)-Luc which lacks the Spl. region and
of MARCKS transcription, we prepared several probes. for the downstream sequence . from . UTR(1152)-Luc, D3-UTR(1152)-
luciferase assay; D1-UTR(1152)-Luc which lacks the CCAAT-2 Luc which lacks only sequence downstream of the Spl region,
motif and its downstream region including Sp! from UTR(1152)- D4-UTR(1152)-Luc which lacks only the CCAAT-2 motif from
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UTR(1152)-Luc, and M-UTR(1152)-Luc which has a point
mutation in the CCAAT-2 motif (Figure 4B). Luciferase activity
was detected from the SH-SY3Y cells transfected with each probe,
and luciferase activity detected in the cells transfected with
UTR(1152)-Luc was used as the baseline value (Figure 4B). Cells
transfected with M-UTR(1152)-Luc and those transfected with
D4-UTR(1152)-Luc exhibited marked increases in luciferase
activity (Figure 4B), showing that the CCAAT-2 motif plays a
key role in inhibition of MARCKS transcription. Furthermore, cells
expressing D1-UTR(1152)-Luc, D2-UTR(1152)-Luc or D3-
UTR(1152)-Luc exhibited no luciferase activity. These findings
suggest that the sequence downstream of the Spl region, as well as
the Spl region itself, is indispensable for AMARCKS transcription.

To confirm the involvement of Dysbindin in the altered
MARCKS transcription levels wia the CCAAT-2 motif, we
compared the luciferase activity of UTR(1152)-Luc detected in
Dysbindin knockdown cells with that of control cells. As shown in
Figure 4C, knockdown of Dysbindin resulted in upregulation of
luciferase activity in the UTR(1152)-Luc transfected cells.
However, the effect of knockdown of Dysbindin on luciferase
activity was not observed in the DI-UTR(1152)-Luc transfected
cells (Figure 4D). These results suggest that Dysbindin regulates
MARCKS transcription via the CCAAT?2 motif; the NF-YB binding
site. On the other hand, since negligible levels of luciferase activity
were observed in cells transfected with any of the probes lacking
the sequence downstream of the Spl region, the sequence
downstream of Spl appears to be essential for AMARCKS
transcription (Figure 4A and 4B).

Discussion

Numerous reports support the role of Dysbindin in the etiology
of schizophrenia [13,30,37,53-60]. Previous studies have reported
a decrease in Dysbindin expression in the brains of schizophrenic
patients both at the mRNA and protein levels [26,27]. However,
the functional involvement of Dysbindin in the neural system is not
yet well elucidated. In this study, we examined involvement of
Dysbindin in neural transmission and neural formation uia
transcriptional regulation, because abnormalities in these neural
processes are very important in the pathogenesis of schizophrenia.

Regulation of MARCKS Transcription by the Dysbindin/
NF-YB Interaction

As a result of the yeast-two-hybrid assay and immunoprecip-
itation assay, we revealed an interaction between NF-YB and
Dysbindin (Figure 1 and 2). In addition, we showed the binding of
NF-YB and Dysbindin to the AMARCKS promoter region
(Figure 3C). These findings suggest involvement of this complex
in transcriptional regulation of MARCKS. As shown in Figure 4,
we found two CCAAT sequence motifs at the 5'—UTR of the
MARCKS gene. Previous reports:show. that members of the NF-Y
family including NF-YB bind to CCAAT sequences and " can
regulate transcription’of a number of genes. Our results suggest
that one of the CCAAT sequences, CCAAT-2, is’ important for
MARCKS transcriptional regulation. On the other hand, our
luciferase assay results suggest that both the Spl region. and the
sequence downstream of Spl. are. indispensable for: MARCKS
transcription (Figure 4A and 4B).

Dysbindin Knockdown Increases MARCKS Protein Levels
In Vivo and In Vitro

In accordance with the: enhanced MARCKS' transcription
mediated by the knockdown of Dysbindin, Dysbindin knockdown
cells show increased MARCKS levels (Figure 3A). Next, we
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examined the expression level of MARCKS in Dysbindin
knockout mice. As shown in Figure 3b, in the wild-type mouse
brain the peak in MARCKS expression is at postnatal day 15;
thereafter decreasing markedly with advancing age until only low
levels of MARCKS expression are seen in adults (P45).
Comparable alternations in MARCKS expression were also
observed in another mouse line, ICR (data not shown). These
findings support the hypothesis that MARCKS plays an important
role in brain development. However, in the Dysbindin knockout
mice, there is no effect on MARCKS expression during the
developmental stage, when MARCKS is abundantly expressed in
wild-type mice. During this stage, MARCKS transcription may be
regulated by multiple molecules, which compensate for the lack of
Dysbindin. With ' increasing age of the mouse, MARCKS
expression decreases gradually to a low level of expression in
adults (Figure 3b). In contrast, a decrease in MARCKS expression
was not observed in Dysbindin knockout mice (Figure 3b) and
even in adult mice brains, a high level of expression of MARCKS
was detected. These findings show that Dysbindin likely plays a
major role in regulation of MARCKS expression in the adult
brain, in contrast to in the developmental stage. Therefore,
considering the results in Dysbindin knockout mice, it is likely that
MARCKS is expressed at high levels in schizophrenic brains,
compared with age-matched control brains.

MARCKS and Neural Transmission

It has been shown that MARCKS impacts on neurotransmis-
sion #wa F-actin and on vesicular transport »a synaptic vesicles
[46-48]. Furthermore, many reports indicate that dopaminergic
transmission is increased. in the brains of schizophrenics [1-4].
Dopamine D2 antagonists are an effective treatment in schizo-
phrenia, and dopamine-enhancing drugs mimic psychotic symp-
toms: of schizophrenia. In the schizophrenic brain, the expression
of Dysbindin is decreased, resulting in an increase in MARCKS
protein expression, which impacts on neurotransmission. Further-
more, we found that decreases in Dysbindin levels upregulate
dopamine release [39]. Therefore, the enhanced dopaminergic
transmission produced by the lower expression level of Dysbindin
may be partially attributable to activation of MARCKS. Thus, the
impairment of neural transmission in the schizophrenic brain may
be caused by alterations of MARCKS expression levels v changes
in Dysbindin.

Dysbindin May Regulate Neural Formation via Alteration
of MARCKS Levels

Many studies support the hypothesis that schizophrenia is a
neurodevelopmental disease. Disrupted-In  Schizophrenia 1
(DISC1) is.a gene disrupted by a (1;1) (q42.1; q14.3) translocation
that 'segregates -~ with major: psychiatric - disorders;  including
schizophrénia  in - a Scottish - family [61,62]. Previously,  we
examined the physiological  role -of the molecular complex
composed of DISC1 and its interacting partners, Fasciculation
and elongation protein zeta 1. (Fezl) [63] and DISC1-Binding Zinc
finger protein (DBZ)[64]. Both the DISC1-Fezl mteraction and
the DISC1-DBZ: interaction are: involved in neurite extension.
These reports suggest  that abnormialities in the schizophrenia
susceptibility genes, such as DISCI, likely cause an impairment of
brain development resulting in schizophrenia. In addition, several
reports suggest that the PKC signal is involved in psychiatric
disorders, as well as other signals such as ERK, which play
important roles in neural development. In addition, we previously
showed' the importarice of Dysbindin for growth cone formation
[40]. “These “previous reports suggest that abnormal neural
formation could cause psychiatric disorders and that Dysbindin
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may be one of the important factors in normal neural
development. In this study, we demonstrate the transcriptional
regulation of MARCKS wia Dysbindin and the upregulation of
MARCKS by downregulation of Dysbindin. Since MARCKS is
involved not only in neural transmission*® but also in neural
developmental processes such as synaptogenesis and maintaining
spine morphology [46,47], these results suggest that dysfunction of
Dysbindin likely causes the upregulation of MARCKS and may
induce abnormal development of the nervous system via alterations
of MARCKS levels.

Thus, in this paper, we report the following findings; (1)
Dysbindin interacts with NF-YB, {2) NF-YB and Dysbindin bind
to the promoter region of MARCKS, (3) one of the CCAAT
sequences is likely essential for the transcriptional regulation of
MARCKS and (4) the downregulation of Dysbindin upregulates
the expression of MARCKS in vitro and in vive. On the other hand,
we previously showed that Dysbindin knockout mice exhibit
schizophrenia-like behavior and abnormalities of the dopaminer-
gic system. These phenotypes may be at least partly attributable to
over-activation of MARCKS wvia a decrease in Dysbindin levels.

In conclusion, these results may help shed some light on the
causes of schizophrenia, and indicate that the transcriptional
regulation of Dyshindin may contribute to schizophrenia. Further
studies of Dysbindin and its association with MARCKS
and with schizophrenia may reveal novel treatment targets for
schizophrenia.

Materials and Methods

Antibodies

Monoclonal anti-Dysbindin antibody was produced. Briefly,
GST-fused human Dysbindin was used as antigen and the
Dysbindin protein for ELISA was made by thrombin digestion
of GST-Dysbindin. High-titer clones for Dysbindin were selected
by ELISA using the Dysbindin protein and the immunoreactivity
of the clones was checked by Western blot. Antibodies of anti-GFP
(Santa Cruz Biotechnology, Santa Cruz, CA), anti-Flag (Sigma-
Aldrich, St Louis, MO), anti-V5 (Invitrogen), anti-B-actin
(Chemicon International, Temecula, CA), anti-NF-YB. (Santa
Cruz Biotechnology), anti-MARCKS (Upstate), HRP-conjugated
anti-mouse and Rabbit IgG (Cell Signaling Technology, Beverly,
MA), and mouse normal IgG (Sigma-Aldrich) were purchased
commercially.

Plasmids

We previously constructed the pEGFP-C1 expression vector
(Clontech) carrying the full-length human Dysbindin cDNA (-GFP
is tagged to N-terminal) [22]. The human Dysbindin-V5 (-V5 is
tagged to C-terminal), Dysbindin-FLAG (-FLAG'is tagged to: N-
terminal) and NF-YB moieties  were-amplified from a human
brain ¢<DINA library using PCR and subcloned into pcDNA3.1 (+)
expression vector (Invitrogen, Carlsbad; CA). Dyshindin and NF-
YB were amplified using rTaq DNA polymerase '(Takara Bio
Inc., Kyoto, Japan) with the following primer set: Dysbindin-V3,
5'—~CTCGAGTTACGTAGAATCGAGACCGAGGAGAGGG-
TTAGGGATAGGCTTACCAGAGTCGCTGTCCTCACC—3'-
(forward) and 5'~GGTACCGCCACCATGCTGGAGACCCT-
TCGCGA—3' (reverse); NF-YB, 5'—~GCTAGCGCCACCAT-
GACAATGGATGGTGACAGTTCT=3' (forward) and 5'—G-
ATATCTGAAAACTGAATTTGCTGAAC—3' (reverse). The
amplified fragments were TA cloned into the pGEM-T vector
(Promega Corp.).

pMARCKS-Luc(—1152) was generated by subcloning promot-
ers into pGL3-(R2.2) Basic (Promega). We generated 5’ deletion
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constructs of pMARCKS-Luc(—1152) and an internal deletion
construct of the region —700~—1. Other deletion constructs of
the region (—231~—150) and point mutation constructs of
pMARCKS-Luc/dl(—204~—187), were generated by inserting
double-stranded oligonucleotides (Figure 2B and 2D). The plasmid
pPMARCKS-Luc{—736/mt) was generated by site-directed muta-
genesis, which changed the same nucleotides as those of mutant 5.

Cell Culture

Human neuroblastoma SH-SY5Y cells were obtained from the
Human Science Research Resources Bank (HSRRB). These cells
were maintained in tissue culture dishes (Nalge Nunc, Rochester,
NY, USA) in 50% minimal essential medium (Invitrogen) /50% F-
12 (Invitrogen) containing 15% heat-inactivated fetal bovine
serum (Invitrogen) at 37°C in an atmosphere of 95% air /5%
COa,.

Animals

sdy mice (Dysbindin KO mice) and wild-type littermates were
provided by the Takeda lab, Department of Psychiatry, Osaka
University Graduate School of Medicine. The mice were deeply
anesthetized with sodium pentobarbital. Brains (hippocampus)
were dissected from each aged mouse. All animal experiments
were carried out in accordance with a protocol approved by the
Institutional Animal Care and Use Committee of Osaka
University.

Immunocytochemistry

SY5Y cells were grown on poly-l-lysine-coated four-well
chamber dishes at a density of 3x10* cells/cm®. The cells were
fixed in 2% paraformaldehyde in 0.1 M PBS, permeabilized, and
blocked with 0.02 M PBS containing 0.3% Triton X-100, 3% BSA
and 10% goat serum for 30 min at room temperature, and then
incubated with antibodies specific for the individual protein.
Confocal microscopy was performed using a Carl Zeiss LSM-510
confocal microscope.

Fractionation Assay

Cells were collected after washing with ice-cold PBS. Cells and
brains were homogenized in Tris buffer (20 mM Tris-HCI,
pH 7.8, 1 mM EDTA, 150 mM NaCl and protease inhibitor
cocktail (Roche)). After homogenization, the homogenized pro-
teins were lysed by the addition of 0.5% NP-40 for 30 min on ice
and centrifuged at 500 xg for 10 min to collect the nuclear pellet.
The supernatant was collected as the cytosolic fraction.

Immunoprecipitation (IP)

After washing cells with ice-cold PBS, cells were collected and
resuspended in 1 mL lysis buffer (20 mM Tris-HCI, pH 7.8, 0.2%
NP-40, 1 mM EDTA, 150 mM NaCl and protease inhibitor
cocktail (Roche)). Cells were frozen in dry ice/EtOH and stored at
—80°C. Cell lysates were incubated on ice for 30 min and then
centrifuged for 5 min at 13,600%g" After centrifugation, the
supernatants were precleared with protein Sepharose G beads and
IP 'was carried out in lysis buffer  with antibody/protein G
Sepharose beads for I h at 4°C. After washing in lysis buffer,
immunoprecipitated proteins were immunoblotted.

Immunoblotting

Aliquots of whole cell lysates: or IP lysates separated by SDS-
PAGE were blotted onto an Immobilon-P membrane (Millipore),
and then incubated with antibodies specific for individual protein.
Proteins were detected by ECL plus Western Blotting Detection
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System (GE Healthcare), followed by exposure to X-ray films
according to the manufacturer’s protocol.

Knockdown Experiment Using Small Interfering RNA
(siRNA}

Stealth siRINA against Dysbindin (5' —CCAAAGUACUCUG-
CUGGAUUAGAAU-3 and 5 —GCUCCCAGCUUUA-
AUCGCAGACUUA—-3" ), NF-YB 5'-UACUGAGGACAG-
CAUGAAUGAUCAU—3', and negative control duplexes (scram-
bled siRNA for Dysbindin, 5'—CCATGATCTCGTCGTTA-
GAAAGAAA-3' and 5 —GCTACCGTTATTAGCACAGCC-
CTTA—3' ; and scrambled siRNA for NF-YB, 5'~UACGGAA-
CAACGAGUGUAUAUGCAU-3" ) were provided by Invitrogen
Corp. SY5Y cells were transfected with 100 pM of each siRINA and
scrambled siRNA using Lipofectamine 2000 (Invitrogen Corp.)
according to the manufacturer’s instructions.

RNA Extracts and Microarray

Total RNA was extracted from cells using RNeasy columns
(Qiagen) according to the manufacturer’s nstructions. Five
hundred nanograms of total RNA from control and experimental
cells was separately amplified and labeled with either Cy3- or Cy5-
labeled CTP (Perkin Elmer) with an Agilent low input linear
amplification kit (Agilent Technologies) according to manufactur-
er’s instructions. After labeling and cleanup, amplified RINA was
quantified by UV-vis spectroscopy. One microgram each of Cy3-
and CyS-labeled targets were combined and hybridized with a
Whole Human Genome Oligo Microarray Kit (G4112F)according
to the manufacturer’s instructions. Three biological replicates were
used at each time point with one of the replicates being a dye
reversal of the other two. Microarrays were imaged on a Hitachi
image scanner and data analyzed with GeneSpring 6 (Silicon
Genetics).

Chromatin Immunoprecipitation (ChIP) Assay

ChlP analysis was performed using a Chromatin Immunopre-
cipitation Assay Kit (Upstate Biotechnology) according to the
manufacturer’s instructions. Briefly, protein—DNA complexes
were crosslinked with 1% formaldehyde (10 min at room

References

1. Garver DL (2006) Evolution of antipsychotic intervention in the schizophrenic
psychosis. Curr Drug Targets 7(9): 120531215,

2. Lewis DA, Gonzalez-Burgos G (2006) Pathophysiologically based treatment
interventions in schizophrenia. Nat Med 12(9): 10161022,

3. Ross CA, Margolis' RL, Reading SA, Pletikov M, Coyle JT (2006)
Neurobiology of schizophrenia. Neuron 52(1): 139-153.

4. Mouri A, Noda Y, Enomoto T, Nabeshima T (2007) Phencyclidine animal
models of schizophrenia: approaches from abnormality of glutamatergic
neurotransmission and neurodevelopment. Neurochem Int 51(2-4): 173-184.

. CATIE (Clinical Antipsychotic Trials of Intervention Effectiveness) investigators
(2005) Effectiveness of antipsychotic drugs in patients with chronic schizophre-
nia. N Engl J Med 333:1209-1223.

6. Coyle  JT (2006} Glutamate and' schizophrenia: Beyond the dopamine
hypothesis. Cell Mol Neurobiol 26(4-6): 365-384.

7. Lau CG, Zukin RS (2007) NMDA receptor trafficking in synaptic plasticity and
neuropsychiatri¢ disorders. Nat Rev Neurosci 8(6): 413-26.

8. Li B, Woo RS, Mei L, Malinow R (2007) The neuregulin-1 receptor erbB4
controls glutamatergic synapse maturation and plasticity. Neuron 34{4): 583-97.

9. Moghaddam B (2003} Bringing order to the glutamate chaos in schizophrenia.
Neuron 40: 881-884.

10. Snyder SH (2006) Dopamine receptor excess and mouse madness. Neuron 49
484-485.

11. Stephan KE, Baldeweg T, Friston K] (2006) Synapiic plasticity and
dysconnection in schizophrenia. Biol Psychiatry 39(10): 929-39.

12: Straub RE, Jiang Y, MacLean GJ, Ma Y; Webb BT, et al. (2002} Genetic
variation. in the 6p22.3 gene DTNBPI, the human ortholog of the mouse
dysbindin gene, is associated with schizophrenia. Am J Hum Genet 71: 337-348.

13. Schwab SG, Knapp M, Mondabon'S, Hallmayer J, Borrmann-Hassenbach M,
et al. (2003} Support for association of schizophrenia with genetic variation in

w

@ PLoS ONE | www.plosone.org

Dysbindin and Transcription

temperature) and cells were harvested. DNA was sonicated to
lengths of 500—1000 bp. Antibodies specific for individual protein
were used for immunoprecipitating protein-DNA  complexes
overnight at 4°C. PCR was performed with individual specific
primer sets for the MARCKS promoter: the proximal CCAAT
region, 5'—GGTTTGCTCTTTGATGCTCTTGAT—-3' and
5'—ACTTTCGGGTGGGGTGTAA~3'

Reporter Assay

Reporter plasmids were transfected into cells using Lipofecta-
mine 2000 (Invitrogen) together with phRG-TK (Renilla reporter
for internal control) which monitored transfection efficiency.
Luciferase activities were assayed using the Dual Luciferase Assay
System (Promega). All assays were performed three times in
duplicate and values are shown as means * SD.

Supporting Information

Figure 81 The preparation of mRINAs for microarray analysis.
{(A-(a) and B-(a)) To prepare RNAs for microarrays analysis, we
transfected the siRNA for Dysbindin, NF-YB, or scrambled as a
control. The effect of each RINAi was confirmed by Western blot
using the antibody for Dysbindin or NF-YB. (A-(b) and B-(b)) The
columns and vertical bars denote the means + SEM (triplicate
independent experiments; P<<0.001, Student’s t-test). Dyshindin or
NF-YB was knocked-down significantly by transfection of the
siRNA for Dysbindin or NF-YB, compared with the control.

Found at: doi:10.1371/journal pone.0008773.5001 (1.10 MB EPS)
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Abstract

Pituitary adenylate cyclase-activating polypeptide (PACAP) is involved in multiple brain functions. To clarify the cause of
abnormal behavior in PACAP deficient-mice, we attempted the identification of genes whose expression was altered in the
dentate gyrus of PACAP-deficient mice using the differential display method. Expression of stathmin1 was up-regulated in
the dentate gyrus at both the mRNA and protein levels. PACAP stimulation inhibited stathmin1 expression in PC12 cells,
while increased stathminlexpression in neurons of the subgranular zone and in primary cultured hippocampal neurons
induced abnormal arborization of axons. We also investigated the pathways involved in PACAP deficiency. Ascl1 binds to
E10 box of the stathmin1 promoter and increases stathmin1 expression. Inhibitory bHLH proteins (Hes1 and 1d3) were
rapidly up-regulated by PACAP stimulation, and Hes1 could suppress Ascl1 expression and 1d3 could inhibit Ascl1 signaling.
We also detected an increase of stathmin1 expression in the brains of schizophrenic patients. These results suggest that up-
regulation of stathmin1 in the dentate gyrus, secondary to PACAP deficiency, may create abnormal neuronal circuits that
cause abnormal behavior.
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Introduction

PACAP is a neuropeptide that is expressed in the brain as well
as in the neurons of a number of peripheral organs and it is
involved in various neurobiological functions, such as neurotrans-
mission and neural plasticity [1,2]. It also has a neurotrophic effect
via three heptahelical G protein-coupled receptors, one of which is
specific for PACAP (PAC, receptor) and two others that are
shared with vasoactive intestinal polypeptide (VPAC, and VPAC,
receptors) [3]. Recently, mice that lack Adcyapl, the gene encoding
PACAP, (ddeyapl ™'~ mice) were developed [2,4]. Adeyapl™"~
mice display remarkable behavioral abnormalities providing
evidence that PACAP plays a previously uncharacterized role in
the regulation of psychomotor behavior. When placed into a novel
environment, such as an open field, the mutants display
significantly increased locomotor activity with minimal time spent
habituating themselves to the environment, and less time engaged
in licking and grooming behavior. The mutants also show
explosive jumping behavior in the open field and increased
exploratory behavior [2,5]. These behavioral abnormalities may
be due to perturbation of monoamine neurotransmission because
serotonin metabolite 5-hydroxyindoleacetic acid is slightly de-
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creased in the cerebral cortex and striatum of PACAP-deficient
mice, and hyperactive behavior is ameliorated by the antipsychotic
drug, haloperidol [2]. In addition, the jumping behavior is
suppressed by drugs that elevate extracellular serotonin, such as
the selective serotonin reuptake inhibitors [6]. Adcyapl ™'~ mice
also showed increased immobility in a forced swimming test,
which was reduced by the antidepressant, desipramine [7]. In
addition it is known that PAC-deficient mice exhibit reduced
social behavior [8]. And, it is also known that PAC)-deficient mice
exhibit increased fear conditioning and a reduction of LTP [9]. A
previous association study reported that several single nucleotide
polymorphisms (SNPs) in the vicinity of the PACAP gene locus
were associated with schizophrenia [10]. However, none of
genome wide association studies showed association of this gene
with schizophrenia [11]. Disrupted-In-Schizophrenia 1 (DISCI) has
been identified as a potential susceptibility gene for major
psychiatric disorders [12,13]. We previously identified several
DISCl-interacting factors [14,15,16]. DISC1-binding zinc finger
protein (DBZ) is one of these factors. We found that PACAP up-
regulates DISC:1 expression and markedly reduced the association
of DISC1 with DBZ in PC12 cells, and that a DISCI-binding
domain of DBZ reduces neurite length in PC12 cells following
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