mutations which cause aberrant splicing by activating cryptic splice sites within their
exons [15,24].

We herein report a novel exonic mutation—c.951C>T (the 11th nucleotide in
exon 10). It was first regarded to be a silent mutation, D317D, but was associated with
exon 10 skipping in ¢cDNA analysis. The ¢.951C nucleotide is located in a possible
exonic splicing enhancer sequence, SF2/ASF, and C>T substitution results in a
deviation from its consensus sequence. We showed by a minigene splicing experiment
that the substitutions in this exonic splicing enhancer caused exon 10 skipping.

MATERIALS AND METHODS

Case Report

The patient (GK64), a female, was born to non-consanguineous Japanese parents. She
was well until 7 months of age when she presented with a one-week history of coughing
and appetite loss. She developed convulsions and was admitted to a hospital.
Laboratory findings showed blood pH 6.769, bicarbonate 2.8 mmol/L, base excess
-28.2 mmol/L, ammonia 213 umol/L, and blood glucose 0.45 mmol/L.  She was
referred to the National Center for Child Health and Development on a mechanical
ventilation support. Urinary organic acid analysis at the time of crisis showed huge
amounts of acetoacetate and 3-hydroxybutyrate with dicarboxylic acids;
2-methyl-3-hydroxybutyrate and tiglylglycine were not evident at that time. She was
successfully treated by intravenous glucose infusion. Later, she had an upper
respiratory infection and her urinary ketone was 2+ at the age of 8 months. At that time,
urinary organic acid analysis showed the presence of 2-methyl-3-hydroxybutyrate.
However, tiglylglycine, another characteristic urinary organic acid in T2 deficiency, was
not detected. Skin biopsy and a fibroblast culture were performed and finally she was
diagnosed as having T2 deficiency by enzyme assay.

Cell culture, enzyme assay and immunoblot analysis

The fibroblasts were cultured in Eagle's minimum essential medium
containing 10% fetal calf serum. Acetoacetyl-CoA thiolase activity was assayed, as
described in [26]. Immunoblot analysis was done, as described in [27].

Mutation detection

Genomic DNA was purified from the fibroblasts with Sepa Gene kits = (Sanko
Junyaku, Tokyo, Japan). Mutation screening was performed at the genomic level by
PCR and direct sequencing using a primer set for 12 fragments including an exon and
its intron boundaries [13]. RNA was prepared from the fibroblasts using an ISOGEN kit
(Nippon Gene, Tokyo, Japan). RT-PCR and sequencing after subcloning into a pGEM-T
Easy vector (Promega, Madison, USA) were performed as described previously [7],
except for the following point. A full-coding sequence of human T2 cDNA was
amplified as a single fragment using a sense  primer (5-
“AGTCTACGCCTGTGGAGCCGA™-3") and an antisense primer
(5°-"TTCTGGTCACATAGGGTT"*-3").

Transient expression analyses




Transient expression analysis of T2 ¢cDNAs was done using a pCAGGS
eukaryote expression vector [28], as described in [19]. After transfection, the cells were
further cultured at 37°C for 72 hr, and then they were harvested and kept at -80°C until
use. The cells were freeze-thawed and sonicated in 50 mM sodium phosphate (pH 8.0),
0.1% Triton X-100. After centrifugation at 10,000 x g for 10 min, the supernatant was
used in an enzyme assay for acetoacetyl-CoA thiolase activity and for immunoblot
analysis.

Splicing experiment

A fragment (about 4 kb long) from the middle part of exon 9 to the middle
part of exon 11 was amplified by Phusion DNA polymerase (New England BioLabs,
Ipswich, USA) using control genomic DNA. The primers used in this amplification
included the EcoR I linker sequence, as follows:

Ex 9 (EcoR I) primer (exon 9, sense) 5 -cagctgcgaatt®?CCAGTA
CACTGAATGATGGAGCAGCT®”-3’

Ex 11 (EcoR I) primer (exon 11, antisense) 5 -cctccattggaatt''?CACTTTT
TGGGGATCAATCT"®-3,

The amplified fragment, after digestion with EcoR 1, was subcloned into an EcoR 1 site
of the pCAGGS expression vector from which the Hind III and Pst I sites were deleted.
The subcloned PCR fragment did not contain PCR errors, at least in the sequence of
exon 9, the 3> and 5’ splice sites of intron 9, exon 10, the 3* and 5’ splice sites of intron
10, and exon 11. We deleted about a 0.5-kb Hind I1I-Pst I inner fragment in intron 9
and a 1.1-kb Hind III-Pst I inner fragment in intron 10 to reduce the minigene construct
length. In order to make an mutant construct, in vitro mutagenesis was done on the
wild-type fragment in the pUC118 vector, and then the mutant fragment was subcloned
into the pCAGGS expression vector as a cassette of an about 870-bp Pst I-Hind III
fragment including exon 10. We made three mutant constructs which altered the
SF2/ASF site (¢.947C>T, ¢.951C>T, and ¢.952G>A). Moreover, we also made 3 further
mutant constructs with additional substitution of ¢.941G for C at the first nucleotide of
exon 10.

Two pg of these expression vectors were transfected into 5X10° cells of
SV40-transformed fibroblasts using Lipofectamine 2000. At 48 hours after transfection,
RNA was extracted from the cells. The first strand cDNA was transcribed with a rabbit
B-globin-specific antisense primer (B-glo2) (5’-*'AGCCACCACCTTCTGATA -3’) and
then amplified with the Ex10 (EcoRI) primer on T2 exon 10, and another
rabbit-specific antisense primer (B-glo3) ( 5-**GGCAGCCTGCACCTGAGGAGT
-3’) to amplify the chimera cDNA of human T2 and rabbit B-globin.

Allele-specific RT-PCR

We performed allele specific RT-PCR using mismatched primers:

¢. 556G allele (D186)-specific ~sense  primer, 5 TTTGATTGTAAAA
GACGGGCTATCTG>*-3’

c.  556T allele (Y186)-specific ~ sense - primer, 5-"°TTTGATTGTAAAA
GACGGGCTATCTT>*-3’

The bold G or T represents the D186Y mutation site of ¢.556G > A. The underlined

T indicates a mismatch introduced to the 4th nucleotide to = assist



allele-specific-RT-PCR.

Antisense primer 5’-'“*GGCTTCTTTACTTCCCACATTGCA'™'-3’

cDNA with exon 10 gave a 535-bp fragment and cDNA with exon 10 skipping gave a
470-bp fragment.

RESULTS and DISCUSSION
Enzyme assay and immunoblot analysis

Potassium-ion-activated acetoacetyl-CoA thiolase activity was
absent in GK64’s fibroblasts (-K* 3.8, +K* 3.9 nmol/min/mg of protein; Control
fibroblasts -K* 4.7, +K* 7.8 nmol/min/mg of protein), confirming the diagnosis of T2
deficiency. Succinyl-CoA:3-ketoacid CoA transferase activity was 6.3 nmol/min/mg of
protein (control fibroblasts 5.6 nmol/min/mg of protein). In immunoblot analysis,
GK64's fibroblasts had a reduced but significant amout of T2 protein (Fig.1). We then
performed immunoblot analysis using twofold serially diluted samples of two controls
and GK64’s fibroblasts from 30 to 3.75 ug. The relative amount of T2 protein in GK64
fibroblasts were estimated to be 25 % of controls (data not shown).

Mutation screening at the genomic level and cDNA level.

Routine genomic PCR and sequencing of exons 1~12 identified two
nucleotide substitutions, ¢.556G>T(D186Y) in exon 6 and ¢.951C>T(D317D) in exon
10. Both ¢.556G>T and ¢.951C>T were noverl nucleotide substitutions in the T2 gene.
No further mutations were identified by genomic mutation screening. Since the latter
substit.  <n does not alter amino acid, we performed RT-PCR analysis. A full-coding
region svas amplified using a pair of primers on a 5 -noncoding-region and a
3’-non-coding region, allowing one to show the segregation of these two substitutions.
After subcloning, 8 clones had ¢.556G>T(D186Y) but not c.951C>T(D317D). Two
clones had exon 10 skipping without ¢.556G>T(D186Y) . The exon 10 skipping causes
a frame shift and premature termination at ¢.1011TAA. We re-sequenced the genomic
region around exon 10 (IVS8-88~IVS9+44) again, but only ¢.951C>T(D317D) was
detected. We regarded ¢.951C>T(D317D) , the 11™ nucleotide of exon 10, as the cause
of exon 10 skipping which was detected in GK64’s cDNA. Since the splice acceptor site
of intron 9 might be weak because of the first nucleotide of exon 10 being C, we
hypothesized that exonic splicing enhancer (ESE) sequences would be necessary for
accurate exon recognition of exon 10 and that ¢.951C>T might disrupt the exonic
splicing enhancer and result in exon 10 skipping.

Transient expression analysis of D186Y mutant cDNA

Transfection of wild-type T2 ¢cDNA gave a high acetoacetyl-CoA thiolase
activity in the presence of potassium ion. Transfection of D186Y mutant cDNA gave
no significant thiolase activity compared with mock cDNA transfection (Fig. 2A)
Immunoblot analysis showed that mutant D186Y protein was detected with 1/3 fold
amount of wild-type protein (Fig.2B). These results indicate that the D186Y mutant
protein is a stable protein but retains no residual activity. Even when incubation was
done at a lower temperature (30 °C) after transfection, no residual T2 activity was
detected (data not shown). This result confirmed that the D186Y mutation is a causative
mutation in one allele, and is consistent with the fact that GK64’s fibroblasts had T2




protein with about a 1/4 fold amount of controls’.

Searches for exonic splicing enhancer

We searched the possible ESE sequences which can be affected by ¢.951C>T,
using ESE finder 3.0 (http:/rulai.cshl.edu/cgi-bin/tools/ESE3/esefinder.cgi?process
=home) [30-31] and found that this mutated site, ¢.951 C>T, was located in a possible
SF2/ASF site, ¢.947CTGA951CGC (7th~13th nucleotides in exon 10). The substitution
made a deviation from the consensus sequence of SF2/ASF, as shown in Fig. 3A.

Mini gene splicing constructs

We previously successfully performed minigene splicing experiments using a
pCAGGS expression vector (8, 24, 29]. Since our minigene construct produces human
T2-rabbit B-globin fusion mRNA, we could amplify this specific mRNA by RT-PCR
using a combination of a human T2 sense primer and a rabbit 3-globin antisense primer.
We made a minigene construct including exon 9-truncated intron 9-exon 10-truncated
intron 10-exon 11 for a splicing experiment, as shown in Fig. 3B. We made the
¢.951C>T mutant constructs and two additional mutant constructs (c.947C>T or
¢.952G>A) which also altered the SF2/ASF site, as shown in Fig. 3A° We hypothesized
that the exonic splicing enhancer is necessary for accurate splicing since the first
nucleotide of exon 10 is C, which weakens the splice acceptor site of intron 9. Hence,
we made three constructs with an additional substitution of 941G for C at the first
nucleotide of exon 10 to strengthen the splice acceptor site of intron 9.

Splicing experiment

We performed a minigene splicing experiment. As shown in Fig. 3C, exon 10
skipping was induced in all three mutant constructs. Normally spliced transcripts with
the inclusion of exon 10 were also produced in these mutant transcripts. The ratio of
signal intensity of transcripts with exon 10 skipping to that of normally spliced
transcripts in three independent experiments was highest in ¢.951C>T, followed by
¢.952G>A among these three mutants.

Moreover, additional substitution of G for C at the first nucleotide of exon 10
resulted in normal splicing in these three mutants. Hence, the SF2/ASF exonic splicing
enhancer was only necessary in the case of C at the first nucleotide of exon 10 in the
experiment. This clearly showed that ¢.941C, the first nucleotide of exon 10; ‘makes the
recognition of exon 10 or the splice acceptor site of intron 9 and requires an exonic
splicing enhancer for the accurate splicing of exon 10. These results confirmed that
¢.951C>T diminished the effect of the exonic splicing enhancer and caused exon 10

skipping.

Effects of ¢.951C>T mutation on splicing

In the minigene splicing, normally spliced transcripts were detected in the
construct with ¢.951C>T. This may mean that not only exon-10-skipped transcripts but
also normally splicied transcripts can be produced in the c. 951C>T mutant allele.
However, when we analyzed 10 clones of full-length cDNA, 8 clones were from the
allele with ¢.556G>T(D186Y). Two clones had exon 10 skipping but no cDNA cloneés
with ¢.951C>T were found. In direct sequencing of full-length cDNA fragments, we



found a possible faint signal for c. 951T in the major signal for ¢.951C (Fig.4B). Hence,
the presence of normally spliced transcripts from ¢.951C>T was further confirmed by
allele-specific RT-PCR. As shown in Fig. 4A, both c.556T(Y186) allele- and
c.556G(D186) allele-specific RT-PCR gave a fragment with the expected size in the
case of GK64, and only the latter gave a fragment in the case of a control. In direct
sequencing of GK64’s fragment of the ¢.556G(D186) allele, ¢.951 was T (normally
spliced transcripts in the ¢.951C>T mutant allele) (Fig.4B). An additional faint fragment
with exon 10 skipping was also seen in GK64’s ¢.556G(D186) allele-specific PCR.
Exon 10 skipping causes frame shift and should result in nonsense-mediated mRNA
decay; hence, the amount of cDNA with exon 10 skipping in the D186 allele was
smaller than that of normally spliced cDNA. Based on ¢cDNA analysis, a small amount
of normally spliced mRNA with ¢.951C>T(D317D) was also produced and hence GK64
retained some residual T2 activity from this mutant allele. This finding is in accord with
GK64’s urinary organic acid profiles. We previously showed that urinary organic acid
analysis shows no elevated tiglylglycine and relatively small amount of
2-methyl-3-hydroxybutyrate even during ketoacidotic crisis and subtle elevation of
2-methyl-3-hydroxybutyrate under stable conditions in patients with mutations which
retain some residual T2 activity [3, 18, 19].

The importance of the exonic splicing enhancer

The accurate removal of introns from pre-mRNA is essential for correct gene
expression. However, the information contained in splice sites, including the splice
donor site, branch site and splice acceptor site, is insufficient for a precise definition of
exons [32-35]. Recently, it was established that exon sequence has elements which
contribute to exonic recognition. Additional regulatory elements exist in the form of
exonic splicing enhancers[32, 33]. Exonic variants may inactivate an ESE, resulting in
insufficient exon inclusion.

Exonic splicing enhancers are known to play a particularly important role in exons
with weak splice sites. Although the splice acceptor site of intron 10 has a relatively
high Shapiro and Senapathy Score [35] of 90.5, the site deviates from the consensus
sequence at position +1, by the replacement of the G nucleotide with C. In computer
analysis using ESE finder, the mutation ¢.951C>T was located on an exonic splicing
enhancer, the SF2/ASF site. SF2/ASF is a prototypical serine- and arginine-rich protein
(SR family) with important roles in splicing and other aspects of mRNA metabolism.
One classical function of SR proteins bound to exonic sequences is to stimulate
recognition of the flanking splice sites[36]. Using the minigene approach, we have
demonstrated that not only the ¢.951C>T substitution but also ¢.947C>T and ¢.952G>A,
all of which affected the SF2/ASF site, resulted in insufficient exon 10 inclusion. This
phenomenon was completely corrected by a substitution of G for C at the first
nucleotide of exon 10. We therefore suggest that the weak splice acceptor site of intron
10 is normally compensated for by an ESE (SF2/ASF).

There are several precedent reports on exonic splicing enhancer mutations in other
genes [37-39]. For example, two synonymous mutations in exon 5 identified in pyruvate
dehydrogenase-deficient patients (the c483C>T and cA498C>T variants) disrupt a
putative exonic splicing enhancer, the SRp55 binding site[37]. These synonymous
mutations result in the incomplete inclusion of PDHA1 exon 5 in the minigene splicing




experiment and this effect is corrected following the restoration of a perfect consensus
sequence for the 5° splice site by site-directed mutagenesis. The mutation in the SRp55
binding site is affected in the case of the weak 5’ splice site selection in this case and
the mutation in SF2/ASF site was affected in the case of the weak 3’ splice site
selection in our case. ¢.1918C>G (pR640G) in exon 14 in the APC gene, which was
found in a familial adenomatous polyposis (FAP) patient, was revealed to be sufficient
to cause exon 14 skipping [38]. Minigene splicing experiments showed a mechanism
involving disruption of an ASF/SF2 exonic splicing enhancer element. Systemic
analysis of 24 mutations in PAH exon 9 showed that three of them affected exonic
splicing enhancer motifs and resulted in exon 9 skipping [39]. These facts indicate that
we should consider that any mutations in an exon may affect splicing of the exon.

Importance of cDNA analysis

If mutation analysis were done only at the genomic level, this
¢.951C>T(D317D) mutation would be regarded as a silent mutation. However, the main
character of this mutation was an ESE mutation which causes exon 10 skipping. Any
nucleotide substitutions have the possibility to affect splicing efficiency. This indicates
the importance of cDNA analysis to understand the character of mutations properly.
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LEGENDS TO FIGURES

Figure 1. Immunoblot analysis. The amount of fibroblast protein extract applied was
indicated in each lane. The first antibody was a mixture of an anti-T2 antibody and an
anti-SCOT antibody. The positions of the bands for T2 and SCOT are indicated by

arrows. Cont 1 and Cont 2 were healthy controls and GKO1 was a disease control
being cross reactive material-negative.

Figure 2. Transient expression analysis of D186Y mutant cDNA
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A) Potassium-ion-activated acetoacetyl-CoA thiolase assay. Acetoacetyl-CoA thiolase
activity in the supernatant of the cell extract was measured. The mean values of
acetoacetyl-CoA thiolase activity in the absence and presence of the potassium ion are
shown together with the standard deviation of three independent experiments.

B) Immunoblot analysis. The protein amounts applied are shown above the lanes. The
first antibody was a mixture of an anti-T2 antibody and an anti-SCOT antibody.

Figure 3. Minigene splicing experiment

A) Minigene splicing constructs.

Sequence differences among 8 minigene splicing constructs. Mutations introduced are
underlined.

B) Schematic presentation of minigene splicing construct.

The minigene construct has a T2 gene fragment from ¢.842 of exon 9 and intron 9 (from
+1 to a Hind III site, 475-bp open box) and intron 10 (from a Pst I site to -1, 680-bp
open box) and exon 11 (to c. 1122). In the cases of mutant constructs, the region around
exon 10, highlighted in gray, was replaced as a cassette. Thick lines and black boxes
indicate pCAGGS vector sequences.

C) Detection of chimeric ¢cDNAs derived from transfected minigenes. First-strand
cDNA was reverse-transcribed using the glo2 primer. cDNA amplification was done
using Ex9(EcoRI) and glo3 primers. Normal splicing and aberrant splicing produced
309-bp and 244-bp PCR fragments, respectively. The PCR fragments were
electrophoresed on 5% polyacrylamide gel. Fragments with exon 10 skipping are
shown by arrows.

Figure 4. Allele-specific cDNA amplification.

A) Allele specifc PCR fragments were electrophoresed on 5% polyacrylamide gel. C,
control cDNA; 64, GK64’s cDNA, N, negative control. An arrow indicates cDNA with
exon 10 skipping. B) Direct sequencing of the antisense strand at the ¢.951¢>T
(D186Y) site. Y186 allele, Y186 allele-specific PCR fragment; D186 allele, D186
allele-specific PCR fragment.
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