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Friedreich’s ataxia, and mitochondrial disease are evaluated by neurological exami-
nation to make diagnosis of syndromic AN or nonsyndromic AN. Genetic tests for
appropriate genes are conducted to identify genetic cause after obtaining informed
consent.

Treatment

There has been no fundamental treatment for AN. Thus, auditory rehabilitaton
using hearing aids or cochlear implants plays a central role for most AN patients.
However, hearing aids are not as effective in AN patients compared to non-AN
patients with equivalent level of pure tone thresholds because of poor speech com-
prehension, which is a characteristic feature of AN. Furthermore, in general,
cochlear implants have also been thought to be ineffective for AN patients because
auditory neurons cannot respond correctly upon stimulation. However, this is not
the case for AN caused by OTOF gene mutations because the auditory neurons are
normal in this type of AN. Theoretically, a cochlear implant, which directly stimu-
lates auditory neurons within the cochlea, should be effective in AN caused by
OTOF gene mutations. In fact, successful results of cochlear implants have been
reported in this type of AN [4,9]. Cochlear implant was also reported to be effective
for a family with AN mapping to the AUNAI locus.

Representative Genes Causing Nonsyndromic
Auditory Neuropathy

OTOF Gene

The OTOF gene is the first gene identified as the cause of nonsyndromic AN, The
OTOF gene was originally found as a locus (DFNB9: 2p22-23) that is linked to
autosomal recessive, congenital, severe to profound hearing loss. Then, it was
identified as a gene coding the cell membrane protein otoferlin, which is expressed
in the cochlea, vestibule, and brain [10]. OTOF consists of 48 exons, and has mul-
tiple isoforms, by alternative splicing combined with the use of several translation
initiation sites. Otoferlin belongs to a family of membrane-anchored cytosolic
proteins containing six repeats of a structural module that binds calcium (the C2
domain), and they are involved in vesicle membrane fusion.

Mutant mice lacking otoferlin are profoundly deaf, with no detectable ABR
across all sound frequencies tested. However, DPOAE show that outer hair cell
function is maintained, as was seen in human AN patients. In these mice, the
structure of the inner ear including hair cells and spiral ganglion cells is normal,
but complete abolition of inner hair cell synaptic exocytosis in response to
cell depolarization is detected, which is consistent with a failure of inner hair
cell neurotransmitter release.



Genetic Research on Auditory Neuropathy 47

Genetic tests of OTOF gene were conducted in 65 American families with auto-
somal recessive nonsyndromic hearing loss, including 9 families with AN. Eight
mutations that were related to hearing loss were found in 6 families, including 5
families with AN. One of these families, which had the [515T mutation, showed
temperature-sensitive AN in which hearing loss is aggravated with elevation of body
temperature and returns to mild hearing loss with normalization of the temperature.
A nonsense mutation Q829X in OTOF gene was first identified in a Spanish popula-
tion and was found in approximately 3% of autosomal recessive hearing loss in
Spanish children, making it the third most frequent mutation in this population [11].
Later studies in other populations showed that the Q829X mutation also caused
dysfunction of outer hair cells. Thus, it is necessary to explore the significance of
this frequent mutation in both AN and non-AN sensorineural hearing loss.

Pejvakin gene

Pejvakin gene is the second gene to be identified as the cause of nonsyndromic AN
[5]. This gene was identified in the DFNB59 (2q31.1-q31.3) locus by linkage analy-
sis in two Iranian families with autosomal recessive, severe to profound, congenital
hearing loss, in which T541 and R183W missense mutations were detected. Pejvakin
protein consists of 352 amino acids, but its function has been unknown. Pejvakin
protein is localized in the cochlear hair cells, supporting cells, spiral ganglion cells,
and the first three relays of the central auditory pathway. On the other hand, dys-
function of outer hair cells was reported in a Moroccan family with insertion of T
at 113-114 as well as in a Turkish family with homozygous nonsense mutation
R167X and another Turkish family with homozygous missense mutation R183W
which is the same mutation as in the Iranian family with non-syndromic AN. Fur-
thermore, mutant mice that have an abnormal pejvakin gene demonstrated progres-
sive hearing loss with or without the loss of otoacoustic emissions (OAE), depending
on the mutation introduced in the pejvakin gene. These findings indicate that the
pejvakin gene may cause both AN and non-AN sensorineural hearing loss, depend-
ing on the type of mutation and different background factors.

Representative Genes Causing Syndromic
Auditory Neuropathy

Charcot—Marie-Tooth Disease

Charcot—Marie-Tooth disease is the most common hereditary peripheral neuropa-
thy, characterized by slowly progressive weakness, muscle atrophy, and sensory
impairment, all most marked in the distal part of the legs. Charcot-Marie-Tooth
disease is classified into subtypes based on clinical features and causative
genes, and hearing loss has been known to be associated with some of these
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subtypes. Recently, AN was found in some of such Charcot—Marie~-Tooth disease
patients with hearing loss and established as a syndromic AN. The following
three subtypes of Charcot—-Marie-Tooth disease have been reported in association
with syndromic AN.

Mutations in PMP22 genes cause the CMT 1A subtype of Charcot—-Marie-Tooth
disease, which shows autosomal dominant inheritance. PMP22 protein encoded by
PMP22 gene is a cell membrane protein that consists of approximately 5% of
components of myelin sheath. AN has been reported in an American CMTIA
family in which the A67P mutation was identified [12].

Mutations in the MPZ gene cause the CMT1B subtype of Charcot-Marie-Tooth
disease, which shows autosomal dominant inheritance. MPZ protein coded by MPZ
gene 1s a glycoprotein specific to Schwann cells, consists of approximately 50%
myelin sheath components, and constitutes the myelin sheath as a complex with
myelin basic protein and PMP22 protein. AN with an onset after 40 years of age
has been reported in an American CMTIB family in which the Y145S mutation
was identified. A study of temporal bone pathology in one member of this family
revealed prominent loss of spiral ganglion cells and auditory neurons as well as
well-preserved inner and outer hair cells [8].

Mutation in the NDRGI gene causes the CMT4D subtype of Charcot—
Marie-Tooth disease, which shows autosomal recessive inheritance [13]. The
NDRGI gene is highly expressed in Schwann cells and is expected to play a
role in inhibition of mitosis and promotion of differentiation. R148X mutation in
the NDRGI gene was identified in many European families in which AN was
also found. In a CMT4D family, 25 of 39 family members complained of hearing
loss that developed between 13 and 26 years of age.

Autosomal Dominant Optic Atrophy (ADOA) with
Sensorineural Deafness

ADOA is a dominantly inherited disorder characterized by symmetrical optic
atrophy, central visual impairment, and color vision defect. Although ADOA gener-
ally appears as an isolated disorder, it is sometimes associated with sensorineural
deafness. Furthermore, some ADOA patients may be associated with not only
sensorineural deafness but also several other phenotypes such as ataxia and periph-
eral neuropathy. Mutations in the OPA/ gene have been found in a majority of
patients with ADOA, and such mutations have also been reported in ADOA with
sensorineural deafness and ADOA with deafness and other phenotypes.

The OPAI gene encodes a dynamin-related GTPase, which is targeted to mito-
chondria by an N-terminus import sequence motif and is anchored to the inner ear
membrane facing the intermembrane space [14,15]. OPA1 protein is involved in
the regulation of mitochondrial fusion and remodeling of mitochondrial cristae, the
apoptotic process through the control of cytochrome C redistribution, and the
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maintenance of mitochondrial DNA [16]. The OPAI1 protein is expressed in all
tissues examined, but most strongly in the retina and brain. In the ear, OPA] protein
was found to be widely expressed in the sensory and neural cochlear cells. Although
the exact pathological mechanism is unknown, an abnormality of the OPA1 protein
may cause an abnormality of the mitochondria, leading to insufficient energy
support. This lack could then result in a dysfunction of axoplasmic transport in the
nerve fibers.

In patients with ADOA and sensorineural deafness, AN was first identified
in two subjects by audiological evaluation including OAE and ABR in a study of
five subjects from four families having this disorder [17]. Skin fibroblasts from
these subjects showed hyperfragmentation of the mitochondrial network, decreased
mitochondrial membrane potential, and ATP synthesis defect, indicating that
AN in these patients may be related to energy defects caused by a fragmented
mitochondrial network.
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Abstract

Sensorineural hearing loss (SNHL) is one of the most common disabilities in human, and ge-
netics is an important aspect for SNHL, especially in children. In recent 10 years, our knowl-
edge in genetic causes of SNHL has made a significant advance, and now it is used for diagno-
sis and other clinical practices. Hereditary hearing loss can be classified into syndromic and
nonsyndromic hearing loss. As the nonsyndromic deafness genes, more than 100 loci for deaf-
ness genes have been determined, and more than 40 genes were identified. Furthermore, more
than 300 forms of syndromic hearing loss have been characterized, and each syndrome may
have several causative genes. In childhood hearing loss, early educational intervention is re-
quired in addition to medical intervention for normal development of speech and language. In
addition, even severe to profound hearing loss may be restored very effectively by hearing aids
or cochlear implants. Because of these features of SNHL, genetic testing has exceptionally
high value in the medical practice for hereditary hearing loss. Several strategies are used for
genetic testing of SNHL for accurate and efficient identification of the genetic causes, and the
results were used for explanation of the cause, prediction of auditory features, prevention of
deafness, management of associated symptoms, determination of therapy, and genetic counsel-
ing. Identification of damaged cells in the inner ear and the underlying mechanism by genetic
testing undoubtedly facilitates development and introduction of novel and specific therapies to
distinct types of SNHL. (Keio } Med 58 (4) : 216222, December 2009)

Keywords: hereditary hearing loss, deafness gene, inner ear, cochlea

Introduction

Sensorineural hearing loss (SNHL) is one of the most
common disabilities in human, and genetics is an impor-
tant aspect in research and clinical practice for SNHL.
One child in 1000 is born with bilateral SNHL, and
50-70% of them have monogenic causes."? In addition,
10% of the people over 65 years have SNHL that inter-
fere speech communication.® Although most of them
have polygenic causes associated with aging and various
environmental causes, some of them have monogenic
causes. In recent 10 years, our knowledge in monogenic

causes of SNHL has made a significant advance. The
knowledge of genetics in SNHL was originally estab-
lished in the laboratory, but it is now used for genetic
testing and following clinical procedures for patients
with SNHL.

Classification of Hereditary Hearing Loss

Hereditary hearing loss can be classified into syndrom-
ic and nonsyndromic hearing loss.* Syndromic type
which is associated with distinctive clinical features ac-
counts for 30% of hereditary congenital hearing loss, and
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Table 1 Identified dealness genes

Autosomal dominant loci and genes

DFNAI DIAPHI DFNAT1 MYOT7A
DFNA2 Cx31/KCNQ4 DFNAI13 COL11A2
DFNA3 Cx26/Cx30 DFNALS POU4F3
DNFA4 MYHI14 DFNAL7 MYH?9
DFNAS DFNAS DFNA20/26 ACTGI
DFNA6/14  WFS] DFNA22 MYO6
DFNAS8/12  TECTA DFNA28 TFCP2L3
DFNA9 COCH DFNA36 TMCI
DFNA10 EYA4 DFNA48 MYOtA

Autosomal recessive loci and genes
DFNBI Cx26/Cx30 DFNB21 TECTA
DFNB2 MYO7A DFNB22 OTOA
DFNB3 MYOL3 DFNB23 PCDHIS
DFNB4 SLC26A4 DFNB28 TRIOBP
DFNBG6 TMIE DFNB29 CLDN14
DFNB7/11 TMCH DFNB30 MYO3A
DFNB8/10  TMPRSS3 DFNB31 WHRN
DEFNB9 OTOF DFNB36 ESPN
DFNB12 CDH23 DFNB37 MYO6
DENBI16 STRC DFNB67 TMHS
DFNBI8 USHIC

X-linked loci and genes Mitochondrial genes
DFN3 POU3F4 128 tRNA

tRNASer(UCN)

nonsyndromic type which is not associated with other
clinical features accounts for the other 70%. Nonsyn-
dromic hearing loss can be classified into 4 groups by
the inheritance pattern, and relatively common clinical
features have been noted for each inheritance pattern
with a few exceptional genes, genotypes, and patients.
Patients with autosomal dominant inheritance typically
show progressive SNHL which begins in age 10-40, and
the degree of hearing loss is various while patients with
autosomal recessive inheritance most frequently show
congenital and severe hearing loss. Patients with mito-
chondrial inheritance tend to develop progressive SNHL
which begins in age 5-50, and the degree of hearing loss
is various. Autosomal recessive inheritance accounts for
80% of congenital nonsyndromic hereditary hearing loss,
and autosomal dominant inheritance accounts for most
of the other 20%. X-linked and mitochondrial inheri-
tance accounts for only 1-2%. After aging, the preva-
lence of autosomal dominant inheritance and mitochon-~
drial inheritance increases while that of autosomal reces-
sive inheritance decreases. The precise prevalence of
each inheritance pattern is not known for adults because
of the difficulty in sampling and excluding the effect of
age-related hearing loss.
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Deafness Genes

The first nonsyndromic deafness gene was discovered
in 1993.% Since then, more than 100 loci for deafness
genes have been determined, and more than 40 genes
were identified (Table 1). Most of these genes play their
roles within the cochlea. Thus, hereditary hearing loss
almost exclusively features cochlear dysfunction.'?

Although many genes are known for nonsynromic
hearing loss, only a few genes including GIB2, GIB6,
SLC26A4 accounts for over one third of patients with
congenital hearing loss. Mutations in GJB2 account for
50% of patients with autosomal recessive hearing loss,
i.e. 20% of all congenital hearing loss.>” GIB2 encodes
connexin 26, a gap junction protein expressed in the co-
chlea. Gap junctions are intercellular channels allowing
recycling of potassium ions from hair cells to the stria
vascularis in the cochlea and maintains a high endoco-
chlear potential which is of critical importance for nor-
mal hearing. Mutations in GJB2 show considerable phe-
notypic variation, but genotype-phenotype studies
showed that it is possible to predict the hearing loss as-
sociated with GJB2 mutations based on the specific gen-
otype.® Combination of mutations in GJB2 and closely
linked GJIBS, in digenic transmission, accounts for about
8 % of deaf patients with GIB2.” GJB6 is a gene with se-
quence similarity to GIB2, is also expressed in the co-
chlea, and its product, connexin 30, can form gap junc-
tion with connexin 26, explaining digenic transmission
of GIB2 and GIB6.

With regard to syndromic hearing loss, more than 300
forms have been characterized. In many forms, several
genes that can cause the same phenotype or a closely re-
lated phenotype have been identified. In syndromic hear-
ing loss, hearing loss is most frequently caused by dys-
function of the cochlea but the middle ear and the outer
ear are also frequently involved. The most common form
of syndromic hereditary SNHL is Pendred syndrome
which is characterized by SNHL, bilateral dilatation of
vestibular aqueduct with or without cochlear hypoplasia,
and goiter. Majority of patients with Pendred syndrome
have mutations in SLC26A4, and these mutations also
cause nonsyndromic SNHL.'%'! Pendred syndrome ac-
counts for 3 % of all congenital hearing loss and muta-
tions in SLC26A4 including those causing nonsyndromic
SNHL account for 7 % of all deaf children at age of 4
years.” SLC26A4 encodes a chloride-iodide cotransport-
er and is critical for maintaining endolymphatic ion ho-
meostasis, which is essential to normal inner ear func-
tion.

Mutations in mitochondrial DNA are rarely detected in
congenital hearing loss, but its prevalence in patients
with SNHL increases with aging. A1555G or A3243G
mitochondrial DNA mutations are found in approximate-
ly 6 % of adult patients with SNHL without known
causes, and both mutations cause cochlear dysfunc-
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tion,'2 '3 A3243G mitochondrial DNA mutation cause
not only nonsyndromic SNHL but also syndromic SNHL
such as MELAS (mitochondrial encephalopathy, lactic
acidosis, and stroke-like episodes) and MIDD (maternal-
ly inherited diabetes and deafness). A1555G mitochon-
drial DNA mutation causes rapidly progressive SNHL
which leads to severe degree in patients with the onset of
SNHL before age 10 and slowly progressive or nonpro-
gressive SNHL which leads to mild to moderate degree
in patients with the onset after age 10."* A3243G mito-
chondrial DNA mutation causes progressive SNHL
which leads to moderate to severe degree in patients who
developed hearing loss during adulthood.

Unique Clinical Aspects of Hereditary Hearing Loss

Hereditary hearing loss is unique compared to other
hereditary diseases in the following three points. First, a
large number of genes are involved in hereditary hearing
loss, which makes it very difficult to identify causes and
pathological mechanism in clinical practice. Second,
without speech and language rehabilitation, hearing loss
not only impedes audition but also hampers normal de-
velopment of speech and language. Without speech and
language, it is almost impossible to maintain good social
relationship in the society of people with normal hearing.
Thus, educational intervention is required in addition to
medical intervention for children with SNHL. Third,
congenital deaf children can learn and manage to com-
municate with others if early diagnosis of hearing loss
followed by adequate rehabilitation can be made. Even
severe hearing loss can be restored very effectively by
hearing aids or cochlear implants coupled with early re-
habilitative training in patients with hereditary hearing
loss.'> In most hereditary diseases, this level of function-
al restoration has not been possible yet. This feature lead
to the worldwide implementation of universal newborn
hearing screening which aims to screen neonates for
hearing loss immediately after birth or before hospital
discharge so that intervention can be initiated to prevent
delayed language acquisition. Because of these unique
clinical aspects of hereditary hearing loss, genetic testing
of SNHL has high value in the otological approach to
this disorder. Identification of genetic causes provides a
key to understand the mechanism of hearing loss, leads
to better management of hearing loss, and facilitates
functional recovery by effective rehabilitation.

Strategy for Genetic Testing of Hearing Loss

Genetic testing of SNHL is conducted in several insti-
tutes worldwide including our institute, and the strategy
is various among different institutes. In our institute, it
consists of the following 3 steps; 1) identification of can-
didate patients who are suspected of having hereditary
hearing loss, 2) identification of candidate genes to be
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tested, and 3) identification of causative mutations in the
suspected genes.

Our criteria for candidate patients are patients present-
ing with bilateral hearing loss without known causes ex-
cept for heredity. Unilateral hearing loss is included only
when hearing loss is associated with specific types of
anomaly in the inner ear, middle ear, or outer ear.

Candidate genes for syndromic hearing loss are deter-
mined by clinical diagnosis of syndromic hearing loss
based on associated clinical symptoms. Usually, only
one or a few candidate genes are responsible for each
syndrome, Syndrome may be classified into subclasses
based on the different expression of phenotypes, and di-
agnosis of subclasses may further narrow down candi-
date genes. On the other hand, it is very difficult to de-
termine candidate genes for nonsyndromic hearing loss,
and often impossible because of a large number of caus-
ative genes for a relatively undistinguishable phenotype,
i.e. SNHL. Part of deafness genes for nonsyndromic
hearing loss demonstrates unique auditory features or
other clinical features in CT imaging of inner ear, elec-
trophysiological testing, or inheritance pattern. For those
genes, we are making an algorithm indicating the genes
which should be tested and the order of the genetic tests
based on clinical features and the results of genetic tests.
After all the clinical examinations and tests for hearing
loss, we determine the candidate genes and the order of
genetic analysis according to the established algorithm
(Fig. 1). This strategy is named systematic genetic test-
ing for deafness, and tentative algorithm is currently
used in our institutes to evaluate the sensitivity, specific-
ity, and efficiency for clinical use.

I[dentification of causative mutations is mostly done
with direct sequencing of the candidate genes using
DNA extracted from blood samples. All exons and its
flanking short sequences in introns are sequenced and
analyzed for mutations. For large genes in which patho-
logical mutations are mostly distributed within the re-
stricted regions, sequencing may be done for the restrict-
ed region. In contrast, for several large genes with ubig-
uitous distribution of pathological mutations over entire
region, screening by degenerate HPLC are first conduct-
ed, and sequencing analysis can be done only for the re-
gions which showed abnormal screening results. For a
few genes in which mutations are limited to only one or
two frequent changes, restriction fragment length poly-
morphism PCR analysis is performed to detect the spe-
cific mutations. With the astonishing progress in the
speed of sequencing machines, sequencing of whole hu-
man genome will be practically available in several
years, first in laboratories, then in clinics. This may fun-
damentally change the way of genetic testing for SNHL.

Feedback to Patients

Discovery of many deafness genes had a significant
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Clinical and genetic test results
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Causative mutations and genes

Step 1

Bilaterai SNHL by appropriate hearing tests (0-15)--» GJB2
Bilateral SNHL by appropriate hearing tests (0-50)-+» A1555G&A3243G mitochondrial DNA

\d

Step 2 | Monoallelic pathological GJB2 mutafion (0—3‘:) —» GJB3, GJBB |

Step 3 [ Auditory neuropathy by OAE and ABR (0—4‘)v

-+ OTOF ]

Step 4 |

Enlarged vestibular aqueduct by ear CT (0:3_0) -+» SLC26A4 ]

Step 5 | SNHL at low frequnencies (0-30)

dominant, mild-moderate

SNHL at middle frequnencies {(0-20)
dominant, mild-moderate

SNHL at middle frequnencies (0-4)
recessive, severe

SNHL at high frequnencies (0-40)
progressive, dominant, mild-severe

Rapidly progressive, recessive (5-15)

progressive, dominant, mild-severe (30-50)
balance disorder

Maternal inheritance, mild-severe (0-50)

-+ WFS1 exon 8

-+» TECTA ZP domain

i

- TECTA

i

> KCNQ4 pore region

i

+» TEMPRSS3 exon4-12

i

-+ COCH LCCL domain

i, 128 rRNA tRNA Ser(UCN)
tRNA Leu(UUR) tRNA Lys tRNA Glu

Fig. 1 Our original algorithm for systematic genetic testing for deafhess in patients who are suspected of nonsyndromic SNHL
(sensorineural hearing loss). Based on the clinical or genetic test results shown in the left column. candidate mutations or genes listed
in the right column are determined. Corresponding mutations or genes for each clinical or genetic category are indicated by horizontal
arrows. Genetie tests start from Step I If causative mutations are not determined or an indicated category does not fit for a patient.
genetic tests proceed to the next step until causative mutations are determined or no appropriate category is found. Genes examined for
specific exons, regions or domains are described with short explanatory tags, and those examined for all exons are described without
explanation. Numbers in parenthesis indicate periods of age at onset of SNHL.,

impact on the otological approach to patients with
SNHL. First, explanation of the cause of SNHL to deaf
patients or parents of deaf children has become possible
in many cases. Without definite explanation, patients
tend to visit other hospitals seeking for explanation and
repeat redundant tests or treatments and feel anxiety
about what is related to deafness of themselves or their
children and whether other disability is also present but
not detected. These lead to delay of rehabilitation which
should be initiated immediately after diagnosis of hear-
ing loss for effective acquisition of language and
speech.'® Thus, early and definite explanation by genetic
tests facilitates rehabilitation.

Second, identification of causative mutations helps
doctors to predict auditory features such as audiogram of
the patients and prognosis of their hearing, especially in
children who cannot cooperate with subjective hearing
tests. This provides valuable information in making ade-
quate planning of clinical follow-up, estimation of hear-
ing levels for fitting hearing aids, and selection of occu-
pation by patients.'”

Third, prevention of deafness can be done by avoiding
use of specific drugs or specific activities in genetically

susceptible patients. As an example, patients with
A1555G mitochondrial DNA mutation should avoid
aminoglycosides which induce or aggravate SNHL by
even one injection in subjects with this mutation.'s An-
other example is that detection of SLC26A4 suggests
dilatation of vestibular aqueduct even in neonates who
are usually not tested for inner ear anomaly by CT or
MRI. Patients with this mutation should have temporal
bone CT and patients who are found to have dilatation of
vestibular aqueduct should avoid activities in which
physical shock on their head is likely to occur. This is
because such a shock tends to cause aggravation of
SNHL in these patients.

Fourth, identification of causative mutations in patients
with syndromic hearing loss enables prevention or early
detection of associated symptoms. These examples in-
clude diabetes mellitus in patients with A3243G mito-
chondrial DNA mutation and goiter in patients with
SLC26A4 mutations. Early detection and management
of these associated symptoms help to prevent disorders
related to the associated symptoms such as diabetic reti-
nopathy for diabetes mellitus, and facilitate early recov-
ery from symptoms such as hypothyroidism. Because
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occurrence of associated symptoms may delay more than
10 years after the onset of SNHL, many patients and
even doctors who see those patients cannot notice the as-
sociation of the symptoms with SNHL, and unnecessary
or even harmful tests tend to be done for the diagnosis.
Thus, it would be worthwhile to understand the associat-
ed symptoms and prepare the risk of manageable disor-
ders at the time of diagnosis of SNHL. In addition, ge-
netic tests may be valuable in substituting more stressful
tests. For an example, renal biopsy and/or skin biopsy
are currently necessary for diagnosis of Alport syndrome
which is a hereditary nephritis associated with SNHL,
and this procedure usually requires hospitalization and
has a certain physical risk. Mutations in COL4A3,
COL4A4, COL4AS, and MYH9 are known causes of
Alport syndrome, but genetic tests of these genes are
currently rarely available as a clinical test mainly be-
cause of an extremely high cost. Several laboratories in
the world including my laboratory offer these tests as a
research basis. With remarkable advances in genetics, in-
crease of sensitivity and specificity and decrease of costs
for genetic analysis are in progress. In the near future,
diagnosis of Alport syndrome may be first done by clini-
cal genetic tests, and renal and skin biopsy may be
avoided in many patients.'”

Fifth, identification of causative mutations clarifies the
cell types and nature of damages which are responsible
for SNHL, which is especially important for indication
of cochlear implant surgery. Because spiral ganglion
neurons which are necessary for successful cochlear im-
plants are well preserved in most types of hereditary
hearing loss, identification of mutations in the deafness
genes usually indicates good indication for cochlear im-
plant surgery. This is most helpful in babies who cannot
corporate detailed audiological tests for evaluation of
SNHL.

Identitfication of causative mutations is also important
for clinical management of patients with auditory neu-
ropathy. Auditory neuropathy is a distinct type of SNHL
which features normal outer hair cell function and abnor-
mal activities of auditory neurons, and a relatively fre-
quent cause of congenital SNHL (~15 %). Development
of speech and language cannot be expected by hearing
aids in congenital auditory neuropathy because of poor
speech recognition inherent in this disorder. Either inner
hair cells or spiral ganglion neurons are affected, but cur-
rent clinical tests cannot distinguish these two types. Be-
cause normal spiral ganglion neurons are necessary for
success of cochlear implants, pathology underlying
SNHL needs to be determined in order to evaluate the
indication of cochlear implant surgery. Recent studies
have shown that mutations in OTOF cause auditory neu-
ropathy by inner hair cell dysfunction and that spiral
ganglion neurons are normal in patients with these muta-
tions.2® In agreement with the pathological mechanism
of mutations in OTOF, results of cochlear implants have
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been successful.2! According to the recent studies, OTOF
mutations may account for majority of congenital audi-
tory neuropathy.?? Thus, the genetic test for OTOF muta-
tions in patients with auditory neuropathy is of high clin-
ical importance.

Sixth, identification of causative mutations significant-
ly helps to provide adequate genetic counseling which
primarily concerns planning of pregnancy and delivery
with the information of a recurrence risk. Prenatal genet-
ic diagnosis of nonsyndromic SNHL is not conducted in
most countries because of ethical issues. For syndromic
SNHL which is associated with severe symptoms other
than SNHL, prenatal diagnosis may be considered.

Future Expectation of the Use of
Genetic Testing in Therapeutics

Although hearing aids or cochlear implants can signifi-
cantly restore hearing in patients with SNHL, quality of
restored hearing is quite different from original or nor-
mal hearing. These instruments are made to help remain-
ing functions of the damaged inner ear, but future thera-
peutics aims at complete recovery of the inner ear. Be-
cause current clinical diagnostic modalities cannot iden-
tify which parts or cells in the inner ear is damaged,
therapeutic approach targeting at specific parts or cells in
the inner ear has not been used. Identification of dam-
aged cells in the inner ear and the underlying mechanism
by genetic testing undoubtedly facilitates development
and introduction of novel and specific therapies to dis-
tinct types of SNHL.

As one of such therapies, we have established novel
therapeutic approaches targeting at cochlear fibrocytes
which are essential for normal hearing and involved in
various type of SNHL including certain types of heredi-
tary SNHL, age-related SNHL, noise-induced SNHL,
and Meniere’s disease. A rat model of SNHL due specific
to cochlear fibrocytes was made by treatment with a mi-
tochondrial toxin, 3-nitropropionic acid (3-NP), at a
round window of inner ear.?® Histological and molecular
analysis in this model revealed caspase-mediated apop-
tosis in the cochlear fibrocytes.** As the therapy during
acute phase of SNHL due to damages on cochlear fibro-
cytes, we used a general administration of caspase inhib-
itor, Z-VAD-FMK, to inhibit apoptosis.*® This chemical,
when administered before 3-NP treatment, almost com-
pletely inhibited 3-NP induced apoptosis of cochlear fi-
brocytes without obvious side effects and significantly
improved the hearing level. Administration of Z-VAD-
FMK after 3-NP treatment also showed significant inhi-
bition of apoptosis and improvement of hearing. As the
therapy during chronic phase of SNHL due to damages
on cochlear fibrocytes, we used transplantation of bone
marrow-derived mesenchymal stem cells into the inner
ear in this animal model.2® Histological examination of
the transplanted rats demonstrated that transplanted stem
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cells survived, migrated to the damaged area, and appar-
ently substituted the damaged cochlear fibrocytes. Those
stem cells made a connection with the surrounding fibro-
cytes and expressed connexins which are essential for
reestablishment of potassium recycling pathway mediat-
ed by cochlear fibrocytes within the cochlea. Evaluation
of hearing by auditory brainstem responses in the trans-
planted rats revealed significant improvement of hearing
compared to control rats. These animal experiments indi-
cate that therapeutic strategy for genetic SNHL may be
personalized, based on the cause of SNHL, using chemi-
cals targeting at specific molecules or stem cells target-
ing at specific tissues for regenerative therapy. In addi-
tion, novel therapies developed for genetic SNHL may
be applicable to other types of SNHL with similar patho-
logical features.
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Auditory steady—state response thresholds
in infants and young children with audi-

tory neuropathy spectrum disorder

Hidenobu Taiji”, Noriko Morimoto”, Tatsuo

Matsunaga®

"Department of Otolaryngology, National Cen-
ter for Child Health and Development

“Department of Otolaryngology/Lab. of Audi-
tory Disorders, National Institute of Sensory

Organs, National Tokyo Medical Center

Auditory neuropathy, renamed by consensus at
a recent international conference as auditory neuro-
pathy spectrum disorder (ANSD), is a specific form
of hearing loss defined by normal otoacoustic emis-
sions, but severely abnormal or completely absent
auditory brainstem responses. We investigated the
distribution of auditory steady-state response
(ASSR) thresholds in 9 infants and young children
with ANSD. The large variability of ASSR thresh-
olds indicated the heterogeneous nature of this dis-
order. Correlation values showed a significant posi-
tive relationship (p<(0.05) between ASSR and con-
ditioned orientation response audiometry (COR)
thresholds at 500-4000Hz. To estimate the func-
tional gains obtained from the use of hearing aids,
we examined the dB difference between unaided
and aided thresholds of ASSR and COR. The aver-
age functional gains estimated by the ASSR thresh-
olds were up to 15 dB at 500—-4000Hz, which were
slightly lower than those estimated by the COR
thresholds. ASSR testing is considered to be useful
for hearing aid validation when behavioral test
methods are inconclusive. ASSR may be useful for
the estimation of residual auditory capacities and
hearing aid benefits in infants and very young chil-
dren with ANSD.
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