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integrins undergo inside-out conformational activation and
ligand-triggered outside-in stabilization (Alon and Feigelson,
2002; Carman and Springer, 2003). Separation of the LFA-1
cytoplasmic domains by talin could serve to stabilize the high
affinity conformation (Kim et al, 2003). This study indicate
that Mstl~/~ lymphocytes have a normal initial arrest step
but are defective in establishing a subsequent stable attach-
ment. A similar result was also obtained with RAPL™/~
lymphocytes (in preparation). These results suggest that
Rap1-RAPL-Mstl signalling is critical for the conversion
from transient arrest to stable arrest.

The reduced numbers of lymphocytes in the spleen of
Mstl-deficient mice was in contrast to those exhibiting in-
creased splenic lymphocytes in LFA-1-deficient mice (Schmits
et al, 1996). As lymphocyte homing/retention is mediated by
adhesion through both LFA-1 and o4 integrins to ICAM-1 and
VCAM-1 (Lo et al, 2003), defective adhesion through these
integrins and low peripheral blood T cells in Mstl-deficient
mice likely result in the hypocellular spleen. Alternatively,
integrin-independent mechanism might play a role in homing
of lymphocytes to spleen, which is also dependent on Mstl
through the regulation of interstitial migration.

We showed earlier that Mstl was associated with and
activated by Rapl and RAPL and colocalized with LFA-1 at
the leading edge and in the immune synapse (Katagiri et al,
2003, 2006). An Mstl deficiency in lymphocytes resulted in
defective integrin clustering by chemokines, which likely
impairs the adhesion strength by modulating the avidity of
integrins. It should be noted that Rapl, RAPL and Mstl are
mostly present in vesicle compartments containing f2 integ-
rin in primary lymphocytes (Katagiri et al, 20006).
Intracellular transport of integrin-containing vesicles towards
the nascent contact site might be involved in surface cluster-
ing and thereby facilitate the transition from a labile to stable
attachment. Alternatively, recruiting Mstl in proximity to
LFA-1 through RAPL could facilitate binding of integrins
to talin and the actin-cytoskeleton through phosphorylation
of integrin cytoplasmic tails or its associated molecules by
Mst1. Identification of Mstl kinase substrates will be useful
to further dissect this process.

We showed that stable adhesion through 04p1 and 487
was also reduced in Mstl1 ™/~ lymphocytes, but the severity
was less compared with LFA-1-dependent adhesion (Figures
3D, 4A and B; Supplementary Figure 5), suggesting involve-
ment of the other signalling pathways triggered by chemo-
kines in controlling o4 integrins. We reported earlier that
constitutively active PI3 kinase activates LFA-1, but its effect
was rather weak, compared with VLA-4 (Katagiri et al, 2000),
suggesting that LFA-1 might be more tightly regulated
by Rapl signalling than VLA-4. Indeed, in human T cells,
inactivation of Rapl blocked chemokine-stimulated LFA-1-
dependent adhesion, but not adhesion through VLA-4
(Ghandour et al, 2007). Thus, chemokines may use signalling
pathways to VLA-4 distinct from LFA-1.

Coordination of front-back cell polarity and regulation of
integrin-dependent attachment at the front and detachment
and pulling at the back is the prototype of amoeboid move-
ment in directed cell migration (Lauffenburger and Horwitz,
1996; Sanchez-Madrid and del Pozo, 1999). Using in vitro
models with the LN-derived FRC cell line, we showed that
LFA-1 and VLA-4 were partly involved in stromal-dependent
migration of lymphoblasts (this study) as well as active
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migration of naive B cells (Katakai et al, 2008). Adoptive
transfer experiments using f2~/~ Tcells and ICAM-1"/" mice
showed a modest reduction in median velocity of T-cell
migration in LN (approximately 20 and 34%) (Woolf et al,
2007). These results suggest that both integrin-dependent and
-independent components are involved in stromal cell-depen-
dent migration. Integrin-independent attachment could be
mediated by other adhesion molecules and/or chemokine
receptors (Woolf et al, 2007). As an Mst1 deficiency affected
lymphocyte motility in vitro and in vivo to levels more than
expected from integrin contribution, Mstl likely contributes
to both integrin-dependent and -independent migration in
the LN.

The requirement for integrins in lymphocyte interstitial
migration within the LN has been recently challenged by a
study using DCs lacking integrins. (Lammermann et al,
2008). These DCs displayed integrin-independent chemotac-
tic migration in a three-dimensional collagen gel model
(Lammermann et al, 2008). DCs are relatively sessile in the
paracortex with much slower velocities than T cells (average
velocity in LN is 4pm/min versus 11-15pum/min). The
mechanisms regulating DC migration in the LN are likely
distinct from T cells. Nonetheless, amoeboid movement of
DCs, supported by coordinated regulation of cell protrusion at
the front and contraction at the rear, is similar to those
observed in lymphocytes, suggesting a common mechanism
that governs the development of cell polarity in lymphocytes
and DCs (Lammermann et al, 2008). If this is the case,
impaired front-back polarity could be more detrimental
than defective integrin regulation in tissues. This notion is
supported by studies showing that a deficiency in the actin-
regulator DOCK2 inhibited T-cell migration without affecting
integrin function (Nombela-Arrieta et al, 2004, 2007).
Activated Rapl is capable of inducing cell polarization with
the development of a leading edge and uropod (Shimonaka
et al, 2003). This Rap1 function, which is independent of cell
attachment, requires RAPL and Mstl (Katagiri et al, 2004,
2006). Immobilized LN chemokines potently stimulated lym-
phocyte polarization and migration of human resting T cells
without integrin ligands. (Woolf et al, 2007), suggesting the
cellular mechanism of integrin-independent migration in
lymphoid tissues. We showed that Mstl deficiency led to
decreased motility of T cells on the immobilized CCL21
(Supplementary Figure 9). Defective polarization might ex-
plain why an Mstl deficiency severely reduced lymphocyte
motility to greater levels than is expected by blocking integrin
function as well as skin DC migration from skin to draining
LNs through lymphatics, which was reported to be integrin-
independent process (Lammermann et al, 2008).

Cdc42 and Rac induce lamellipodia and a leading edge.
Rho is important for uropod formation and detachment, the
pulling force and integrin activation (Laudanna et al, 2002;
Smith et al, 2003; Morin et al, 2008). The Rap1-RAPL-Mstl
pathway might link with actin-regulatory proteins through
the regulatory or effector proteins of these small GTPases.
Indeed, the effect of Rapl on cell polarization was inhibited
by dominant negative forms of Cdc42 or Rac (Gerard et al,
2007). It is still unclear how Rap1 signalling is related to other
small GTPases in immune cells.

Although it is still possible that Mstl is involved in the
proliferation and apoptosis of T cells, the functions of murine
Mstl, which include the regulation of integrins, cell polarity
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and the muotility of lymphocytes, appear to be distinct from
the functions of the fly Hippo pathway, which regulates cell
contact inhibition and organ size through negative regulation
of cell proliferation and apoptosis (Zeng and Hong, 2008). It
will be helpful to examine the roles of Mst2 in mice to clarify
whether the functions of Hippo are conserved in the immune
system. These studies will shed light on the coordinated
regulation of lymphocyte trafficking and proliferation/apop-
tosis through Mstl/2, and further elucidate how dynamic
homeostasis of the immune system is maintained through
coordination of cell-cell interactions and proliferative re-
sponses during antigen responses and tolerance.

Materials and methods

Mice

C57BL/6 mice were obtained from Shimizu Laboratory Supplies
and used as wild-type mice. CAG-Cre mice were provided by Dr
S Yamada (Akita University, Akita, Japan). All mouse protocols
were approved by the Committee on Animal Research of Kansai
Medical University (Osaka, Japan). Floxed Mstl mice and CAG-Cre
mice were maintained and bred under specific pathogen-free
conditions at Kansai Medical University. Homozygous mice were
obtained by interbreeding the heterozygous mice. For all experi-
ments, 7- to 8-week-old littermates were used.

Antibodies and immunofluorescence staining

Monoclonal antibodies to B220 (RA3-6B2), CD3 (2C11), CD28, IgM
(eB121-15F9), IgD (11-26.c}, L-selectin, oL (M17/4), u4, B7, CD4
(GK1.5), CD8 (53-6.7), CD24 (30-F1), CD23 (2G8), MHC class II
(M5/114.15.2) (eBioscience), CD21 (7G6) and CDllc (HL3) (BD

Pharmingen) were used for flow cytometry and tissue staining. -

Anti-laminin (LSL, Rabbit polyclonal), PNAd (MECA-79} (Pharmin-
gen), LYVEL (Goat polyclonal, R&D systems), VCAM-1 ({BAF643,
Goat polyclonal) (R&D systems), ICAM-1 (YN1/1) (ATCC) and
MAdCAM-1 (MECA-367) (Serotec) were used for tissue staining.
Mst1 (Upstate) and Mst2 (Cell Signalling) antibodies were used for
immunoblotting. Staining of CCR7 and CXCR4 was described earlier
(Katagiri et al, 2003; Shimonaka et al, 2003). Secondary antibodies
conjugated with Alexa 488 and Alexa 546 were obtained from
Invitrogen. For flow cytometry, single cell suspensions from
spleens, LNs, thymus and bone marrow were incubated with the
antibodies indicated in the figures and analysed on a FACSCalibur
(Becton Dickinson).

Cryostat sections of frozen tissues (10pm} were fixed with
acetone, air-dried and stained with the indicated antibodies.
Chemokine-stimulated lymphocytes were stained with phycoery-
thrin-labelled anti-LFA-1, FITC-labelled anti-CD44 (Pharmingen)
and anti-Talin (Sigma) as described (Katagiri et al, 2003). Stained
samples were observed with a confocal laser microscope (LSM510
META, Zeiss). Cells with segregated LFA-1 and CD44 accompanied
with elongated cell shapes were considered polarized cells.

Gene targeting

Mouse Mst1/Stk4 was isolated from a BAC clone derived from C57/
BL6 mice (Invitrogen) using a full-length ¢DNA probe (Katagiri
et al, 2006) and used to generate the targeting vector containing
exon 1 flanked with a loxP1 site and the floxed neomycin-resistant
gene. The loxP1 site and floxed neomycin-resistant gene were
inserted into the Ssp1 and EcoRV sites upstream and downstream of
exon 1, respectively. The targeting vector was electroporated into
CS57BL/6 ES cells (Bruce 4) obtained from Dr F Koentgen (Ozgene
Pty Ltd, Australia), and targeted ES-cell clones were identified by
Southern blot analysis. Isolated ES-cell clones were transiently
infected with Cre-expressing adenovirus and subsequently selected
for a conditional floxed allele by Southern blotting and PCR.
Appropriate ES clones were then injected into blastocysts to
generate chimeric mice. The chimeric mice were then bred with
CS57BL/6 mice to achieve germline transmission. These mice were
subsequently crossed with CAG-Cre mice to delete exon 1. Mice
were screened for the respective genotype by PCR and Southern
blotting and for Mst1 protein expression by immunoblotting.
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Immunoblotting

Mouse organs were homogenized with 1% Triton-X100 buffer (1%
Triton X-100, 50 mM Tris pH8.0, 100 mM NacCl, 1 pg/ml aprotinin,
1 mM PMSF, 1ug/ml leupeptin). T and B cells were purified from
splenocytes by MACS (Miltenyi Biotec) according to the manufac-
turer’s protocols, and lysed with 1% Triton-X100 buffer. Tissue and
cell lysates were subjected to immunoblotting as described earlier
(Katagiri et al, 2000).

Homing and cell adhesion assays

Lymphocytes were adoptively transferred as described -earlier
(Katagiri et al, 2004). Purified T or B cells from spleens and LNs
of control Mst1¥fand Mst1™~ mice were differentially labelled with
1 uM 5,6-carboxyfluorescein diacetate (CFSE, Invitrogen) and 10 pM
(5-(and-6){{(4-chloromethyl)benzoyl)amino)tetramethylrhodamine)
(CMTMR, Invitrogen). An equal number of labelled control and
Mst1-deficient cells (5 x 10° each) was injected intravenously into
wild-type mice. After 1h, peripheral LN (inguinal and auxiliary)
cells, splenocytes and peripheral blood mononuclear cells were
analysed by flow cytometry. Reversal of the fluorescent dyes gave
the same results. In some experiments, intravital epifluorescent
microscopy of mesenteric LNs was performed as described earlier
(Kanemitsu et al, 2005) to observe attachment of transferred
lymphocytes using an epifluorescence microscope (IX70; Olympus,
Tokyo, Japan) equipped with a CCD camera (EM-CCD E9100;
Hamamatsu Photonics). Image acquisition was performed using
Aquacosmos software (Hamamatsu Photonics).

Chemokine-stimulated lymphocyte adhesion assays were per-
formed as described earlier using a temperature-controlled parallel
late flow chamber (FCS2, Bioptecs Inc.) with immobilized
recombinant ICAM-1Fc and VCAM-1-Fc (0.5pg/ml) (Katagiri
et al, 2004). Purified T and B cells were incubated with 100 nM
CCL21 and CXCL12, respectively, for 10 min and then shear stress
was applied for 1min at 2 dyne/cm”. Splenic DCs enriched by
centrifugation over BSA density gradients were subjected to static
adhesion assays as described (Pribila et al, 2004).

In flow adhesion assays, a monolayer of LS12 cells, an
endothelial cell line expressing PNAd (Kimura et al, 1999) and
murine ICAM-1 by gene transfer was prepared in the parallel plate
flow chamber with pretreatment with chemokines (100 nM CCL21)
for 10 min before perfusion of purified T (1 x10°cell/ml) in pre-
warmed RPMI1640 medium containing 10% FCS at 2 dyne/cm’
with an automated syringe pump (Harvard Apparatus). Phase-
contrast images in a 0.32-mm? microscopic field were recorded with
an Olympus Plan Fluor DL 10 x /0.3NA objective, CCD camera
(C2741, Hamamatsu Photonics) and VHS recorder. The analog
videos were digitized with 30-ms intervals, and frame-by-frame
displacements and velocities of lymphocyte movements were
calculated by automatically tracking individual cell for 2 min using
a MetaMorph software (Molecular Devices). In some experiments,
lymphocytes were pretreated with 5pg/ml of anti-L-selectin anti-
body (MEL14) (Caltag) and anti-LFA-1 antibody (FD441.8) (ATCC)
for 30min for determination of r-selection or LFA-1-dependent
interaction, or with 200 ng/ml of pertussis toxin (Calbiochem) to
inhibit Gi signalling. A flow adhesion assay using immobilized
recombinant MAACAM-1-Fc (1 pg/ml) was also performed essen-
tially as with LS12 cells.

Thymocyte emigration was measured using thymic lobes as
described earlier (Fukui et al, 2001). Thymic lobes isolated from
Mst1”f and Mst1™/~ mice without disrupting the capsule were
incubated in the upper chamber of a transwell (0.5 um pore size)
with CCL19 (100 nM) in the lower chamber. After 3 h, cells in the
lower chamber were recovered and counted, and then immunos-
tained with FITC-labelled CD4 and phycoerythrin-labelled CD8. The
cell numbers was calculated as the frequencies of the respective
population.

Lymphocyte migration on a stromal cell monolayer

The LN-derived stromal cell line BLS12 was seeded on fibronectin-
coated (20 pg/ml) AT dishes (Bioptechs) and cultured for at least 5
days to construct a monolayer. Total splenocytes were stimulated
with 1ug/ml anti-CD3 (2C11) or 2pug/ml LPS for 2 or 3 days,
respectively. After dead cells were removed with an M-SMF
solution, 5 x10° lymphoblasts were loaded onto the activated
BLS12 monolayer. Phase-contrast images were obtained every 30s
for 30 min at 37 °C using a LSM510 confocal laser microscope (Carl
Zeiss) equipped with a heated stage for AT dishes (Bioptechs).
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Image data were analysed by ImagePro Plus software (Media
Cybernatics). In each field, 50 randomly selected cells were
manually tracked to measure the median velocity and displacement
from the starting point.

Interstitial migration by two~lphoton microscopy

Purified T or B cells from Mst1”f and Mst1™/~ mice were labelled
with 10pM CMTMR (Molecular Probes) or 1puM CFSE {Molecular
Probes), respectively, for 15min at 37°C. Because of defective
homing of Mst17™/~ cells to LNs, Mst1%f and Mst1~/~ lymphocytes
were mixed at the ratio of 1.5 to 1, and cells (5 x 10° cells/m}) were
injected i.v. into mice (200pl/mouse). Twenty-four hours after
transfer, the LN was removed without disrupting the capsule and
perfused with 95% O,/5% CO, equilibrated RPMI1640 and imaged
through the capsule by two-photon microscopy. For two-photon
excitation, a Ti:sapphire laser with a 10-W MilleniaXs pump laser
(Maitai, XF-1, Spectra-Physics) was tuned to 810nm. For four-
dimensional analysis of interstitial migration, stacks of 27-34 x-y
sections (300 x 300 um, 256 x 256 pixels) with 3 pm z-spacing were
acquired every 20 or 30s for 30min by Olympus FV1000, using
emission wavelengths of 500-540 nm (for CFSE-labelled cells) and
570-640nm (for CMTMR-labelled cells). Image stack sequences
were transformed into volume-rendered four-dimensional movies
using Volocity (Improvision), which was also used for semi-
automated tracking of cell motility in three dimensions. From the
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