INTRODUCTION

In humans, homovanillic acid (HVA) is the major end-product of dopamine metabolism.
The HVA in the cerebrospinal fluid (CSF) is largely derived from the nigrostriatal
dopaminergic pathway; therefore, HVA concentration in the CSF has been used as an
index of dopamine synthesis and presumed to reflect nigrostriatal dopaminergic
function. However, even with the availability of a rigorous collection protocol,
especially with respect to puncture time and pre-procedural resting, considerable
interindividual and intraindividual variability has been reported with regard to the
concentration of CSF HVA in subjects with normal nigrostriatal function.(1-3)
Therefore, the extent to which CSF HVA concentrations reflect the nigrostriatal
dopaminergic function is still unknown, and no study has specifically elucidated the
association between the concentration of CSF HVA and the function of nigrostriatal
dopamine.

Many studies have shown that the concentration of CSF HVA substantially reduces in
patients with Parkinson’s disease (PD), which is a neurodegenerative disorder caused by
nigrostriatal dopaminergic dysfunction.(4-12) However, the extent of reduction also
varied a great deal among patients with PD. Because of the variability, the relationship
of clinical disability with CSF HVA concentrations and the accuracy of CSF HVA
concentrations in differentiating PD from other parkinsonian syndromes have yet to be
determined. Several authors have reported an inverse relationship between CSF HVA
concentrations and the clinical severity,(5-7, 10, 11) while others have denied such a
relationship.(9, 12, 13)  Other neurodegenerative disorders caused by the dysfunction
of nigrostriatal dopaminergic system, such as multiple system atrophy (MSA),
progressive supranuclear palsy (PSP) and corticobasal degeneration, also show the
reductions of CSF HVA concentrations as compared to normal subjects.(8, 14, 15)
Therefore, the usefulness of measuring CSF HVA concentrations in daily clinical
practice has not yet been established.

In order to address the physiological and pathophysiological backgrounds of these
issues, we evaluated the correlation between CSF HVA concentrations and nigrostriatal

dopaminergic function. Furthermore, we have discussed the mechanism by which the
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concentration of CSF HVA reduces in patients with PD.

As means of evaluating nigrostriatal dopaminergic function, we performed
carbon-11-labeled 2B-carbomethoxy-3p-(4-fluorophenyl)-tropane ("'C-CFT) positron
emission tomography (PET) scans which can reveal the dopamine transporter (DAT)
density in the striatum. DAT imaging has been recognized as a standard marker for the

diagnosis of PD, because it is a very sensitive, reproducible, and reliable marker of

nigrostriatal dopaminergic function.(16-21)

MATERIALS AND METHODS

Subjects

The present study was a retrospective study. The subjects comprised 35 patients (19
men and 16 women,; ages, 60—83 years [mean age = 71.7, SD = 6.0]). They visited the

neurological outpatient clinic at Tokyo Metropolitan Geriatric Hospital from April 2001
to November 2004. Of the 35 patients, 29 had parkinsonian symptoms and on the
basis of each clinical criteria,(22-24) 21 were diagnosed with PD, 3 with MSA, and 5
with PSP. The remaining six patients had no parkinsonian symptoms: 3 were clinically
diagnosed with Alzheimer’s disease (AD), 2 with spinocerebellar degeneration (SCD),
and one with amyotrophic lateral sclerosis (ALS). Table 1 shows the demographic
data. The patients with MSA and PSP were classified in the patients with non-PD
(NPD) group, while the patients with AD, SCD, and ALS were classified in the patients
with non-parkinsonian syndromes (NPS) group. The CSF examinations and the
C.CFT PET scans were performed within 5 months of each other. None of the
patients had any concomitant hereditary disorder that could cause parkinsonian
symptoms. All the patients were drug naive.

The normal range of HVA was determined by examining the CSF of 13 normal control
subjects (5 men and 8 women; age, 65-88 years [mean = 77.2, SD = 8.2]). Similarly,
the normal range for nigrostriatal dopaminergic function was determined by performing
UC.CFT PET scans of 8 normal control subjects (five men and three women; age,
55-74 years [mean age = 62.3, SD = 6.9]). All the control subjects were healthy and

did not have any underlying diseases or abnormities, as determined on the basis of their
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medical history and their physical and neurological examinations. None of them were
on any medications at the time of the study. All the subjects also underwent routine
MRI examinations.

All the CSF examinations and ''C-CFT PET scans were performed for research. This
study protocol was approved by the Ethics Committee of the Tokyo Metropolitan
Institute of Gerontology and written informed consents were obtained from all the
participants.

CSF analysis

Lumbar puncture was performed in the lateral decubitus position to obtain CSF samples
from each subject. The first few milliliter of CFS was discarded. The next
3-milliliter of CFS was used for routine determinations of cell counts, protein and sugar,
and an additional 2-milliliter was stored at -70°C until the assays were preformed. The
concentration of CSF HVA was measured by injecting 80-microliter CSF samples into a

high-performance liquid chromatography system equipped with 16 electrochemical
sensors (CEAS Model 5500, ESA, Bedford, MA, USA), as described previously.(14)
PET imaging

"C.CFT PET data acquisition: PET studies were performed at the Positron Medical
Center, Tokyo Metropolitan Institute of Gerontology using a SET 2400W scanner
(Shimadzu, Kyoto, Japan) in the three-dimensional scanning mode.(25) The ''C-CFT
was prepared as described previously.(26) Each subject received an intravenous bolus
injection of 388 + 75 (mean + SD) MBq of "'C-CFT. Each subject was then placed in
the supine position with their eyes closed in the PET camera gantry. The head was
immobilized with a customized head holder in order to align the orbitomeatal line
parallel to the scanning plane. To measure the uptake of ''C-CFT, a static scan was
parallel to the scanning plane. To measure the uptake of 'C-CFT, a static scan was
performed for 75-90 min after the injection. The specific activity at the time of
injection ranged from 7.1 to 119.6 GBg/umol. The transmission data were acquired
using a rotating ®*Ga/**Ge rod source for attenuation correction. Images of 50 slices
were obtained with a resolution of 2 x 2 x 3,125 mm voxels and a 128 x 128 matrix.
Analysis of "C.CFT PET images: Image manipulations were carried out by using the

Dr. View software (version R2.0; AJS, Tokyo, Japan). The individual PET images
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were resliced in the transaxial direction, parallel to the anterior—posterior
intercommissural (AC-PC) line. Circular regions of interest (ROls) were placed with
reference to the brain atlas and individual MRI images. Five ROIs (diameter, 8 mm)
were placed on the striatum on both the left and right sides in each of the 3 contiguous
slices (the AC—PC plane, and regions 3.1 mm and 6.2 mm above the AC-PC line). Of
the five ROIs, one ROI was placed on the caudate and four on the putamen. A total of
50 ROIs (diameter, 10 mm) were selected throughout the cerebellar cortex in .ﬁve
contiguous slices. To evaluate the striatal uptake of "'C-CFT, we calculated the uptake
ratio index by the following formula,(17, 18) as previously validated. (27, 28)

Uptake ratio index = (activity in the striatum — activity in the cerebellum)/(activity in
the cerebellum).

Statistical analysis

Differences in the averages were tested using a Student’s ¢ test. Correlations between

the two groups were assessed by linear regression analysis with Pearson’s correlation

test. P values < 0.01 were considered to indicate statistical significance.
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RESULTS

The interindividual variability in the concentrations of CSF HVA in each group was

relatively large (Figure 1A). CSF HVA concentrations in both the PD (P < 0.01) and
NPD groups (P < 0.01) were significantly lower than that in the control group (mean +
2SD, 36.0 £ 27.6), while no significant difference was observed between the NPS and
control groups.

The striatal uptake of ''C-CFT in the PD and NPD groups was below the normal range
(mean £ 2SD, 2.68 + 0.87; Figure 1B). In the PD group, CSF HVA concentrations
were significantly correlated with the striatal uptake of ''C-CFT (+ = 0.76, P < 0.01).

In the NPD group, although the difference in the two indexes was not statistically

significant, the distribution pattern between the two indexes showed the same tendency
as that in the PD group. However, in the NPS group, both CSF HVA concentrations

and the striatal uptake of "'C-CFT were within the normal ranges.

DISCUSSION

We evaluated the correlation between CSF HVA concentrations and nigrostriatal
dopaminergic function by performing "C-CFT PET scans. "C-CFT PET scans
showed that all patients with PD and NPD had the dysfunction of nigrostriatal
dopaminergic system and all patients with NPS had normal function. The CSF HVA
concentrations of all patients with PD and NPD were significantly lower than those of
normal subjects, in accordance with previous studies.(5-12, 14, 15) Whereas, there
was no significant difference in CSF HVA concentrations between normal subjects and
patients with NPS. These results suggest that CSF HVA concentrations could reflect

nigrostriatal dopaminergic function. = However, in accordance with previous

reports,(1-9, 13, 14) all groups showed large interindividual variability in CSF HVA
concentrations and relatively wide overlaps among groups were found. Therefore, in
clinical practice, measuring CSF HVA concentrations may be of limited value in the
diagnosis of PD.

This is the first study that investigated the correlation between CSF HVA concentrations

and nigrostriatal dopaminergic dysfunction. Regardless of relatively high
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interindividual variability, CSF HVA concentrations in the PD group showed a
considerably high correlation with the striatal uptake of ""C-CFT. The NPD group
with nigrostriatal dopaminergic dysfunction showed the same tendency as the PD group,
although without significant correlation probably because of the small number of
patients. On the other hand, the NPD group with normal nigrostriatal dopaminergic
function showed normal ranges in both the HVA level and the striatal uptake of HC-CFT.

Therefore, CSF HVA concentrations may be an additional surrogate maker for

estimating the nigrostriatal dopaminergic function in patients with PD, in case that DAT
imaging, which has been recognized as a standard maker for the diagnosis of PD, is
unavailable.

It is important to note that the DAT images of patients with PD are unique; in the
pre-symptomatic phase the reduction in the availability of striatal DAT was detected,
presumably as a result of both the degeneration of nigral dopaminergic cells and the
compensatory downregulation of DATs on the presynaptic site to maintain normal
synaptic dopamine concentrations.(17-21) Furthermore, the striatal DAT availability
declined at an annual rate of 5-10%.(19, 21, 29-31)

Considering our results and the unique characteristics of the DAT images, a possible
explanation about the association between CSF HVA concentrations and the striatal
uptake of "C-CFT is as follows (Figure 2). The first stage of the disease is a
compensatory and asymptomatic phase. Along with the progression of nigrostriatal
degeneration, the striatal DAT availability begins to decrease, as described
earlier.(17-21) However, due to several compensatory mechanisms, including the
downregulation of DATs and the upregulation of dopamine synthesis, the striatal
dopamine concentrations are kept within the normal range.(32) As a result, CSF HVA
concentrations are also kept in the normal range because CSF HVA is the major
end-product of striatal dopamine metabolism. This phase would show relatively large
intraindividual and interindividual variability in CSF HVA concentrations, as observed
in subjects with normal nigrostriatal dopaminergic function, because of the reserve
capacity for adjusting its levels. The second stage of the progression of the disease is
an advanced and symptomatic phase. The compensatory mechanisms to maintain

normal synaptic dopamine concentrations break down and the striatal dopamine and
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CSF HVA concentrations begin to decrease with the reduction of DAT availability. In

this phase, the intraindividual and interindividual variability in CSF HVA concentrations

would gradually decrease because of a lesser capacity for adjusting its levels.

Consequently, CSF HVA concentrations remain within a narrow range that corresponds

to the remaining nigrostriatal dopaminergic function. In symptomatic patients with PD,
CSF HVA concentrations correlate with nigrostriatal dopaminergic function. To verify

this explanation, a study with larger number of patients is needed.

In conclusion, we found a significant correlation between CSF HVA concentrations and

the striatal uptake of ''C-CFT in patients with PD.  Although we should remember that

CSF HVA concentrations show large variability, CSF HVA concentrations may be an

additional surrogate maker for estimating the remaining nigrostriatal dopaminergic

function in patients with PD in case that DAT imaging is unavailable.
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Table 1.

Demographics of Patients and Control Subjects

Subjects Age Duration  Striatal uptake of "'C-CFT CSF HVA
N M:F y) » (Uptake ratio index) (ng/ml)
Parkinson’s disease 21 11:10  729+50 1.8+13 0.94+0.20 12.8£9.35
Hoehn-Yahr 1 1 1:0 62 1 1.38 36.8
Hoehn-Yahr2 8 4:4 71.6+46 14£09 1.03+0.14 15.6+9.4
Hoehn-Yahr3 12 6:6 747+£39 21«15 0.85+£0.17 89+54
Non-Parkinson’s disease 8 4:4 705+77 1.6+0.8 1.00£0.19 16.4+7.7
Non-parkinsonian syndromes 6 4:2 68.8+63 45+£24 248+0.28 31.9+13.0
Control for PET study 8 5:3 62369 2.68+0.44
Control for CSF study 13 5:8 772482 36.0+13.8

Data are expressed as mean + SD.

N = number, CSF = cerebrospinal fluid, and HVA = homovanillic acid.
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FIGURE LEGENDS

Figure 1. (A) The comparison of CSF HVA concentrations among the disease and
control groups. Vertical bars represent mean = SD. (B) Relationship between
CSF HVA concentrations and the striatal uptake of ""C.CFT. A solid line
represents the regression line for the PD group. Linear correlation was significant
(r=0.76; P <0.01). The grey bars beside the x- and y-axes represent the normal
range (mean + 2SD) for HVA (36.0 + 27.6) and the striatal uptake of C-CFT
(2.68 + 0.87). PD = Parkinson’s disease, NPD = non-Parkinson’s disease with
parkinsonism, NPS = non-parkinsonian syndromes, C = controls, NS = not

significant, CSF = cerebrospinal fluid, and HVA = homovanillic acid.

R | 7 4
70 p<0.01 | p<0.01 | NS ] l oPD ¢NPD *NPS
o
60 . =
s S
= 5@ 4 -« &
E r—
o [+]
2 ] L
<" ° g g
> o o [¢]
F 30 ° o o
. 87 -
20 1 8 o o 8 -
° ) -
10 4 g ot
0 — 2

0 10 20 30 40 50 80
HVA (ngimi)

PD NPD NPS C

— 302 —



Figure 2. Schematic representation of the mechanism of CSF HVA reduction in
patients with PD. (1) The nigrostriatal degeneration begins with a decrease in
DAT availability, but due to several compensatory mechanisms, striatal dopamine
concentrations (CSF HVA concentrations) are maintained within the normal range.
There is a large variability with regard to CSF HVA concentrations. (2) The
compensatory mechanisms break down and striatal dopamine concentrations (CSF
HVA concentrations) begin to decrease along with the decrease in DAT availability.
The variability in CSF HVA concentrations gradually becomes smaller. The grey
zone represents the range of variability in CSF HVA concentrations to the striatal
uptake of 'C-CFT. DAT = dopamine transporter, CSF = cerebrospinal fluid, and

HVA = homovanillic acid.
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(DAT availability)
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