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of AF during the postoperative period, and patients with
new-onset AF are more likely to have acute kidney
dysfunction after cardiac surgcry.”’16 Because chronic
kidney disease is associated with hypertension and high
atrial pressure, both of which predispose to AF,'*'” the
development of AF in patients with kidney dysfunction
could simply reflect mechanical stress in atriurn. Howev-
er, in our study, even mild kidney dysfunction was
associated with the development of AF and the associa-
tion between kidney dysfunction and AF was significant
in multivariate models adjusted for blood pressure and
treated hypertension and in those without hypertension.
Thromboembolism and a decline in cardiac function with
AF may play a role in the subsequent decline in kidney
function decline.

Thus, AF may cause kidney dysfunction and vice versa.
However, AF and chronic kidney disease share risk
factors and putative mechanisms, suggesting that com-
mon pathophysiologic processes may drive both out-
comes. One possible common link is inflammation.
Chronic kidney disease is associated with inflammation,
even in the stage of moderate kidney dysfunction,®
suggesting that persistent inflammation starts early in the
process of kidney function decline. Elevated levels of
inflammatory markers including Creactive protein, fi-
brinogen, and interleukin-6 have been reported in
chronic kidney disease **** More severe kidney
impairment is associated with a trend towards higher
levels of inflammation, and inflammatory markers predict
progression of kidney dysfunction.>*° Inflammation and
oxidant stress also play a significant role in the initiation
and perpetuation of AF.2®?’ Elevated inflammatory
markers have been associated with new-onset and
persistent AR Oxidant stress and changes in gene
expression profiles toward a more pro-oxidant state in AF
have been reportf:d.”’42 Therefore, the association
between AF and kidney disease may reflect activation of
signaling pathways important for inflammation and
oxidant stress, although inflammation markers such as
Creactive protein were not measured in this study
population. Evidence that administration of anti-inflam-
matory drugs (eg, glucocorticoids) and drugs with
antioxidant properties (such as statins) may prevent AF
and also preserve kidney function and prevent protein-
uria, further supports the importance of inflammation as a
common pathophysiologic link between the pathogene-
sis of AF and that of chronic kidney discase. ¢

Another, possible. common: link: between - AF: and
chronic: kidney disease is. renin-angiotensin-aldosterone
system activation.®? * The renin-angiotensin-aldosterone
system is involved in the pathogenesis of cornmon forms
of kidney disease, especially with hypertension,” and it is
reported that plasma renin activity is inappropriately high
in chronic kidney disease.”®: Treatment with' fenin-
angiotensin-aldosterone ' system modulators; including
angiotensin-converting enzyme inhibitors and angioten-
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sin receptor blockers slows progression of chronic
kidney disease.*” Evidence suggesting a role for the
renin-angiotensin-aldosterone system in the pathogenesis
of AF has been also reported.**> Angiotensin II can
increase atrial pressure, promote atrial fibrosis, and
modulate ion channels, all of which are involved in atrial
structural and electrical remodeling resulting in AF. 2484
Polymorphisms in components of this pathway have
been linked to the development of AF.*® Expression of
angiotensin-converting enzyme is increased in atria
during AF,* and treatment with angiotensin-converting
enzyme inhibitors and angiotensin receptor blockers
reduces incidence of AF.3** In addition, locally pro-
duced angiotensin II induces inflammation.?%*"*° Be-
tween subjects with kidney dysfunction and those
without, there were differences in baseline character-
istics including age, sex, body mass index, blood
pressure, hypertension, and diabetes, all of which are
risk factors for AF,”*® and thus, the association between
kidney dysfunction and subsequent AF may be explained
by the differences. However, kidney dysfunction was
associated with development of AF in multivariate models
adjusted for these factors. Similarly, although baseline
characteristics were different between subjects with AF
and those without, multivariate models revealed that AF
was associated with development of kidney dysfunction.

Our study has some limitations. Although annual health
examinations are available for residents in our prefecture,
about half of subjects do not receive the examinations
and this may result in selection bias. We used an
estimated GFR' instead of actual measurement,'®??>°
but this is a common approach in large population
studies. Atrial fibrillation was diagnosed based on annual
ECG recordings, and the manner and frequency of
evaluation supporting’ AF diagnosis may lead underesti-
mation of AF. However, the incidence of AF in our study
was similar to that in other studies in Japan.>*** Our
study population included more women than men,
although an opportunity for this annual health examina-
tion is provided equally to men and women. The medical
history was selfreported. It has been reported that
treatrment with: angiotensin counverting enzyme inhibi-
tors, angiotensin receptor blockers, and antidyslipidemia
drugs have beneficial effects on AF and chronic kidney
diease,**?%%% ‘but 'we do not have informationon
individual drug regimens. We did not study the effects
of cardiovascular events such as myocardial infarction
and heart failure during the follow-up on subsequent AF
and kidney disease. This study was conducted: in a
Japanese population, and further studies in other popula-
tions are necessary to generalize our results.

Conclusions
We found that there is an associdtion between kidney
disease and AF, even in the absence of hypertension and
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diabetes. We suggest that disrupted multiple signaling
pathways may be critical for the pathogenesis of both
diseases and, potentially, their interaction. Chronic
kidney disease and AF are associated with increased
incidence of cardiovascular events and high mortality,
and our findings further propose the importance of
management of these diseases to prevent subsequent
events and to improve mortality.
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atrioventricular conduction in lone atrial fibrillation and
structural heart disease: Implications for electrical remodeling
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BACKGROUND The angiotensin-converting enzyme (ACE) gene con-
tains a common polymorphism based on the insertion (I) or deletion
(D) of a 287-bp intronic DNA fragment. The D allele is associated with
higher ACE activity and thus higher angiotensin II tevels. Angiotensin
II stimulates cardiac fibrosis and conduction heterogeneity.

OBJECTIVE The purpose of this study was to determine whether
the ACE I/D polymorphism modulates cardiac electrophysiology.

METHODS Three different cohorts of patients were studied: 69 pa-
tients with paroxysmal lone atrial fibrillation (AF), 151 patients with
structural heart disease and no history of AF, and 161 healthy subjects
without cardiovascular disease or AF. Patients taking drugs that affect
cardiac conduction were excluded from the study. ECG parameters
during sinus thythm were compared among the ACE 1/D genotypes.

RESULTS The ACE 1/D polymorphism was associated with the PR
interval and heart block in the lone AF cohort. In multivariable

linear regression models, the D allele was associated with longer
PR interval in the lone AF and heart disease cohorts (12.0-ms and
7.1-ms increase per D allele, respectively). P-wave duration
showed a similar trend, with increase in PR interval across ACE 1/D
genotypes in the lone AF and heart disease cohorts.

CONCLUSION The ACE D allele is associated with electrical
remodeling in patients with lone AF and in those with heart
disease, but not in control subjects. ACE activity may play a role
in cardiac remodeling after the development of AF and heart
disease.

KEYWORDS  Atrial fibrillation; Angiotensin-converting enzyme;
Genetics; Electrocardiogram; Heart block; Arrhythmia

(Heart Rhythm 2009;6:1327-1332) © 2009 Heart Rhythm Society.
All rights reserved.

Introduction
The renin-angiotensin-aldosterone system (RAAS) plays an
important role in regulation of normal cardiovascular function,
and disorder: of the system is associated with cardiovascular
diseases.'~® Genetic variants in angiotensin-converting (ACE)
enzyme have been associated with cardiovascular disease, in-
cluding hypertension, myocardial infarction, dilated cardiomy-
opathy, and left ventricular hypertrophy.'7 Recent evidence
suggests that the ACE gene may also play an important role in
the pathogenesis of arrhythmias.*~¢

The ACE gene contains a polymorphism based on the
presence [insertion (I)] or absence [deletion (D)] of a 287-bp
intronic DNA segment; resulting in three genotypes (DD and 11
homozygotes, and ID heterozygotes).® The ACE D allele is
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associated with higher plasma and cardiac ACE activity result-
ing in higher angiotensin II levels, and it has been reported to
increase the risk of arrhythmias, including sudden death and
atrial fibrillation (AF).*~%3%° RAAS activation plays an impor-
tant role in structural and electrophysiologic remodeling that is
associated with the development of AF.'® It has been reported
recently that angiotensin I also provides an electrophysiologic
substrate for arrhythmias by modulation of ion channels and
gap junctions.'™"* Moreover, we recently reported that anti-
arrhythmic drugs are less effective for AF in subjects carrying
the D allele; suggesting the hypothesis that the ACE /D
polymorphism modulates cardiac electrophysiology.'® In
the present study, we tested this hypothesis by studying the
association of the ACE I/D polymorphism with ECG pa-
rameters in subjects with AF and in those with heart disease.

Methods

Study population

The study protocol was approved by the Institutional Re-
view Board of Vanderbilt University and Massachusetts
General Hospital. All subjects gave written informed con-

- doi: 10:1016/j. hrthm.2009.05.014
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sent. This study included three cohorts: (1) patients with
lone AF enrolled in the Vanderbilt or Massachusetts AF
Registry, which is composed of clinical and genetic regis-
tries'®!”; (2) patients with structural heart disease but no
personal or family history of AF'®; and (3) 161 healthy
volunteers with no significant medical history, normal phys-
ical examinations, and no personal or family history of
AF.' At enrollment into the AF Registries, all subjects
completed a symptom questionnaire to assess for symptom-
atic AF burden, which is measured by using an algorithm
for scoring the frequency, duration, and severity of symp-
toms."> Although AF symptoms are important when evalu-
ating response to drug therapies, for the purposes of this
study, the AF burden score was limited to the frequency and
duration of AF.

Lone AF was defined as AF occurring in patients
younger than 65 years without hypertension or overt struc-
tural heart disease by clinical examination, ECG, and echo-
cardiography. Patients with lone AF who had 12-lead ECGs
showing sinus rhythm were included in the lone AF cohort.
Patients taking drugs that affect cardiac conduction, includ-
ing antiarrhythmic drugs, beta-blockers, calcium channel
blockers, and digoxin, were excluded from the study.

ECG measurements

All 12-lead ECGs were recorded with the patient resting
supine, using an analog system at 25 mm/s paper speed, 10
mm/mV gain, and 40-Hz low-pass filter setting. P-wave
duration and PR intervals were measured on all possible
leads by an experienced observer blinded to all clinical
details using a semi-automated digitizing program with
electronic calipers.?

To determine interobserver variability, a second observer
made independent blinded P-wave: duration determinations
of 120 randomly- selected ECGs. Intraobserver variability
was evaluated by P-wave duration analysis of 30 randomly
assigned: ECGs, ‘again-in a blinded fashion by a single
observer. Interobserver measurement error was avoided by
using the:measurements' of the same experienced observer
for statistical comparisons:

Determination of ACE genotype

ACE /D -genotypes were ‘determined by polymierase chain
reaction as described previously.'” Briefly, a set of primers was
designed to encompass the polymorphic region in intron 16 of
the ACE gene (sense primer 5" CTGGAGACCACTCCCATC-
CTTTCT 3', antisense primer 5° GATGTGGCCATCACAT-
TCGTCAGAT 3'). The products were separated by electro-
phoresis on 2% agarose gel and identified by ethidium bromide
staining. Each sample found to be DD was verified using
insertion specific primers (sense primer 5 TGGGACCA-
CAGCGCCCGCCACTAC3/!, antisense primer 5" TCGC-
CAGCCCTCCCATGCCCATAA 3').

Statistical analysis

Statistical analysis was performed using the SPSS statistical
package, release 16.0.1 (SPSS, Inc., Chicago, IL, USA). All

values are expressed as mean * SD for continuous variables
and proportions for categorical variables. Hardy-Weinberg
equilibriums were performed using Chi-square test. Statis-
tical tests of parameters by genotypes were analyzed using
Fisher exact test for categorical variables and analysis of
variance for continuous variables.

Associations of ECG measurements with ACE genotypes
were adjusted for variables affecting cardiac conduction
using a linear regression model. All factors adjusted for
were determined a priori. Modulating factors for the lone
AF cohort included age, length of time with paroxysmal AF
(AF burden), heart rate, and left atrial size. For healthy
controls, factors included age and heart rate. For patients
with cardiovascular disease, factors adjusted for included age,
heart rate, history of hypertension, and congestive heart failure.
PR interval and P-wave durations were checked for normal
gaussian distributions; no transformations were required. A
two-sided significance of 0.05 was used for all analyses.

Results

Clinical characteristics

Among 399 patients with lone AF and 385 heart disease
patients without AF in the original cohorts, 69 patients with
lone AF and 151 heart disease patients were eligible for this
study. The reasons for exclusion from this analysis included
concomitant medications that modulate cardiac conduction
and failure to record an ECG during sinus rhythm. Table 1
lists the clinical characteristics of the study subjects. The
mean symptomatic AF burden score in the lone AF cohort
at enrollment was high, but, more importantly, it was similar
across the three ACE I/D genotypes.

ACE 1/D genotype and ECG parameters

The frequencies of the I, ID, and DD genotypes for the lone
AF cohort (22%, 53%, and 25%, respectively), the heart
disease cohort (16%, 49%, and 35%, respectively), or the
control cohort (18%, 48%, and 34%, respectively) did not
deviate significantly from: those predicted by Hardy-Wein-
berg criteria (27%, 50%, and 23% respectively; P = NS for
each). The intraclass correlation coefficient for: the  ECG
measurement between the two observers was 0.98, indicat-
ing excellent agreement and reproducibility of data.

In the lone AF cohort, patients with the DD genotype had
longer PR intervals and a higher incidence of heart block
(bundle branch block or prolonged PR interval =200 ms;
Table 2). To determine whether conduction in the atria is
modulated by the ACE I/D polymorphism; P-wave duration
was compared among the genotypes. P-wave duration was
not different among the ACE I/D genotypes. The ACE I/D
genotypes were not associated with heart rate, QRS interval,
QRS axis, or QT interval in any of the cohorts.

In multivariable linear regression models, the ACE /D
polymorphism was associated with the PR interval in the
lone AF and heart disease cohorts (Figure 1). With each D
allele, the PR interval prolonged by an average of 12.0 ms
and 7.1 ms in the lone AF and heart disease cohorts, re-
spectively. The ACE /D polymorphism  was: not signifi-
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Table 1 Clinical characteristics of study subjects
ACE 1/D genotype
All patients
Variable (n = 69) DD (n = 17) ID (n = 38) II (n = 14) P value
Lone AF Patients
Age at AF onset (years) 38 + 14 43 = 13 37 £ 14 35 = 13 12
Duration after AF diagnosis (years) 4+ 8 47 36 8 + 11 .06
AF burden score® 2x6 11 *+5 126 11+ 6 77
Male sex [n (%)] 33 (72%) 6 (55%) 21 (78%) 6 (75%) 34
Left atrial size (mm) 36 £ 6 38 + 7 35+5 37+ 6 .37
Ejection fraction (%) 590 + 6 625 58 = 6 58 * 6 11
ACE 1/D genotype
All patients
(n = 151) DD (n = 54) ID {n =77) II (n = 20) P value
Heart Disease Patients without AF
Age (years) 55 + 16 55 * 16 54 + 16 57 = 14 .69
Male sex [n (%)] 63 (42%) 25 (46%) 32 (42%) 6 (30%) 45
Hypertension [n (%)] 92 (61%) 37 (70%) 42 (55%) 13 (65%) 2
Diabetes [n (%)] 31 (21%) 14 (26%) 13 (17%) 4 (20%) 42
Coronary artery disease [n (%)] 52 (34%) 16 (30%) 30 (39%) 6 (30%) .49
Congestive heart failure [n (%)] 39 (26%) 14 (26%) 17 (22%) 8 (40%) .26
Ejection fraction (%) - 44 + 17 42 + 19 44 * 17 44 *+ 15 .82
ACE 1/D genotype
All subjects
(n = 118) DD (n = 41) ID (n = 53) I (n = 24) P value
Controls without AF or Heart Disease
Age (years) 276 27 £ 6 27 £ 6 28+ 5 .82
Male sex [n (%)] 46 (39) 16 (39) 21 (40) 9 (38) .98

AF = atrial fibrillation; I/D = insertion/deletion polymorphism.

cantly related to PR interval in the healthy cohort. P-wave
duration showed a similar trend, with an increase in PR
interval across the ACE I/D genotypes in the lone AF and
heart disease cohorts (Figure 2). P-wave duration was sig-
nificantly longer in subjects with the D allele than in those
without the D allele (DD/ID vs II) in the lone AF cohort (P =
.04), but not in the heart disease or healthy control cohorts
(P = NS for each). With each D allele, P-wave duration
prolonged by an average of 4.6 ms and 2.1 ms in the lone
AF and heart disease cohorts, respectively. The ACE UD
polymorphism was not related to P-wave duration' in the
healthy cohort.

Discussion

Recent studies: strongly support the concept that genetic
variation may be important in the pathogenesis of cardiac
disorders, including arrhythmias, and the: importance - of
genetic medicine in" clinical practice is increasingly being
recognized.?™** Mutations in genes encoding cardiac ion
channels and -associated proteins’ have been identified in
inherited arrhythmia syndromes, including AF.?"** In pop-
ulation association - studies, - certain  polymorphisms (ion
channels, ACE, B,-adrenergic receptors) have been associ-
ated with increased risk of arrhythmias and sudden cardiac
death.>%?"2* Furthermore, contribution of genetic vari-
ants to ECG variation in the general population has been
reported. Polymorphisms in the cardiac potassium chan-

nel (KCNH2) and nitric oxide synthase 1 adaptor protein
(NOS1AP) genes have been associated with QT-interval
variation.*>?® In some cases, the genetic variants are un-
masked only when the “reserve” is reduced, for example,
exposure to QT-prolonging drugs in patients with formes
frustes of the congenital long QT syndrome.?” In this study,
we show for the first time that the ACE I/D polymorphism
is associated with atrial and atrioventricular conduction in
patients with lone AF and in those with heart disease, but
not in healthy subjects. Our findings suggest that the RAAS
plays an important role in electrical remodeling after devel-
opment of AF and heart disease. The ACE D allele is
associated with higher plasma concentration of ACE,"
higher cardiac ACE concentration,”’ and increased renal
ACE mRNA expression.”” Thus, subjects with the D allele
may be exposed to higher angiotensin II levels than are
those with the I allele. Myocardial fibrosis is strongly cor-
related with RAAS activation, especially angiotensin II and
aldosterone, and. chronic exposure. to high levels of circu-
lating and/or tissue angiotensin may predispose to both left
ventricular hypertrophy and myocardial fibrosis.”*

AF is a highly heterogeneous disorder, and. there is in-
creasing evidence that activation of the RAAS plays a role
in the pathophysiology of AF. The ACE I/D:polymorphism
is associated with- serum and: cardiac ACE activity, and
subjects: with: the 1D or DD: genotype: have approximately
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Table 2  Electrocardiographic parameters across ACE I/D genotypes
ACE 1/D genotype

Variable All patients DD D I P value

Patients with Lone AF
Heart rate (bpm) 65 *+ 12 64 *= 15 66 = 11 65 *+ 12 .83
P-wave duration {ms) 109 * 17 110 = 16 111 = 18 101 = 16 .17
PR interval (ms) 166 = 26 177 = 27 166 = 26 150 = 22 .02
Heart block [n (%)] 8 (11) 6 (33) 2 (5) 0 (0) .002
QRS interval (ms) 89 =9 92+ 9 8 * 9 89 9 .51
QRS axis (°) 37 £ 35 38 + 38 37 £ 35 41 * 34 .88
Q7 interval (ms) 402 + 36 400 + 37 400 + 36 410 + 34 .67
QTc 408 *+ 24 408 * 28 411 = 22 398 +£ 25 .20

Heart Disease Patients without AF
Heart rate (bpm) 78 * 20 79 * 19 77 * 20 78 = 25 .79
P-wave duration (ms) 104 = 19 105 = 16 105 = 21 100 * 17 54
PR interval (ms) 157 = 29 162 = 29 155 = 30 149 = 23 .15
Heart block [n (%)] 12 (8) 7 (13) 5(7) 0 (0) a5
QRS interval (ms) 97 £ 23 98 * 27 95 £ 22 98 * 20 .69
QRS axis (°) 27 £ 51 32 = 61 26 £ 45 20 * 42 72
Q7 interval {ms) 387 + 55 386 + 59 385 + 53 394 + 54 .57
QTc 430 = 35 435 *+ 42 425 + 30 436 * 34 31

Controls without AF or Heart Disease
Heart rate (bpm) 66 + 11 64 + 11 67 + 10 67 + 11 42
P-wave duration (ms) 103 + 12 102 £ 13 103 + 13 104 = 10 .99
PR interval (ms) 152 £ 23 152 = 23 154 £ 24 148 = 19 .56
Heart block [n (%)] 4 (3) 2 (5) 2 (4) 0 (0) 57
QRS interval (ms) 87 £ 10 87+ 8 87t 9 89 + 13 91
QRS axis (°) 72 £ 20 75 = 15 70 £ 22 71 =19 .32
QT interval (ms) 393 + 34 389 + 33 396 + 34 392 + 34 .68
QTc 407 = 19 407 = 18 405 *+ 18 417 £ 19 .63

AF = atrial fibrillation; I/D = insertion/deletion polymorphism; QTc = corrected QT interval.

25% and 50% higher ACE levels, respectively, than do
those with the IT genotype.® It has been reported that genetic
variants in ACE are associated with increased AF suscepti-
bility,® and in this study we found that the polymorphism
was also associated with cardiac conduction defects in pa-
tients with AF and those with heart disease. Our results are
consistent with prior studies, which demonstrated that in-
creased expression of ACE in cardiac tissues of genetically
engineered mice results in the development of conduction
abnormalities and AF.?%*? Activation of the RAAS initiates
a cascade of processes resulting in hypertrophy, fibroblast
proliferation, accumulation of collagen, and apoptosis, all of
which predispose to a reduction in conduction velocity.*
Therefore, slow conduction associated with the D allele may
result from electrophysiologic remodeling due to higher
ACE levels and increased activation of the RAAS. Because
blockade of the RAAS attenuates atrial fibrosis,>’ ACE
inhibitors ‘and "angiotensin II' receptor blockers may also
prevent or reduce conduction ‘defects in AF. Moreover,
evidence that angiotensin Il affects cardiac electrophysiol-
ogy by modulation of ion channels and: by gap junction
remodeling, which in turn impairs cell-to-cell impulse con-
duction, further supports our findings.!'™'*

In this study; the ACE I/D polymorphism correlated with
cardiac conduction in the atrium and conduction system; but
not in-the ventricle. The density of angiotensin Il receptors
is higher in-atrial than in ventricular tissue, suggesting that

the atrium is more vulnerable to angiotensin effects.’* An
alternative explanation is that rapid electrical activity during
AF leads to greater electrical remodeling resulting in con-
duction defects in the atrium and conduction system than in
the ventricle, as the ventricle is partially protected by atrio-
ventricular block. The ACE /D polymorphism may have
effects on cardiac electrophysiology in the absence of AF or
heart disease, but the effects may be subtle and thus may be
difficult to: detect on the conventional surface ECG. To
address this issue; further studies using more-advanced
techniques such as: signal-averaged ECG: and intracardiac
electrograms, which were not performed in this study; in a
large number of subjects may be important.

Other factors are important for electrical and structural
remodeling. In this study, normal volunteers without a his-
tory of AF or cardiac disease were younger than those with
lone AF or those with cardiac disease; and aging may also
be associated with ACE UD polymorphism-mediated: con-
duction slowing. However, in multivariate models adjusted
for age and other variables; the association remained sig-
nificant. Although the ACE D allele has been linked with
hypertension,” we found that the ACE /D polymorphism
was associated with cardiac conduction in patients with lone
AF who do not have a history of hypertension. Although
lone  AF patients have no overt structural heart disease; a
prior study has shown subclinical atrial structural abnormal-
ities. in* patients: with- lone- AF refractory. to antiarrhythmic
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angiotensin-converting enzyme; AF = atrial fibrillation; I/D = insertion/
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drugs.>® Thereby, it is possible that the ACE D allele is
associated with structural remodeling rather than electrical
remodeling. Atrial stretch may cause P-wave prolongation
and further increases local synthesis of angiotensin II,>* but
left atrial size was similar among the ACE /D genotypes.
Our study has several limitations. This study excluded pa-

tients taking atrioventricular node-modifying drugs so that
the exclusive effects of ACE I/D polymorphism on cardiac
electrophysiology could be evaluated. Although this could
have introduced a selection bias in the study cohorts, it is
unlikely because the frequencies of the ACE I/D genotypes
were unchanged after the exclusion compared to those in the
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Figure 2 ACE I/D genotype and P-wave duration in (A) patients with
lone AF (P = .18). (B) patients with heart disease and no history of AF (P =
17), and (C) healthy subjects without AF or heart disease (P = .25).
ACE = angiotensin-converting enzyme; AF = atrial fibrillation; /D =
insertion/deletion polymorphism.
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original populations. Furthermore, the study cohorts were in
Hardy-Weinberg equilibrium, providing further evidence
for the absence of this selection bias. Although the DD
genotype was associated with increased risk of AF in a prior
study,’ the frequency of ACE I/D genotypes was similar in
AF patients and controls in our study, similar to a study by
Tsai et al.® They also reported two-way gene-gene interac-
tions between ACE I/D polymorphism and angiotensinogen
gene haplotypes, which may explain this discrepancy.® Our
study only included patients with lone AF, and further study
will be required to evaluate if the ACE I/D polymorphism
also modulates ECG parameters in patients with AF asso-
ciated with cardiovascular disease.

Conclusion

Our data support the hypothesis that the ACE I/D polymor-
phism modulates cardiac electrophysiology in patients with
lone AF and in those with cardiac disease, consistent with
the known effect of the D allele on ACE activity. This study
provides further evidence for the role of activation of the
RAAS in the pathophysiology of cardiac disorders. Therapies
modulating the RAAS may be useful in preventing the devel-
opment of conduction abnormalities in patients with AF in
addition to preventing AF and other cardiac diseases.*>~¢
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Mutations in Sodium Channel $1- and (32-Subunits
Associated With Atrial Fibrillation

Hiroshi Watanabe, MD, PhD; Dawood Darbar, MD; Daniel W. Kaiser, MD;
Kim Jiramongkolchai, BSc; Sameer Chopra, PhD; Brian S. Donahue, MD, PhD;
Prince J. Kannankeril, MD; Dan M. Roden, MD

Background—We and others have reported mutations in the cardiac predominant sodium channel gene SCN34 in patients
with atrial fibrillation (AF). We also have reported that SCNIB is associated with Brugada syndrome and isolated
cardiac conduction disease. We tested the hypothesis that mutations in the 4 sodium channel B-subunit genes

SCNI1B-SCN4B contribute to AF susceptibility.

Methods and Results—Screening for mutations in the 4 f-subunit genes was performed in 480 patients with AF (118
patients with lone AF and 362 patients with AF and cardiovascular disease) and 548 control subjects (188
ethnically defined anonymized subjects and 360 subjects without AF). The effects of mutant 3-subunits on SCN54
mediated currents were studied using electrophysiological studies. We identified 2 nonsynonymous variants in
SCNIB (resulting in R85H, D153N) and 2 in SCN2B (R28Q, R28W) in patients with AF. These occur at residues
highly conserved across mammals and were absent in control subjects. In 3 of 4 mutation carriers, the ECGs showed
saddleback-type ST-segment elevation in the right precordial leads. Transcripts encoding both SCNI/B and SCN2B were
detected in human atrium and ventricle. In heterologous expression studies using Chinese hamster ovary cells, the
mutant 81- or B2-subunits reduced SCN54-mediated current and altered channel gating compared with coexpression of

wild-type subunits.

Conclusions—1.oss of function mutations in sodium channel S-subunits were identified in patients with AF and were
associated with a distinctive ECG phenotype. These findings further support the hypothesis that decreased sodium
current enhances AF susceptibility. (Circ Arrhythmia Electrophysiol. 2009;2:268-275.)

Key Words: arrhythmia m sodium channel m electrophysiology m genetics m mutations ® atrial fibrillation

Risk factors for the development of atrial fibrillation (AF)
include male sex, increasing age, hypertension, type Il
diabetes, metabolic syndrome, and obesity as well as under-
lying heart- disease.’* In addition to these risk: factors,
multiple studies now support a genetic contribution to AF
susceptibility. In isolated patients and families, mutations in
multiple’ ion - channel genes - including KCNQI,  KCNE2,
KCNJ2," KCNAS, SUR24, and SCN5A as well as the gap

junction gene GJAS and the nuclear protein NUP155 have

been associated with AF.*=¢ In addition, linkage of AF to 4
further loci has been reported, although the disease genes in
the loci have not yet been identified.* In population studies,
increased AF susceptibility has been associated with common
polymorphisms in ion channels (KCNEI, KCNES, SCN54), a
G-protein subunit (GNB3), angiotensinogen (4G7), and a
locus near the atrial transcription factor PITX2.457

Editorial see p 215
Clinical Perspective on p 275

Sodium channels are multisubunit protein complexes com-
posed of pore-forming a-subunits, auxiliary function-modifying
B-subunits,? and multiple other proteins.® In humans, 4 sodium
channel B-subunits (B1 to B4, encoded by SCNIB to SCN4B)
have been identified. They share a common predicted protein
topology with an extracellular immunoglobulin-like domain,
a single transmembrane spanning segment, and an intracel-
lular C-terminal domain.® Functions atfributed to B-subunits
include an increase in sodium channel expression at the cell
surface, modulation of channel gating and voltage depen-
dence; and a role in cell adhesion and recruitment of cytosolic
proteins such as ankyrin G.%

Mutations' in SCN54, encoding: the predominant cardiac
sodium channel a-subunit, cause a range of inherited arrhyth-
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mia diseases including the long-QT syndrome, the Brugada
syndrome, progressive cardiac conduction disease, and sick
sinus syndrome.!® Moreover, mutations in SCN/B and
SCN4B have also been implicated in the Brugada syndrome
and/or conduction disease, and long-QT syndrome, respec-
tively.!+12 [n addition, SCNSA mutations and polymorphisms
have been associated with AF, and we recently reported
SCN5A mutations in 5.9% of patients with AF.+5!3 Taken
together, these data suggest B-subunits as candidates for AF
pathogenesis. Therefore, we have tested this hypothesis by
screening sodium channel B-subunit genes for variants in
patients with AF and control subjects.

Methods

Study Subjects

The study protocol was approved by the Institutional Review Board
of Vanderbilt University, and all subjects gave informed consent.
This study included 2 sets of patients with AF: (1) 375 patients
including 118 patients with lone AF and 257 patients with AF and
cardiovascular disease from the Vanderbilt AF Registry (356 whites
[94%], 19 blacks [5%}, 3 Hispanics [0.8%], 1 Asian [0.3%]), and (2)
105 patients from the Vanderbilt Cardiac Surgery Registry (101
whites [96%], 3 blacks [3%], 1 Hispanic [1%]) who had not had AF
before or during surgery and in whom AF was documented in the
postoperative period.!314

Control Populations
There were 3 sets of controls in this study:

1. There were 188 ethnically identified but otherwise anonymized
subjects (white, black, Hispanic, Asian; n=47 for each group)
from the Coriell Cell Repositories (Camden, NJ).

2. For the lone AF control subjects, we used 94 subjects (51
whites [54%], 43 blacks [46%]) who on screening had no
significant medical history, normal physical examinations, and
no personal or family history of AF.'> The subjects were
matched on the basis of age, sex, and ethnicity to the lone AF
cohort,

3. For the group with AF in association with heart disease or
other risk factors, we inicluded 266 patients (211 whites [81%)],
51 blacks [19%]) from the Cardiac Surgery Registry who had
fio personal or' family history of AF and no. post cardiac
operative: AF.13.14 The patients' were matched for age; sex,
ethnicity, and ejection fraction (::5%) to the-cohort with AF
and heart disease.

Resequencing and Follow-Up Genotyping

The  coding - regions and: flanking intronic- sequences: of all 4
B-subunit genes, including exon 3A of B1B,!¢ were resequenced in
all of the AF (n=488 patients; 118 patients with lone AF, 257
patients with AF and cardiovascular diséase, 105 patients with AF in
the postoperative period) and the Coriell control (n=188 subjects)
cohorts in the: Vanderbilt DNA Sequencing Facility or the National
Heart, Lung, and Blood Institute-supported Resequencing and Geno-
typing Service at the J. Craig Venter Institute. The patient controls
(94 healthy subjects and 266 control subjects from the Cardiac
Surgery Registry) were genotyped at the variant sites identified in the
AF cohort using the MassArray SNP genotyping system (Sequenom
Inc, San Diego, Calif) at the Vanderbilt DNA Resource Core.
Proband samples were included in triplicate as positive controls.

Frequency of ST-Segment Elevation

A high ‘prevalence of right precordial ST-segment elevation has
recently been reported in a group of patients with lone AF.171%8 We
therefore studied the frequency of the ST-segment elevation in lone
AF patients and lone AF control subjects (healthy subjects).

Sodium Channel 3-Subunits and AF 269

Quantitative Real-Time Polymerase Chain
Reaction

Poly A™ RNA pooled separately from atria and ventricles of healthy
hearts from =15 whites (Clontech, Mountain View, Calif) was
analyzed. cDNA was synthesized from 2 pg of the RNA and used as
template. Genes of interest subcloned into the pEGFP-IRES vector
(SCNIB, SCN2B, SCN54; Clontech) or the pRC-CMV vector (B-
actin; Invitrogen, Carlsbad, Calif) were used for absolute quantifi-
cation. Real-time polymerase chain reaction (PCR) was performed
with predesigned TaqMan assays (SCNIB, Hs00168897 ml;
SCN2B, Hs00394952 ml; SCN54, Hs00965681 ml; B-actin,
Hs99999903_m1) using the 7900HT Real-Time Instrument (Applied
Biosystems, Foster City, Calif).

Functional Analysis

Full-length human SCN/B c¢DNA (Gen Bank accession No.
NM_001037) and SCN2B ¢cDNA (NM_004588) subcloned into a
bicistronic vector (pEGFP-IRES, Clontech) also carrying GFP were
supplied by Dr Alfred George, Jr. Mutations were prepared using the
QuickChange II XL site-directed mutagenesis kit (Stratagene, La
Jolla, Calif) and were verified by resequencing. The SCN54 cDNA
(NM_198056) was subcloned into the pBK-CMV vector (Strat-
agene). SCNIB or SCN2B constructs (1 ug) were cotransfected with
the plasmid encoding SCN5A4 (1 pg) in Chinese hamster ovary
(CHO) cells. When SCN54 DNA was transfected without
B-subunits, the pEGFP-IRES vector was cotransfected to identify
fluorescent cells for voltage-clamp.

Whole-cell voltage-clamp was performed at room temperature
using an Axopatch 200B amplifier and pClamp9.2 software
(Molecular Devices, Union City, Calif) as described previously.2
Transfected cells were clamped with =~1.0-mol/L(} glass microelec-
trodes and were held at a resting potential of —120 mV. Data for
voltage dependence were fitted with the Boltzmann equation:
y=(1+exp([V—V,,)k]) ™", where V,, is the voltage required to
achieve half-maximal conductance or channel availability and k is
the slope factor. Pulse protocols are shown as insets in the Figures.

Statistical Analysis

Data are presented as mean®=SEM. Student unpaired ¢ test, 1-way
ANOVA, or Fisher exact test was used to test for significant differences.
A value of P<<0.05 was considered statistically significant. The authors
had full ‘access to the data and take responsibility for its integrity. All
authors have read and agreed to the manuscript as written:

Results

Resequencing the AF population identified 2 nonsynonymous
variants in the reference SCNIB sequence and 2 in SCN2B in
3 white and 1 black subject. These variants were absent in the
Coriell controls and in the AF population control subjects,
including a total of 309 whites and 141 blacks. Resequencing
SCN54 in'these 4 patients carrying B-subunit mutations did
not identify any coding region or splice junction variant, No
AF-unique nonsynonymous variant was identified in SCN3B
ot SCN4B.

Clinical Features
Clinical features are described in Table 1 and as follows:

® Patient 1: A heterozygous missense mutation in exon 3 of
SCNIB (¢.254G—> A) resulting in p.R85H was identified in
a 68-year-old white ‘woman  with: paroxysmal~AF and
moderate’ aortic stenosis (pressure’ gradient, 31 mm Hg;
aortic ‘valve area; 0.82 cm?) (Figure 1). There. was no
history of hypertension. AF was diagnosed when she was
58 years old. The 12-lead ECG showed saddleback-type
ST-segment elevation-in leads Vi to Vy (Figure 1).-The
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Table 1. Clinical Characteristics of Patients Carrying S-Subunit Mutations

Patient Age at PR interval, QRS Interval, QTc, ST-Segment LVDD, LVEF, LA, Nucleotide Amino Acid
No. Sex Onset,y  Type of AF ms ms ms Elevation* mm % mm Substitution Substitution
1 F 58 Paroxysmal 140 83 385 Yes 50 55 47  SCN1B 2546—A  p1 R85—H
P F 35 Paroxysmal 132 84 400 No 46 65 48  SCN1B 457G—A 1 D153—N
3 M 55 Paroxysmal 200 80 354 Yes 50 55 40 SCN2B 82C—-T B2 R28—W
4 M 57 Paroxysmal 180 88 398 Yes 49 60 42 SCN2B 83G—A B2 R28—Q

A Patient1

LA indicates left atrium; LVDD, left ventricular diastolic diameter; LVEF, left ventricular ejection fraction; QTc, corrected QT interval by Bazett formula.

*ST-segment elevation in the right precordial leads.

ST-segment elevation was evident both during AF and
sinus thythm with beat-to-beat and day-to-day variability.
She did not have ischemic heart disease, congestive heart
failure, electrolyte abnormality, or antiarrhythmic drug
therapy to explain the ST-segment elevation. Amiodarone
failed to maintain sinus rhythm and did not exacerbate
ST-segment elevation. Echocardiography revealed left
atrial enlargement. No family member had documented
AF, although her grandmother and daughter had a history
of stroke. Her father had a history of myocardial infarction.
Mutations in SCNIB have been previously reported in the
generalized epilepsy with febrile seizures plus (GEFS+)
syndrome, and R85H was initially found in a patient with
GEFS+.1%20 However, there was no personal or family
history of seizures in this or any of the other 3 patients
having B-subunit mutations described here.

Patient 2: A heterozygous missense mutation in exon 4 of
SCNIB (c.457G— A) resulting in p.D153N was identified
in a 57-year-old black woman with paroxysmal lone AF
(Figure 1). AF was initially diagnosed when she was 35
years old. Her ECG was normal and did not show ST-
segment elevation in the right precordial leads or any
conduction abnormality. Echocardiography revealed left
atrial enlargement. When she was 54 years old, she had
episodes. of paroxysmal AF with rapid. ventricular re-

2 150
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sponses, unresponsive to sotalol, propafenone, and amiod-
arone; there was no ST-segment elevation during therapy
with antiarrhythmic drugs. She underwent atrioventricular
nodal ablation followed by implantation of dual-chamber
pacemaker. There was no family history of AF, although
her mother had hypertension and a pacemaker.

¢ Patient 3: A heterozygous missense mutation in exon 2 of

SCN2B (¢.82C—T) resulting in p.R28W was identified in
a 61-year-old white man with paroxysmal AF and hyper-
tension (Figure 2). AF was initially diagnosed when he was
55 years old. The ECG showed saddleback-type ST-
segment elevation in the right precordial leads during sinus
rhythm with a prolonged PR interval of 220 ms. The
magnitude of ST-segment elevation showed day-to-day
variability. Echocardiography was normal. Holter re-
cording during sinus rhythm did not reveal atrial
tachycardia. Sotalol failed to maintain sinus rhythm and
did not exacerbate ST-segment elevation. There was no
family history of AF.

® Patient 4: A heterozygous missense mutation in exon 2 of

SCN2B (c.83G— A) resulting in p.R28Q was identified in
a 57-year-old white man with paroxysmal lone AF (Figure
2). AF was initially diagnosed when he was 57 years old.
There was saddleback-type ST-segment elevation in the
right precordial leads. Echocardiography revealed slight

Figure 1. SCN1B mutations in patients with AF. A,
12-lead ECG in patient 1 shows ST-segment ele-
vation in"leads ' V; to V4. B, Heterozygous single-
nucleotide change in SCN1B (c.254G— A) results
in p.R85H: in patient. 1.. Left and right panels indi-
cate sequences in a control subject and the
patient, respectively. C, Heterozygous single-nu-
cleotide change in SCN1B (c.457G— A} results in
p:D153N in'patient 2. Arrows in B'and G indicate
heterozygous mutations: D, Alignment of g1 amino
acid sequences in human, mouse, rat; and dog.
Sites of the mutations are indicated by boxes. E,
Locations of mutations in the predicted topology
of the B1-subunit (circles).
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Figure 2, SCN2B mutations in patients with AF. A
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left atrial enlargement. He did not receive any antiarrhyth-
mic drugs to restore AF. His father and mother had AF and
coronary heart disease.

There was no history of ventricular tachyarrhythmias or
syncope in any of the 4 patients. Electrophysiological study
has not been performed in any of the patients. DNA was not
available in any family members of the 4 probands.

ST-Segment Elevation in Lone AF

Right precordial ST-segment elevation during sinus rhythm
was identified more frequently in patients with lone AF (8/118,
6.8%) than in control subjects (1/94, 1.1%, P<<0.05). The 8
patients in the lone AF group included 1 with the SCN2B
mutation described above and 1 with a H445D SCN54 muta-
tion.'* None of the 8 patients except for the SCN2B mutation
carrier with a long PR interval (described above) showed a
conduction abnormality.

Conservation of Mutated Amino Acids
The sites of the mutations identified here, R85 and D153 in
B1, and R28 in B2 (Figure 1 and 2) are completely conserved
across human, dog, rat; and mouse sequences, suggesting that
these amino acids are functionally important.

Real-Time PCR in Human Heart

As a first step to establishing the functional significance of
SCNIB and SCN2B in the genesis of AF, we studied their
expression in atrial tissue. Figure 3 shows that the transcripts
were readily detected in both atrium and ventricle. The abun-
dance of SCNIB and SCN5A transcripts was greater in ventricle
than atrium (68% and 35% of ventricle, respectively), but
SCN2B transcript levels were similar in the 2 chambers.

Electrophysiology

Each of the 4 mutant subunits generated a loss of function
phenotype. Peak sodium current amplitude was increased by
75% at a test pulse of —30 mV when wild-type 81 was

12-lead ECG in patient 3 shows ST-segment ele-
vation in leads V, to V,. B. Heterozygous single-
nucleotide change in SCN2B (c.82C—T) results in
p.R28W in patient 3. G, ¢.83G—A results in
p.R28Q in patient 4. Arrows in B and C indicate
heterozygous mutations. D, Alignment of 82 amino
acid sequences in human, mouse, rat, and dog.
R28 is indicated by box. E, Location of mutations
in the predicted topology of the B2-subunit (circle).

coexpressed with SCN5A (Table 2, Figure 4, P<<0.001). This
effect was markedly blunted with the D153N mutation (24%
increase versus SCN5A alone, P<<0.05) and absent with the
R85H mutation, resulting in smaller sodium current amplitude
for the mutants than wild-type 81 (P<<0.001 for each). D153N
did not affect the voltage dependence of sodium channel
activation or inactivation compared to wild-type 1. However,
R85H resulted in a positive shift of both voltage dependence of
activation (+10.6 mV, P<<0.001) and of inactivation (+6.2 mV,
P<0.001) compared with wild-type B1. There was no difference
in persistent sodium' current among wild-type (1.0£0.1%),
DI153N (0.9£0.1%), and R85H B1 (1.1£0.2%).

In contrast to B1, wild-type B2 did not increase peak
sodium current amplitude compared with SCN54 alone (Ta-
ble 3, Figure 5, P=NS). However, coexpression of R28W or
of R28Q reduced peak current amplitude by 30% (P<<0.05)
and by 36% (P<<0.01) at —30 mV, respectively, compared
with wild-type 2. In addition, R28W produced a positive
shift in the voltage dependence of activation. (+5.1 mV,
P<0.001) compared with wild-type but did not affect the
voltage dependence of inactivation (P=NS): R28Q produced

-Relative expressionjevel |

oV - soMeE soak
Figure 3. Expression profile of SCN1B, SCN2B, and SCN5A in

nondiseased human heart tissues using real-time PCR. Graph
represents the relative expression levels normalized to those of

B actin in atrium (filled bars) and ventricle (openbars). Data are
expressed as mean+=SEM.
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Table 2. Biophysical Parameters for 81 Variants Associated With AF
Peak Current Density at

~30 mV Voltage Dependence of Activation Voltage Dependence of Inactivation
pA/pF n Vo (MV) kmv) n Vip (MV) k{mV) n
SCN5A -161.0=20.4 18 ~38.7+05 77+0.3 18 —86.9+1.5 7.1x07 18
SCNSANT B1 —281.7+21.7* 37 —48.9:+0.8* 8.5+0.5 37 —93.6+0.8* 6.8+0.4 36
SCN5A/R85H B1 —158.5+16.8t 35 —38.3+0.71 8.1+0.5 35 —87.4+0.6% 8.5+0.3 34
SCN5A/D153N g1 —200.4:18.2% 27 —50.8+0.9* 8.7+056 27 -95.0+0.7* 7.5+05 26

*P<0.05 versus SCN5A.
1P<0.05 versus SCNSAWT 1.

a positive shift in both of the voltage dependence of activa-
tion (+7.4 mV, P<0.001) and of inactivation (+2.8 mv,
P<0.01) compared with wild-type 2. There was no differ-
ence in persistent sodium current among wild-type
(1.2+0.3%), R28W (1.1+0.3%), and R28Q B2 (1.2£0.2%).

Discussion

In this report, we describe rare nonsynonymous variants in
SCNIB and SCN2B in patients with AF. These variants affect
highly conserved residues and were not present in large control
populations. Thus, SCNIB and SCN2B are candidate genes for
increasing AF susceptibility. The findings that SCN/B and
SCN2B are expressed in atrium, and that mutant S1 and 2
produced loss-of-function effects on SCN54-mediated currents
further supports the association of the variants with AF.

The reported effects of coexpressing 81 on SCN5A chan-
nels are controversial.® Some groups have reported that 81
increases SCN5A currents without affecting the voltage de-
pendence of gating or kinetics, whereas others have reported

A SCNsA SCNSAWT B1

Bl-mediated changes in channel gating and/or kinetics.® In
some reports, 81 has no effect on SCN54-mediated current.®
In B1 null mice, an increase in sodium current amplitude
without a change in channel gating or kinetics has been
reported.! In our experiments, wild-type Bl increased
SCN5A4 currents and modulated channel gating, and the
p.R85H and p.D153N mutants showed loss of 81 function
with significantly decreased current amplitudes.

The effects of B2 on SCN5A currents have been less
extensively studied. Whereas one group reported that 2 has
no effect on SCN5A currents using heterologous expression,??
another group reported a negative shift of the voltage depen-
dence of activation.?? Sinus node dysfunction has been
reported in B2 null mice.2* In the present study, whereas 82
had no effects on SCN5A currents except for a minor positive
shift of the voltage dependence of inactivation, both the
p.R28W and p.R28Q mutants strikingly decreased peak
sodium current amplitude. The patients had no evidence of
sinus node dysfunction.
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Figure 4. Electrophysuo!ogrcal characteristics of B1-subunit variants in' CHO cells expressing SCN5A and g1-subunits. A, Representa-
tive current traces: B, Current-voltage relationships: of SCN5A alone (filled circles),, SCN5A coexpressed with wild-type (WT) 81 (open
circles), SCN5A coexpressed with R85H B1 (open triangles), and SCN5A coexpressed with D153N: g1 (open:squares). Voltage depen-
dence of activation (C} and inactivation (D) are shown.
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Table 3.  Biophysical Parameters for 32 Variants Associated With AF
Peak Current Density at

—-30 mv Voltage Dependence of Activation Voltage Dependence of Inactivation
pA/pF n Vipp (V) k {(mv) n Ve (V) k (mv) n
SCN5A —157.0+13.6 25 —39.6+0.5 7.6+0.2 25 —84.4+07 6.9+0.3 24
SCN5AIB2 WT —161.6+13.3 27 —38.0=0.6 6.2+0.2 27 —80.2:-0.6* 6.8+0.3 26
SCN5AIR28W B2 —112.6x12.2*% 31 —32.9+0.8*t 8.3+0.4 31 ~79.4x0.7 7.5+04 29
SCN5AIR28Q B2 —103.4:11.8*t 29 —30.6=0.6*F 6.3+0.2 29 77407t 7.2x03 26

*P<0.05 versus SCN5A.
1P<0.05 vs SCNSAWT g2.

All of 4 mutations identified in SCNIB and SCN2B were
located in the extracellular domain, which has a critical role
in modulation of cell surface expression and gating of sodium
channel.?’ In previous studies of skeletal muscle and neuronal
sodium channel a-subunits, deletion of the intracellular domain
of the B1-subunit had no effect on its modulation of a-subunit
function, whereas deletions within the extracellular domain
block modulation.?s-2% Our recent study, which describes loss-
of-function mutations in SCNIB in the extracellular domain,
supports functional importance of the extracellular domain.!2
However, it is also possible that specific residues may not be as
important as preservation of overall structural motifs because
B-subunit modulates sodium channel via the membrane anchor
plus additional intracellular or extracellular regions.?®

Variation in SCN54 is associated with AF.%5 Loss-of-
function mutations in SCN5A4 have been associated with AF
as well as with dilated cardiomyopathy, sinus node dysfunc-
tion, and/or conduction disease.?® Screening for SCNS5A
variants in a large AF cohort, which was also used for this
study, found SCN54 mutations in 5.9% of those with AF.13 A
common polymorphism in SCN54 (H558R) has also been
associated with AF- susceptibility,* although: this. was not
reproduced in another study.3!

A SCNBA.

SCNSAWT 82

Sodium channels play a critical role not only in the
initiation of the action potential but also in the maintenance of
the action potential dome,!® and loss of sodium channel
function can cause shortening of refractoriness and slowing
of conduction.?? Shortening of refractory period by a reduc-
tion in inward current and/or an increase in outward current
has been proposed as creating a substrate for reentry,32 and
this concept has been supported by evidence that loss-of-
function mutations in SCN5A4 or gain-of-function mutations
in potassium channel genes that shorten action potential
duration contribute to AF susceptibility.3!:33-35 Slow conduc-
tion, which is also promoted by decreased sodium current, is
another important substrate for reentry.3? Thus, mutations in
SCNIB and SCN2B that reduce sodium current can generate
an AF-prone substrate through multiple mechanisms even in
the presence of other susceptibility modifiers.

The clinical features of the AF cases we identified here
appear to share molecular and pathophysiologic characteris-
tics with the Brugada syndrome, characterized by ST-
segment elevation in the right precordial leads, episodes of
ventricular fibrillation, and occasionally’ AF.19-36 Moreover,
loss-of-function mutations in SCN54 have been reported in
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Figure 5. Electrophysiological characteristics of g2-subunit variants in GHO cells expressing SCN5A and B2-subunits. A, Représenta-
tive current traces. B; Current-voltage relationships of SCN5A alone: (filled circles), SCN5A coexpressed with wild-type (WT) 82 (open
circles); SCNSA coexpressed with R28W B2 (open triangles), and SCN5A coexpressed with R28Q B2 (open squares). Voltage depen-

dence of activation (C) and inactivation (D) are shown.
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the Brugada syndrome as well as in AF,*51° and we have
recently reported a loss-of-function mutation in SCN/B in the
Brugada syndrome.!? Brugada-type ST-segment elevation,
similar to this study, has been reported in patients with lone
AF, and a genetic etiology is suggested by a high frequency
of a family history of AF, although no molecular mechanism
was identified in previous studies.!”'® Taken together, these
data implicate loss of sodium channel function due to
B-subunit mutations as a further mechanism underlying the
Brugada-type ECG and AF susceptibility. We also identified
ST-segment elevation in other subjects with AF (more com-
monly than in control subjects), but mutations in SCN54,
SCNIB, or SCN2B were only identified in a minority; thus
other genetic mechanisms probably play a role.!¢

Sodium channel-blocking drugs are widely used to restore
and maintain sinus rhythm in paroxysmal AF. They are also
used to exaggerate or unmask ST-segment elevation in
Brugada syndrome, where they can increase ventricular
arrhythmia susceptibility. Therefore, these drugs may be
proarrhythmic (or at least ineffectual) in cases of AF—such
as those we describe here—in which decreased sodium
current plays a role in pathogenesis of the arrhythmia.
ST-segment elevation in the right precordial leads may be
useful to identify such patients.

Mutations in SCN/B were originally identified in familial
epilepsy, GEFS+.!° However, there was no history of epi-
lepsy in our patients carrying mutations including R85H,
previously reported as an epilepsy mutation.?® In: addition,
there was no history of seizure disorder in patients with
SCN1B mutations in conduction disease and Brugada syn-
drome that we have recently described.!2 Conversely, to our
knowledge, defects in cardiac function have not been inves-
tigated in SCN/B mutation carriers presenting with epilepsy,
and AF has not been described in the family with R85H and
seizures.!>20 The mechanism underlying this difference be-
tween the brain and heart phenotypes is not known, but sex,
age, and genetic modifiers (eg, common polymorphisms) are
commonly invoked as modulators of such clinical phenotypes.
One possibility is that the Sudden Unexpected Death in Epilepsy
(SUDEP) syndrome is-a" cardiac’ arrhythmia® manifestation of
[B-subunit or other mutations contributing to epilepsy.3”

Limitations

Screening for B-subunit genes was performed in large cohorts
including ethnically defined and. population-matched. con-
trols, and mutations were identified only in patients with AF.
However, it is difficult to-have controls definitely free from
AF. We believe a cohort of patients with' heart disease
undergoing cardiac surgery but without AF is'a very robust
control set.. Linkage or segregation analysis: was not con-
ducted because DNA was not available in family members of
affected: patients. The variants are rare and: thus  genetic
variants in S-subunit genes may not be responsible in a large
number of patients with AF. Evidence supporting a- critical
role’ of B-subunits in' AF includes expression of SCN/B and
SCN2B in atrium and loss of sodium' channel function in the
heterologous expression studies. The functional analyses used
a conventional heterologous expression system, where the envi-
ronment is different from that in the native cardiomyocyte, and

other proteins associated with the sodium channel complex
(including other B-subunits) are absent. Nevertheless, the in vitro
characteristics of the mutations were consistent with the pheno-
type in the patients, further supporting the disease causality of
the mutations. The observed alterations in gating indicate that
the mutant subunits are expressed and probably coassemble with
SCN5A to form dysfunctional channels.

Conclusions

In summary, we have identified mutations in sodium channel
Bl- and B2-subunit genes in patients with AF and have
shown that sodium currents were reduced and channel gating
was altered when the mutant B1 or B2 was coexpressed with
SCN54, compared with coexpression with wild-type
B-subunits. Three of 4 mutation carriers showed ST-segment
elevation in the right precordial leads, further implicating loss
of sodium current as a disease mechanism for AF. We
speculate that sodium channel blockers may have proarrhyth-
mic effects in cases of AF in which decreased sodium current
plays a role in pathogenesis of the arrhythmia.
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CLINICAL PERSPECTIVE
There is a positive family history in' many patients with atrial fibrillation (AF), especially lone AF. Recent genetic studies have
identified both rare and common genetic variants that appear to predispose to the arrhythmia, and this includes variants in SCN54,
encoding the cardiac sodium channel pore-forming a-subunit. Sodium channels are multiprotein complexes, and so in this study,
4 function-modifying sodium' channel’ B-subunit genes (SCN/B to SCN4B) were screened for mutations in a large number of
patients with lone AF and AF associated with cardiovascular disease. This screening effort identified 4 subjects with mutations
resulting in changes in-amino acids highly conserved across species in SCN/B and SCN2B. All 4 mutations showed decreased
sodium’ current, a change similar to that seen with loss-of-function mutations in-SCN5A4 and SCNIB in Brugada syndrome. AF
is relatively. common in the Brugada syndrome, and 3 of the 4 AF patients carrying a mutation in a B-subunit. gene showed
Brugada syndrome-like ST-segment elevation, further reinforcing the idea that loss of sodium channel function increases AF
susceptibility. Indeed, in some series; saddleback or other ST-segment deformities are reported in up to 10% of patients with lone
AF, suggesting that these patients represent a distinct subgroup of AF due to reduced. sodium: current through mutations in
SCN54; SCNIB,; SCN2B, or other sodium channel-associated protein genes. Exposure to sodium channel blockers could be used
to identify this subgroup, although long-term therapy with these drugs would be undesirable because they can increase ventricular

arrhythmia susceptibility in Brugada syndrome.
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Flecainide prevents
catecholaminergic polymorphic
ventricular tachycardia in mice
and humans

Hiroshi Watanabel**$, Nagesh Chopral'é, Derek Laver®$,
Hyun Seok Hwangl, Sean S Davies!, Daniel E Roach?,
Henry J Duff’, Dan M Roden’, Arthur A M Wilde*

& Bjorn C Knollmann!

Catecholaminergic polymorphic ventricular tachycardia (CPVT)
is a potentially lethal inherited arrhythmia syndrome in which
drug therapy is often ineffective. We discovered that flecainide
prevents arrhythmias in a mouse model of CPVT by inhibiting
cardiac ryanodine receptor-mediated Ca2* release and thereby
directly targeting the underlying molecuiar defect. Flecainide
completely prevented CPVT in two human subjects who had
remained highly symptomatic on conventional drug therapy,
indicating that this currently available drug is a promising
mechanism-based therapy for CPVT.

CPVT is an inherited arrhythmia syndrome characterized by a
normal baseline electrocardiogram (ECG), polymorphic ventricular
tachycardia induced by adrenergic stress in the absence of structural
heart disease, and a high mortality rate in young individuals'.
Treatment with B-adrenergic blockers reduces arrhythmia burden
and mortality but is not completely effective!, and implantable
cardioverter defibrillators (ICDs) are used for the prevention of
sudden death. However, painful appropriate or inappropriate
defibrillation shocks can trigger further adrenergic stress and
arrhythmias, and deaths have occurred despite appropriate ICD
shocks*?, In such instances, stellate ganglionectomy* or even
cardidc transplantation® have been' considered. Two CPVT dis-
ease-related genes have been identified: RYR2, encoding the cardiac
ryanodine receptor Ca®*. release channel (RyR2), and CASQ2,
encoding cardiac calsequestrin®’. Mutations in these genes desta-
bilize the RyR2 Ca®* release complex®®. In mice with CPVT-linked
mutations, cateécholamines cause spontaneous sarcoplasmic reticu-
lum Ca?? release resulting in delayed after depolarizations (DADs),
and. they produce triggered activity in myocytes and polymorphic
ventricular tachycardia in vivo!®!, Here we identify a therapy that
directly targets the underlying arrhythmia mechanisms: we found
that flecainide, an approved antiarrhythmic drug known to block
sodium . channels, showed remarkable . efficacy in  suppressing

BRIEF COMMUNICATIONS

spontaneous sarcoplasmic reticulum Ca®* release by inhibiting
RyR2. Flecainide treatment completely prevented adrenergic
stress—induced arrhythmias in a mouse model of CPVT and in
humans with CASQ2 or RYR2 mutations that are refractory to
standard drug treatment.

The local anesthetic tetracaine has been used to inhibit RyR2 and
suppress spontaneous sarcoplasmic reticulum Ca?" release in iso-
lated myocytes'2, However, tetracaine causes a rebound increase in
sarcoplasmic reticulum Ca?* release events during prolonged
exposure'?, effective inhibitory concentrations'* are too high for
clinical use, and systemic administration is contraindicated in
humans. We searched among clinically available antiarrhythmic
drugs for a more useful RyR2 inhibitor and found that flecainide
inhibited RyR2 more potently than tetracaine and by a different
mechanism. Whereas tetracaine caused long-lived channel closings,
flecainide reduced the duration of channel openings and did not
affect closed channel duration (Supplementary Fig. 1 online).
Flecainide’s inhibitory potency was higher when RyR2 was acti-
vated by high luminal Ca®* concentration mimicking spontaneous
sarcoplasmic reticulum Ca?* releases that trigger premature heart
beats (Fig. la,b; half-maximal inhibitory concentration = 15 %
3'uM), compared to when RyR2 was activated by high cytosolic
Ca®* concentration, such as would occur during a normal heart
beat (Supplementary Fig. 1a; half-maximal inhibitory concen-
tration = 55 + 8 uM).

We next tested whether RyR2 block by flecainide translates into an
inhibition of spontaneous sarcoplasmic reticulum Ca®* release in
ventricular myocytes isolated from mice with gene-targeted deletion
of Casq2 (Casq2" mice), a model of CASQ2-linked CPVT'?, Upon
catecholaminergic challenge with isoproterenol, Casq2”’~ myocytes
exhibit frequent spontaneous sarcoplasmic reticulum Ca®* releases
that can trigger premature beats (Fig. Ic and ref. 10). Flecainide
significantly suppressed the rate of spontaneous Ca’* releases from the
sarcoplasmic reticulum by 39% (Fig. 1d), even though Ca®* content in
sarcoplasmic reticulum was not significantly changed (Supplementary
Fig. 2a,b online): The reduction of spontaneous. Ca’* releases by
flecainide remained significant even after Na* and Ca?* were removed
from: the extracellular. bath solution (47% reduction, P = 0.009,
Supplementary Fig. 2c,d), indicating that inhibition of trans-sarco-
lemmal Na* or Ca’* fluxes did not contribute to the. reduced
spontaneous Ca?* releases; that is, indicating: that flecainide does
not act by blocking Na' channels. Compared to vehicle, flecainide
significantly decreased. diastolic: sarcoplasmic reticulum Ca®* leak in
isoproterenol-stimulated CasqZ "~ myocytes (Supplementary Fig. 2¢,f;
P =0.02). Indeed, in contrast to tetracaine treatment'®, flecainide
treatment did not result in a compensatory increase in sarcoplasmic
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Figure 1 Flecainide inhibits RyR2 Ca?* release a
channels, reduces spontaneous Ca?* release
events and triggered beats and prevents ventric-
ular tachycardia in a CPVT mouse model.

(a) Representative examples of the activity of
single sheep RyR2 channels incorporated in lipid
bilayers in response to 0, 5 and 10 uM flecainide
followed by washout. C, closed; O, open.

(b) Average concentration dependence of

flecainide's effect on RyR2 open probability (F,), §

-t‘-, &

. C
OpA "ZOOmsO
4 P
L

?

mean open time (7,) and mean closed time (7).
Data are expressed relative to values at O pM

0 5 102050 b5102050

flecainide, with absolute P, = 0.12 x 0.07, 0 5102050
T,=135+44msand T, = 146 56 ms. Flecainide {uM) Fiecainide (uM) Flecainide (uM)
RyR2 channels were activated by 1 mM Ca%* on d
the trans (luminal) side with cis (cytosolic) at c H 08 1 1 Vehicle f.T
0.0001 Ca?* mM (to model resting Ca?* 3 W Flecainide 3 a &\
concentration). n = 3-8 experiments per H g ene s, i
concentration; *P < 0.02, **P < 0.01 and %‘15 Frato “%’ T
***P < 0.001. (c,d) Effects of flecainide on S
isoproterenol (ISO)-stimulated Casq2” myocytes. * @ Flecainide
(c) Representative examples of spontaneous . i f
sarcoplasmic reticulum Ca?* release events (*) e Yeptd : B
and triggered beats (1), Fatio, Fura-2 fluorescence § T 20 Ca’*release  Triggered beats /
ratio, which is proportional to free intracellular Time (s) Membrane potential
Ca?* concentration (see Supplementary Methods f Bidirectional VT g
online). {d) Flecainide (6 pM, > 10 min - )

3 Sinus rhythm

incubation) significantly decreased spontaneous
sarcoplasmic reticulum Ca2* release events and
triggered beats (n = 44 cells) compared to
vehicle (n = 45 cells). **P = 0.0078 and

***p < 0.001. (e) Cartoon illustrating the dual
mechanism of flecainide action: (1) inhibition of
the sarcoplasmic reticulum Ca2* release (*) that
causes delayed after depolarizations and (2)
inhibition of the premature beats () that are
triggered by delayed after depolarizations.

(F) Heart rate response to ISO (1.5 mg kg™1)
challenge in a Casq2™ mouse. As illustrated in
the ECG trace, the rapid and irregular heart rate

sy

700

660

HR (b.p.m.)

500
400 { Mgt
18O

(HR) was the result of numerous repetitive
ventricular extrasystoles (VE, arrows) and the
induction of ventricular tachycardia (VT). b.p.m.,

Time (min)

300

Time {min}

beats per minute. (g) Heart rate of the same mouse after it received flecainide (20 mg kg1) 15 min before ISO challenge. All data are means = s.e.m.; for
experimental protocols and statistical analysis see Supplementary Methods. Animal experiments were approved by the Vanderbilt University Medical Center

Institutional Animal Care and Use Committee.

reticulum Ca?* content and prevented spontaneous Ca®* releases even
after prolonged application (Supplementary Fig.- 3 online). These
findings are consistent with the idea that flecainide inhibits RyR2 by'a
different mechanism than tetracaine (Supplementary Fig. 1).

A major consequence of spontaneous premature  sarcoplasmic
reticulum Ca®* release in intact myocytes is the activation of electro-
genic Na*-Ca’* exchange, which in turn causes membrane depolar-
izations  termed DADs'>.  DADs  of  sufficient  amplitude  activate
voltage-gated Nat channels and trigger full action potentials. Flecai-
nide’ reduced triggered beats by 69% (Fig. 1d), a higher percent
inhibition than its reduction of spontaneous Ca’* release events (39%;
Fig. 1d). These data are consistent with flecainide’s known inhibition
of Na*'channels to prevent triggered beats'®. Taken together, these
results indicate a dual mode of flecainide action in CPVT: suppression
of spontaneous sarcoplasmic reticulum Ca?* release events via RyR2
inhibition and suppression of triggered beats via Nat channel block
(Fig. le).

‘We next examined whether this dual mechanism of flecainide action
translates into therapeutic efficacy. In a Casq2” mouse, catecholamine
challenge induced an irregular heart rhythm (Fig. 1f) resulting from

frequent ventricular extrasystoles occurring after each normal ‘sinus’
beat (bigemini), which quickly degenerated into polymorphic ventric-
ular tachycardia with - alternating upward ‘and ‘dovwnward' deflections
of the QRS complex (bidirectional ventricular tachycardia), the hall-
mark of CPVT!, After flecainide treatment, the heart rate remained
regular’ (with a ‘sinus ‘rhythm) and catecholamine challenge “did not
induce ventricular arthythmias (Fig. 1g). Flecainide completely sup-
pressed’ ventricular tachycardia in all 12 mice tested and ventricular
extrasystole in 11 out of 12 mice (P < 0.001). In the remaining mouse,
flecainide reduced 'the number’ of isoproterenol-induced: ventricular
extrasystoles by 99.5%. Flecainide was equally effective in preventing
exercise-induced polymorphic or bidirectional ventricular tachycardia
in"“conscious  Casq2 ™/~ mice; a ‘single administration” of flecainide
(20 mg per kg body weight intraperitoneally) resulted in serum
flecainide concentrations of 25+ 02 uM (1.2 £ 0.08 mg 1"} 1 h
later, when exercise-induced ventricular tachycardia was completely
prevented. Protection from ventricular tachycardia persisted for up to 6
h, with no rebound increase in ventricular tachycardia observed during
a 20-h follow-up period (Supplementary Fig. 4 online). Lidocaine, a
Na* channel blocker that does not inhibit RyR2 channels'* and lacks
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d  Subject 1: B-blocker + Ca® channel blocker b

Subject 1: fi-blocker + flecainide
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Figure 2 Flecainide treatment prevents exercise-
induced ventricular arrhythmia in two subjects
with CPVT refractory to conventional drug therapy.
(a-d) Effect of flecainide treatment in

a 12-year-old boy (subject 1) with a CASQ2

mutation (a,b) and in a 36-year-old female

180 1 Exercise 50 180 7 orcise r 50 (subject 2) with an RYR2 mutation {c,d). Top of
150 |40 1504 40 each panel, representative ECGs recorded during
120 130 maximum stress; bottom of each panel, heart rate
€ 30 E E “ . 30 m and rate of ventricular extrasystoles during an
& 907 g 5 9 M 4 exercise test. Blue area indicates arrhythmia
[ 20 3 & s0+* \“W = 32 burden. Exercise protocol and ventricular
L 10 L 10 extrasystole analysis are as previously described®.
301 30 g }
Drug therapy during each exercise fest: metro-
0 2 Lo 0 gL g -1 i -1
o 1 3 3 4 5 8 T 8 P A S T S prolot 100 mg d°! plus vefz;pamll 120‘ mg d
Time (min) Time {min) (a), metroprolol 100 mg d™* plus flecainide

biocker + Ca?* channel blocker

150 mg d™! for 7 weeks (b), bisoprolol 5 mg d"!
plus verapamil 240 mg d-! (c) or flecainide
150 mg d-! for 8 weeks (d). Experiments
involving human subjects were reviewed and
approved by the University of Amsterdam
Academic Medical Center Institutional Medical

Exercise

(wda) 3a

6 2 4 6 8 10 12 14 16
Time {min)

clinical efficacy in CPVTY, reduced the number of ventricular extra-
systoles, but did not prevent exercise-induced ventricular tachycardia
(Supplementary Fig. 5 online), further indicating that RyR2 inhibition
is crucial for flecainide’s antiarrhythmic efficacy in CPVT.

Given flecainide’s efficacy in the mouse model, we tested the drugin
two subjects with treatment-refractory CPVT. The first subject was a
12-year-old boy, homozygous for a CASQ2 missense mutation'3, who
suffered from repeated appropriate ICD shocks despite maximal
conventional therapy with the B-adrenergic receptor blocker meto-
prolol and the Ca®* channel blocker verapamil. ICD shocks were
prevented by bed rest, although nonsustained ventricular tachycardia
persisted, as documented by examination of ECG recordings stored in
the ICD (data not shown). Treadmill exercise reproducibly induced
arrhythmias in this subject (Fig. 2a). A therapeutic trial of flecainide
(initially 2 mg per kg body weight per day for 6 weeks, then 3 mg per
kg body weight per day) was begun, and verapamil was discontinued.
Examination of ICD records at 3 weeks and 12 weeks after starting
flecainide revealed a complete absence of ventricular tachycardia
episodes (data not shown). Repeat exercise tests at 7 weeks and
12 weeks after the start of flecainide treatment showed complete
suppression of ventricular tachycardia and marked reduction in the
number of ventricular extrasystoles (Fig. 2b).

The second subject was a 36-year-old woman heterozygous for the
CPVT-linked RYR2 $4124G mutation. The subject experienced exer-
cise-induced ventricular tachycardia while on maximum tolerated
therapy with a B-blocker and a Ca®*-channel blocker (Fig. 2¢). As
in the first subject, flecainide substantially reduced arrhythmia burden
at rest and with exercise, even after B-blocker and Ca®*-channel
blocker treatment was stopped (Fig. 2d). Notably, flecainide prevented
ventricular tachycardia even though the subject’s maximal heart rate
was much higher during the second exercise test (Fig. 2d) than during

0 2 4 6 8 10 12 14 16
Time {min)

Ethical Review Board. Both human subjects
{or their parents) provided informed consent.

(wda) 3A

the previous exercise test (Fig. 2¢) owing to
the discontinuation of B-blocker therapy.
In summary, we report a previously unrec-
0 ognized inhibitory action of flecainide on
RyR2 channels, which, together with flecai-
nide’s inhibition of Nat channels, allowed us
to directly target the underlying mechanism
responsible for CPVT!!. This targeted therapy with flecainide success-
fully prevented CPVT in two individuals that had remained highly
symptomatic on conventional drug therapy. Flecainide can be
proarrhythmogenic in some settings (for example, after myocardial
infarction), and thus routine flecainide use cannot be recommended
until further clinical studies more precisely define its risks and benefits
in humans with CPVT. Our data provide proof of principle for the
antiarrhythmic efficacy of inhibiting defective RyR2 Ca®* release
channels in humans and identify a currently available drug as a
promising mechanism-based therapy in CPVT.

Note: Supplementary information is available on the Nature Medicine website.
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