cells. GSIs have almost the same effect on progenitor cells of the normal and regenerating crypt, which becomes critically toxic once the epithelia have been damaged. Thus caution is needed with the use of GSIs when intestinal tissue damage is present.

Although studies have revealed various extrinsic factors promoting the regeneration of the intestinal epithelia (2, 3), the intracellular mechanism mediating the regenerative process has not been fully elucidated (15). Our data show that Notch activation maintains the larger number of IECs in the immature state, thereby promoting the proliferation and supporting the rapid recovery of IECs needed to restore proper epithelial structure. Thus we identified Notch signaling as one of the main intracellular pathways mediating the organized regenerative response of the intestinal epithelia. Although we know that several ligands and receptors of the Notch pathway are expressed in the intestine (24, 26), we do not know the precise mechanism by which these ligands activate Notch receptors, in particular IECs. A recent study by Riccio et al. (22) clearly showed that both Notch1 and Notch2 function redundantly in the intestinal epithelia and that they directly regulate the cell cycle progression of crypt progenitor cells. Thus an analysis of the Notch ligand expression is needed to understand the mechanism by which these Notch receptors could be activated during epithelial regeneration and the mechanism by which such activation could be downregulated at the later stage of

One of our surprising findings was the upregulation of PLA2G2A in Notch-activated IECs, suggesting that Notch might also modulate immune functions of IECs. PLA2G2A is usually expressed in Paneth cells, and it is known to have an antimicrobial effect (4). The loss of the continuity of the epithelial layer allows various and abundant microorganisms to invade the submucosal area, thereby promoting inflammation and further destruction of the mucosa. Thus the local secretion of PLA2G2A at the damaged mucosal area may be quite beneficial for limiting bacterial invasion and providing a proper environment for regeneration. However, previous reports have shown that PLA2G2A is also expressed by neutrophils and macrophages accumulating at the inflamed mucosa of colitis (29, 39). Consistent with this, we observed an infiltration of PLA2G2A-positive cells in the lamina propria of inflamed mucosa in UC (Fig. 9, C-F). An RT-PCR analysis of DSScolitis showed a significant upregulation of PLA2G2A expression in the inflamed colonic mucosa (Supplemental Fig. S3). However, such an upregulation was not inhibited with LY411,575 treatment, suggesting that the expression of PLA2G2A by neutrophils or macrophages might be less dependent on Notch activation. In those cells, intracellular pathways such as NF-kB might function to promote expression of PLA2G2A in the inflamed colonic mucosa (37). Also, our histological analysis suggested that the upregulation of PLA2G2A secretion was not a general but a partial response in Notch-activated IECs, indicating that an additional condition is required for ectopic expression of

Our microarray analysis also revealed a number of genes other than PLA2G2A that are regulated by NICD1 in IECs. Although the results did not show an upregulation of other genes specific to Paneth cells such as lysozyme or α -defensins, our quantitative RT-PCR confirmed that genes such as clusterin or spermidine/spermine N1-acetyltransferase were also

upregulated upon Notch1 activation in LS174T cells (data not shown). Trefoil factor-1 may also promote Notch-mediated tissue regeneration because it is known to be a key factor in restitution (11). The group of genes shown in the present analysis was quite distinct from the previous microarray analysis comparing GSI-treated and untreated intestinal tissues (14, 27). Because we used an in vitro IEC-based assay, the group of genes identified can be recognized as candidates of the IEC-specific target genes of Notch. However, because only a limited number of genes were analyzed (up to 10,000 annotated genes) in the present study, a further analysis including a larger group of genes may elucidate additional genes that are regulated downstream of Notch.

In conclusion, Notch signaling acts as an indispensable intracellular signaling pathway in IECs, especially during tissue regeneration. It regulates not only the differentiation, but also the proliferation of IECs, and it also regulates the immune function of IECs. We have shown for the first time that such functions of Notch are also present in the human intestine, both under normal conditions and when tissue damage has occurred. The present study provides a novel molecular basis for the advanced understanding of the regeneration process in the human intestinal epithelia, which may be utilized to establish alternative therapies for refractory ulcers caused by various intestinal diseases.

ACKNOWLEDGMENTS

The authors thank Dr. Tetsuo Sudo for providing the Hes1 antibody, Drs. Ryoichiro Kageyama and Yasuhito Yuasa for providing the plasmids, Drs. Hisao Fukushima, Kazutaka Koganei, Kenichi Sugihara, and Hiroyuki Uetake for providing the tissue samples, Drs. Hideyuki Okano and Takaaki Ito for the helpful discussion, and Dr. Hisanobu Kawamura, Dr. Michio Onizawa, and Ms. Motomi Yamazaki for technical assistance.

GRANTS

This study was supported in part by grants-in-aid for Scientific Research, Scientific Research on Priority Areas, Exploratory Research, and Creative Scientific Research from the Japanese Ministry of Education, Culture, Sports, Science and Technology, The Japanese Ministry of Health, Labor and Welfare, The Japanese Society of Gastroenterology, The Foundation for Advancement of International Science, Research Fund of Mitsukoshi Health and Welfare Foundation, and the Research Fund of Japan Intractable Diseases Research Foundation.

REFERENCES

- 1. **Bjerknes M, Cheng H.** Gastrointestinal stem cells. II. Intestinal stem cells. Am J Physiol Gastrointest Liver Physiol 289: G381–G387, 2005.
- Bjerknes M, Cheng H. Modulation of specific intestinal epithelial progenitors by enteric neurons. *Proc Natl Acad Sci USA* 98: 12497–12502, 2001.
- Brauchle M, Madlener M, Wagner AD, Angermeyer K, Lauer U, Hofschneider PH, Gregor M, Werner S. Keratinocyte growth factor is highly overexpressed in inflammatory bowel disease. Am J Pathol 149: 521–529, 1996.
- Buckland AG, Wilton DC. The antibacterial properties of secreted phospholipases A(2). Biochim Biophys Acta 1488: 71–82, 2000.
- Fahlgren A, Hammarstrom S, Danielsson A, Hammarstrom ML. Increased expression of antimicrobial peptides and lysozyme in colonic epithelial cells of patients with ulcerative colitis. Clin Exp Immunol 131: 90-101, 2003.
- Fre S, Huyghe M, Mourikis P, Robine S, Louvard D, Artavanis-Tsakonas S. Notch signals control the fate of immature progenitor cells in the intestine. *Nature* 435: 964–968, 2005.
- Haapamaki MM, Gronroos JM, Nurmi H, Alanen K, Kallajoki M, Nevalainen TJ. Gene expression of group II phospholipase A2 in intestine in ulcerative colitis. *Gut* 40: 95–101, 1997.
- Haapamaki MM, Gronroos JM, Nurmi H, Irjala K, Alanen KA, Nevalainen TJ. Phospholipase A2 in serum and colonic mucosa in ulcerative colitis. Scand J Clin Lab Invest 59: 279–287, 1999.

- Jensen J, Pedersen EE, Galante P, Hald J, Heller RS, Ishibashi M, Kageyama R, Guillemot F, Serup P, Madsen OD. Control of endodermal endocrine development by Hes-1. Nat Genet 24: 36-44, 2000.
- Kopan R. Notch: a membrane-bound transcription factor. J Cell Sci 115: 1095–1097, 2002.
- Longman RJ, Douthwaite J, Sylvester PA, Poulsom R, Corfield AP, Thomas MG, Wright NA. Coordinated localisation of mucins and trefoil peptides in the ulcer associated cell lineage and the gastrointestinal mucosa. Gut 47: 792-800, 2000.
- Matsumoto T, Okamoto R, Yajima T, Mori T, Okamoto S, Ikeda Y, Mukai M, Yamazaki M, Oshima S, Tsuchiya K, Nakamura T, Kanai T, Okano H, Inazawa J, Hibi T, Watanabe M. Increase of bone marrow-derived secretory lineage epithelial cells during regeneration in the human intestine. Gastroenterology 128: 1851-1867, 2005.
- McCormick DA, Horton LW, Mee AS. Mucin depletion in inflammatory bowel disease. J Clin Pathol 43: 143–146, 1990.
- 14. Milano J, McKay J, Dagenais C, Foster-Brown L, Pognan F, Gadient R, Jacobs RT, Zacco A, Greenberg B, Ciaccio PJ. Modulation of notch processing by gamma-secretase inhibitors causes intestinal goblet cell metaplasia and induction of genes known to specify gut secretory lineage differentiation. *Toxicol Sci* 82: 341–358, 2004.
- Okamoto R, Watanabe M. Cellular and molecular mechanisms of the epithelial repair in IBD. Dig Dis Sci, 50 Suppl 1: S34-S38, 2005.
- Okamoto R, Watanabe M. Molecular and clinical basis for the regeneration of human gastrointestinal epithelia. J Gastroenterol 39: 1-6, 2004.
- Okayasu I, Hatakeyama S, Yamada M, Ohkusa T, Inagaki Y, Nakaya R. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. *Gastroenterology* 98: 694-702, 1990.
- 18. Oshima S, Nakamura T, Namiki S, Okada E, Tsuchiya K, Okamoto R, Yamazaki M, Yokota T, Aida M, Yamaguchi Y, Kanai T, Handa H, Watanabe M. Interferon regulatory factor 1 (IRF-1) and IRF-2 distinctively upregulate gene expression and production of interleukin-7 in human intestinal epithelial cells. Mol Cell Biol 24: 6298-6310, 2004.
- Podolsky DK. Healing the epithelium: solving the problem from two sides. J Gastroenterol 32: 122–126, 1997.
- Radtke F, Clevers H, Riccio O. From gut homeostasis to cancer. Curr Mol Med 6: 275–289, 2006.
- Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. *Cell* 118: 229-241, 2004.
- Riccio O, van Gijn ME, Bezdek AC, Pellegrinet L, van Es JH, Zimber-Strobl U, Strobl LJ, Honjo T, Clevers H, Radtke F. Loss of intestinal crypt progenitor cells owing to inactivation of both Notch1 and Notch2 is accompanied by derepression of CDK inhibitors p27Kip1 and p57Kip2. EMBO Rep 9: 377–383, 2008.
- Riddle RH. Pathology of Idiopathic Inflammatory Bowel Disease. Orlando, FL: Saunders, 2004.
- Sander GR, Powell BC. Expression of notch receptors and ligands in the adult gut. J Histochem Cytochem 52: 509-516, 2004.
- Sasai Y, Kageyama R, Tagawa Y, Shigemoto R, Nakanishi S. Two mammalian helix-loop-helix factors structurally related to Drosophila hairy and Enhancer of split. Genes Dev 6: 2620–2634, 1992.
- Schroder N, Gossler A. Expression of Notch pathway components in fetal and adult mouse small intestine. Gene Expr Patterns 2: 247–250, 2002.
- Searfoss GH, Jordan WH, Calligaro DO, Galbreath EJ, Schirtzinger LM, Berridge BR, Gao H, Higgins MA, May PC, Ryan TP. Adipsin, a biomarker of gastrointestinal toxicity mediated by a functional gammasecretase inhibitor. *J Biol Chem* 278: 46107–46116, 2003.

- Stanger BZ, Datar R, Murtaugh LC, Melton DA. Direct regulation of intestinal fate by Notch. Proc Natl Acad Sci USA 102: 12443–12448, 2005.
- 29. Tomita Y, Jyoyama H, Kobayashi M, Kuwabara K, Furue S, Ueno M, Yamada K, Ono T, Teshirogi I, Nomura K, Arita H, Okayasu I, Hori Y. Role of group IIA phospholipase A2 in rat colitis induced by dextran sulfate sodium. Eur J Pharmacol 472: 147-158, 2003.
- Tsuchiya K, Nakamura T, Okamoto R, Kanai T, Watanabe M. Reciprocal targeting of Hath1 and beta-catenin by Wnt glycogen synthase kinase 3beta in human colon cancer. Gastroenterology 132: 208–220, 2007
- van Den Brink GR, de Santa Barbara P, Roberts Development DJ. Epithelial cell differentiation—a Mather of choice. Science 294: 2115–2116, 2001.
- van Es JH, Clevers H. Notch and Wnt inhibitors as potential new drugs for intestinal neoplastic disease. *Trends Mol Med* 11: 496–502, 2005.
- 33. van Es JH, van Gijn ME, Riccio O, van den Born M, Vooijs M, Begthel H, Cozijnsen M, Robine S, Winton DJ, Radtke F, Clevers H. Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. *Nature* 435: 959-963, 2005.
- 34. Vooijs M, Ong CT, Hadland B, Huppert S, Liu Z, Korving J, van den Born M, Stappenbeck T, Wu Y, Clevers H, Kopan R. Mapping the consequence of Notch1 proteolysis in vivo with NIP-CRE. *Development* 134: 535-544, 2007.
- 35. Watanabe M, Ueno Y, Yajima T, Okamoto S, Hayashi T, Yamazaki M, Iwao Y, Ishii H, Habu S, Uehira M, Nishimoto H, Ishikawa H, Hata J, Hibi T. Interleukin 7 transgenic mice develop chronic colitis with decreased interleukin 7 protein accumulation in the colonic mucosa. J Exp Med 187: 389–402, 1998.
- Wong GT, Manfra D, Poulet FM, Zhang Q, Josien H, Bara T, Engstrom L, Pinzon-Ortiz M, Fine JS, Lee HJ, Zhang L, Higgins GA, Parker EM. Chronic treatment with the gamma-secretase inhibitor LY-411,575 inhibits beta-amyloid peptide production and alters lymphopoies si and intestinal cell differentiation. J Biol Chem 279: 12876-12882, 2004.
- Wu F, Chakravarti S. Differential expression of inflammatory and fibrogenic genes and their regulation by NF-kappaB inhibition in a mouse model of chronic colitis. *J Immunol* 179: 6988–7000, 2007.
- 38. Wu J, Tung JS, Thorsett ED, Pleiss MA, Nissen JS, Neitz J, Latimer JH, John V, Freedman S, inventors. Cycloalkyl, Lactam, Lactone and related compounds as β-amyloid peptide release inhibitors. US patent WO-1998028268, February 7, 1998.
- Yamaguchi O, Sugimura K, Ishizuka K, Suzuki K, Hasegawa K, Ohtsuka K, Honma T, Asakura H. Correlation between serum phospholipase A(2) IIA levels and histological activity in patients with ulcerative colitis. *Int J Colorectal Dis* 17: 311–316, 2002.
- Yamamoto H, Bai YQ, Yuasa Y. Homeodomain protein CDX2 regulates goblet-specific MUC2 gene expression. *Biochem Biophys Res Commun* 300: 813–818, 2003.
- Yamazaki M, Yajima T, Tanabe M, Fukui K, Okada E, Okamoto R, Oshima S, Nakamura T, Kanai T, Uehira M, Takeuchi T, Ishikawa H, Hibi T, Watanabe M. Mucosal T cells expressing high levels of IL-7 receptor are potential targets for treatment of chronic colitis. *J Immunol* 171: 1556–1563, 2003.
- Zecchini V, Domaschenz R, Winton D, Jones P. Notch signaling regulates the differentiation of post-mitotic intestinal epithelial cells. *Genes Dev* 19: 1686–1691, 2005.

Michio Onizawa, Takashi Nagaishi, Takanori Kanai, Ken-ichi Nagano, Shigeru Oshima, Yasuhiro Nemoto, Atsushi Yoshioka, Teruji Totsuka, Ryuichi Okamoto, Tetsuya Nakamura, Naoya Sakamoto, Kiichiro Tsuchiya, Kazuhiro Aoki, Keiichi Ohya, Hideo Yagita and Mamoru Watanabe

Am J Physiol Gastrointest Liver Physiol 296:850-859, 2009. First published Jan 29, 2009; doi:10.1152/ajpgi.00071.2008

You might find this additional information useful...

This article cites 49 articles, 14 of which you can access free at: http://ajpgi.physiology.org/cgi/content/full/296/4/G850#BIBL

Updated information and services including high-resolution figures, can be found at: http://ajpgi.physiology.org/cgi/content/full/296/4/G850

Additional material and information about *AJP - Gastrointestinal and Liver Physiology* can be found at: http://www.the-aps.org/publications/ajpgi

This information is current as of February 10, 2010.

AJP - Gastrointestinal and Liver Physiology publishes original articles pertaining to all aspects of research involving normal or abnormal function of the gastrointestinal tract, hepatobiliary system, and pancreas. It is published 12 times a year (monthly) by the American Physiological Society, 9650 Rockville Pike, Bethesda MD 20814-3991. Copyright © 2005 by the American Physiological Society. ISSN: 0193-1857, ESSN: 1522-1547. Visit our website at http://www.the-aps.org/.

Signaling pathway via TNF- α /NF- κ B in intestinal epithelial cells may be directly involved in colitis-associated carcinogenesis

Michio Onizawa,^{1*} Takashi Nagaishi,^{1*} Takanori Kanai,¹ Ken-ichi Nagano,² Shigeru Oshima,¹ Yasuhiro Nemoto,¹ Atsushi Yoshioka,¹ Teruji Totsuka,¹ Ryuichi Okamoto,¹ Tetsuya Nakamura,¹ Naoya Sakamoto,¹ Kiichiro Tsuchiya,¹ Kazuhiro Aoki,² Keiichi Ohya,² Hideo Yagita,³ and Mamoru Watanabe¹

¹Department of Gastroenterology and Hepatology, Graduate School of Medicine and ²Section of Pharmacology, Department of Hard Tissue Engineering, Tokyo Medical and Dental University, Tokyo; and ³Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan

Submitted 13 February 2008; accepted in final form 11 January 2009

Onizawa M, Nagaishi T, Kanai T, Nagano K, Oshima S, Nemoto Y, Yoshioka A, Totsuka T, Okamoto R, Nakamura T, Sakamoto N, Tsuchiya K, Aoki K, Ohya K, Yagita H, Watanabe M. Signaling pathway via TNF-α/NF-κB in intestinal epithelial cells may be directly involved in colitis-associated carcinogenesis. Am J Physiol Gastrointest Liver Physiol 296: G850-G859, 2009. First published January 29, 2009; doi:10.1152/ajpgi.00071.2008.—Treatment with anti-TNF-α MAb has been accepted as a successful maintenance therapy for patients with inflammatory bowel diseases (IBD). Moreover, it has been recently reported that blockade of TNF receptor (TNFR) 1 signaling in infiltrating hematopoietic cells may prevent the development of colitis-associated cancer (CAC). However, it remains unclear whether the TNF- α signaling in epithelial cells is involved in the development of CAC. To investigate this, we studied the effects of anti-TNF-α MAb in an animal model of CAC by administration of azoxymethane (AOM) followed by sequential dextran sodium sulfate (DSS) ingestion. We observed that the NF-κB pathway is activated in colonic epithelia from DSS-administered mice in association with upregulation of TNFR2 rather than TNFR1. Immunoblot analysis also revealed that the TNFR2 upregulation accompanied by the NF-kB activation is further complicated in CAC tissues induced in AOM/DSS-administered mice compared with the nontumor area. Such NF-кВ activity in the epithelial cells is significantly suppressed by the treatment of MP6-XT22, an anti-TNF-α MAb. Despite inability to reduce the severity of colitis, sequential administration of MP6-XT22 reduced the numbers and size of tumors in association with the NF-kB inactivation. Taken together, present studies suggest that the TNFR2 signaling in intestinal epithelial cells may be directly involved in the development of CAC with persistent colitis and imply that the maintenance therapy with anti-TNF-\alpha MAb may prevent the development of CAC in patients with long-standing IBD

tumor necrosis factor- α ; colitis-associated cancer; intestinal epithelial cells; carcinogenesis; TNFR2

CROHN'S DISEASE (CD) and ulcerative colitis (UC) are the two major forms of inflammatory bowel diseases (IBD). Although the etiology remains unknown, increasing findings have demonstrated that the involvement of damaged epithelia and activated immune cells in the inflamed mucosa plays an important role in their pathogenesis (15, 23, 46). In addition to the problem of persistent intestinal inflammation in IBD, one of critical complications in patients with long-standing IBD over

 \sim 10 years after onset of IBD is colitis-associated cancer (CAC) (9).

It is generally observed that tumors, especially CAC, are usually infiltrated by activated immune cells, such as T cells, neutrophils, macrophages, and dendritic cells, which secrete various cytokines and chemokines (5). Recent works suggest that a major factor in the inflammatory processes involves activated NF-κB pathway (22). Persistent NF-κB activation in the epithelial cells has been suggested to contribute to the development of inflammation-associated cancer including CAC (12). Consistently, it has been demonstrated that activated NF-kB is detected in most tumors (17). Therefore, persistent activation of NF-kB of epithelial cells in response to chronic inflammation may be an important step to intestinal carcinogenesis in CAC in IBD. Consistently, a number of reports have suggested that drugs capable of inhibiting NF-кВ activation, such as 5-aminosalicylic acid, reduce the incidence of UC-related colorectal cancer (14). These studies have been approved by the Human Research Committees.

However, it still remains unknown which factors directly induce NF-κB activation in the process of CAC. One possible mediator of NF-κB activation in the epithelial cells of IBD patients is TNF- α , which is markedly elevated in the inflamed intestinal milieu (31). Although TNF- α has been classically considered as an anticancer agent (34), it is currently recognized that chronically elevated TNF- α in tissues may promote cancer growth, invasion, and metastasis (42). Regarding this, animal studies have demonstrated that gene deletion of TNF- α results in the suppression of skin tumor (26). In human studies, anti-TNF- α MAb (infliximab) therapy has been recently proven to be effective in the induction or maintenance of remission in patients with CD (13, 41, 44) or UC (40) refractory to the traditional therapies, such as corticosteroid and/or immunosuppressants.

In this respect, commonly used animal model of IBD-related CAC involves administration of azoxymethane (AOM) followed by repeated dextran sodium sulfate (DSS) ingestion (32). Greten and colleagues (12) demonstrated a decrease in the size of tumors with a decrease in inflammation in the similar AOM/DSS-induced CAC model with myeloid cell-specific deletion of IKK- β , which is an upstream adoptive molecule of NF- κ B. Another group had also recently demon-

http://www.ajpgi.org

^{*} M. Onizawa and T. Nagaishi contributed equally to this work.

Address for reprint requests and other correspondence: t. Kanai, Dept. of
Gastroenterology and Hepatology, Graduate School, Tokyo Medical and
Dental Univ., 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan (e-mail: taka.gast@tmd.ac.jp).

The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

strated that TNF-α inhibition in the same animal model prevents the development of CAC via blockade of TNF receptor 1 (TNFR1) signaling in infiltrating hematopoietic cells such as neutrophils and macrophages (37). On the other hand, Greten and colleagues also demonstrated that specific deletion of IKK-β in intestinal epithelial cells led to a decrease in the numbers of tumors (initiation) albeit without a decrease in inflammation in the AOM/DSS CAC model. Although the complex background suggests that activation of NF-κB in epithelial cells or hematopoietic cells is involved in the development of CAC, it is still unclear whether TNF-α signaling in the epithelial cells is directly involved in such suppression of carcinogenesis.

In this study, we investigated the NF- κ B activity through TNFR1 or 2 signaling specifically in colonic epithelial cells, and assessed the immediate role of anti-TNF- α MAb against epithelial cells in colitis-induced carcinogenesis using the murine AOM/DSS-induced CAC model.

MATERIALS AND METHODS

Animals

Wild-type female C57BL/6 mice (6–8 wk old) were purchased from the Japan Clea (Tokyo, Japan) and were maintained under specific pathogen-free condition. All animal experimentations were performed in accordance with institutional guidelines and were approved by the animal review board of Tokyo Medical and Dental University, Tokyo, Japan.

Cell Culture

Murine colon carcinoma-derived cell line, CT26 (50), were obtained from American Type Culture Collection (Manassas, VA) and maintained in RPMI 1640 (Sigma, St. Louis, MO) supplemented with 10% fetal bovine serum, 500 units/ml penicillin and 100 μ g/ml streptomycin (Sigma) at 37°C in 5% CO₂. Cells were seeded at a density of 5 \times 10⁵ cells/ml in six-well plates 24 h prior to the experiments with or without recombinant (r) mouse (m) TNF- α (Peprotek, London, UK) with or without blocking anti-TNF- α MAb (MP6-XT22, rat IgG1b), which was obtained from DNAX Research Institute (Palo Alto, CA) and affinity purified (1, 47).

Western Blotting

The stripped colonic epithelial samples from mice were prepared as previously described (16) for assessment of protein and/or mRNA expression. Western blotting was performed as previously described (34). Briefly, 10–100 μg of nucleic extracts or whole protein lysates from either the stripped epithelial samples or CT26 cells were separated by 8-15% SDS-PAGE and each protein expressions were analyzed by use of the following antibodies: anti-mouse TNFR1 polyclonal antibody (PAb), anti-mouse TNFR2 PAb (R&D Systems, Minneapolis, MN), anti-phosphorylated (p)-p65 MAb at serine 536, anti-p65 PAb, anti-p-IκBα MAb at serine 32/36, anti-IκBα PAb, anti-p-Fas-associated death domain (FADD) PAb, anti-cleaved caspase 3 PAb (Cell Signaling Technology, Beverly, MA), anti-FADD PAb (Epitomics, Burlingame, CA), anti-β-actin MAb (Sigma), anti-upstream factor (USF)-2 PAb (Santa Cruz Biotechnology, Santa Cruz, CA), anti-mouse IgG-HRP, anti-rabbit IgG-HRP (GE Healthcare Bio-Sciences, Piscataway, NJ) and anti-goat IgG-HRP (Santa Cruz). Signals were generated with ECL Western Blotting Detection System (GE Healthcare Bio-Sciences).

Real-time PCR. Total cellular RNA was extracted from the stripped epithelial samples described above with RNA-Bee (Tel-Test, Friendswood, TX). Five micrograms of total RNA were used as template for reverse transcription using Superscript Reverse Transcriptase kit

(Invitrogen, Carlsbad, CA). The cDNA samples were then applied for PCR with following primer pairs: TNF-α, 5'-CTA CTG GCG CTG CCA AGG CTG T-3' and 5'-GCC ATG AGG TCC ACC ACC CTG-3'; TNFR1, 5'-GGA AAG TAT GTC CAT TCT AAG AAC AA-3' and 5'-AGT CAC TCA CCA AGT AGG TTC CTT-3'; TNFR2, 5'-GAG GCC CAA GGG TCT CAG-3' and 5'-GGC TTC CGT GGG AAG AAT-3'; IL-1β, 5'-TTG ACG GAC CCA AAA GAT-3' and 5'-GAA GCT GGA TGC TCT CAT CTG-3'; IL-6, 5'-GCT ACC AAA CTG GAT ATA ATC GGA-3' and 5'-CCA GGT AGC TAT GGT ACT CCA GAA-3'; MIP-2, 5'-AAA ATC ATC CAA AAG ATA CTG AAC AA-3' and 5'-CTT TGG TTC TTC CGT TGA GG-3'; glyceraldehyde-3-phosphate dehydrogenase (G3PDH), 5'-CTA CTG GCG CTG CCA AGG CAG T-3' and 5'-GCC ATG AGG TCC ACC ACC CTG-3'. Real time PCR was performed with QuantiTect SYBRgreen PCR kit (Qiagen, Venio, The Netherlands) using an ABI7500 real-time PCR system and 7500 system SDS software (Applied Biosystems, Foster City, CA). Data of each mRNA expression were shown as the relative amount normalized by that of

Induction of Acute and Chronic Colitis and Colitis-Associated Tumor

Experiment 1. Mice (n=3-6) intraperitoneally (ip) administered with or without AOM 7 days in advance were treated with 3.0% DSS (molecular weight 10,000; Yokohama Kokusai Bio, Kanagawa, Japan) in drinking water for 5 days (acute phase) followed by treatment with regular water for 2–5 days (recovery phase). Colon samples were then assessed for the histology and expression of TNF- α or TNFR level at recovery phase.

Experiment 2. Mice ip administered with or without AOM 7 days in advance were treated with 3.0% DSS-containing water for 5 days followed by ip injection of control rat IgG (1 mg/mouse) mice (n = 5) or anti-TNF-α MAb (MP6-XT22, 1 mg/mouse) (n = 5) at the end of DSS treatment (day 5) before the removal of DSS from drinking water for 2–5 days. Colon samples were then examined for histological changes and cytokine expression profiles. Activities of NF-κB pathway were assessed for the effect of MP6-XT22 in the development of acute colitis.

Experiment 3. To assess the role of TNF-α signaling on the incidence and progression of colon tumors in chronic AOM/DSS-induced CAC model, mice were randomized by body weight into two groups and received AOM ip at day - 7, followed by three cycles of 3.0% DSS in drinking water for 5 days and regular water for 16 days starting 1 wk after the AOM injection ($day \theta$). Mice were treated with 1 mg/mouse of either control IgG or the anti-TNF-α MAb MP6-XT22 weekly starting at the end of the first DSS treatment (day 5) (n = 10). Eleven weeks after the first injection of AOM, mice were euthanized and colons were removed, flushed with PBS, fixed as "Swiss rolls" in 10% neutral-buffered formalin at 4°C overnight, and paraffin embedded for histology.

Determination of Clinical Score of Colitis

Body weight, stool consistency, and occult or gross blood per rectum were determined every other day during the colitis induction phase. The colitis clinical score was assessed by trained individuals blinded to the treatment groups (2). The baseline clinical score was determined on *day 0*. Briefly, no weight loss was registered as 0; weight loss of 1–5% from baseline was assigned 1 point; 5–10% was assigned 2 points; 10–20% was assigned 3 points; and >20% was assigned 4 points. For stool consistency, 0 points were assigned for well-formed pellets, 2 points for pasty and semiformed stools that did not adhere to the anus, and 4 points for liquid stools that did adhere to the anus. For rectal bleeding, 0 was assigned for no blood, 2 points for positive Hemoccult, and 4 points for gross bleeding. These scores were added resulting in a total clinical score ranging from 0 (healthy) to 12 (maximal activity of colitis).

Histological Scoring of Colitis and CAC

Tissue samples were fixed in 10% neutral-buffered formalin. For the assessment of colitis, paraffin-embedded sections (5 µm) were stained with hematoxylin and eosin (H&E). The sections were analyzed without prior knowledge of the type of treatments. The degree of inflammation in the colon was graded according to the previously described scoring system (2). Briefly, the presence of occasional inflammatory cells in the lamina propria was assigned a value of 0; increased numbers of inflammatory cells in the lamina propria a value 1, confluence of inflammatory cells, extending into the submucosa a value of 2, and transmural extension of the infiltrate a value of 3. For tissue damage, no mucosal damage was scored as 0; discrete lymphoepithelial lesions were scored as 1; surface mucosal erosion or focal ulceration was scored as 2; and extensive mucosal damage and extension into deeper structures of the bowel wall were scored as 3. The combined histological score ranged from 0 (no changes) to 6 (extensive cell infiltration and tissue damage). For CAC assessment, sections (5 μ m) were cut stepwise (200 μ m) through the complete block and stained with H&E. Tumor counts were performed in a blinded fashion.

Immunohistochemistry

Colon samples for immunohistochemistry were embedded into OCT compound, snap-frozen in liquid nitrogen, and stored at $-80^{\circ}\text{C}.$ Cryosections (7 $\mu\text{m})$ were fixed in 4% paraformaldehyde for 10 min and incubated with 3% hydrogen peroxide for 15 min at room temperature. The sections were blocked with 1% BSA for 60 min and then incubated with either anti-mouse TNF- α MAb (BD Biosciences, Franklin Lakes, NJ), anti-mouse CD4 MAb (BD Biosciences), anti-mouse F4/80 MAb (eBioscience, San Diego, CA), or isotype-matched control Ig (BD Biosciences), at 4°C overnight followed by incubation with goat anti-rat Ig (Histofine Simple Stain MAX-PO, Nichirei Biosciences, Tokyo, Japan), for 30 min. The signals were visualized

by diaminobenzidine (peroxidase substrate kit, Vector Laboratories, Burlingame, CA) and the sections were counterstained with hematoxylin. For immunofluorescence studies, the sections were stained with anti-β-catenin MAb (BD Biosciences) or anti-p-p65 PAb at serine 276 (Cell Signaling Technology) followed by incubation with Alexa⁵⁹⁴-conjugated anti-mouse IgG1 or anti-rabbit IgG (Invitrogen) and DAPI (Vector Laboratory).

Statistical Analysis

Results were expressed as means \pm SE. Statistics were determined by nonparametric Mann-Whitney *U*-test, and *P* values <0.05 were considered significant.

RESULTS

 $TNF-\alpha$ Is Markedly Upregulated in the Inflamed Mucosa of DSS-Treated Mice

To first assess whether TNF- α is induced in the inflamed colonic tissue in C57BL/6 mice by administration of DSS, mice were administered 3.0% DSS-contained drinking water for 5 days (days 0 to 5, acute phase) followed by removal of DSS for another 2–5 days (recovery phase) with preinjection with AOM 7 days before starting DSS treatment (Fig. 1A). Total RNA was then isolated from the colon tissues of these mice. Consistent with previous report (37), we observed significantly increased level of TNF- α mRNA at days 7 and 10 in DSS-treated mice compared with the control preinjected with AOM without DSS treatment (Fig. 1B). This observation was also confirmed by Western blotting (data not shown). Furthermore, immunohistochemistry revealed that the majority of TNF- α -expressing cells were located in the lamina propria and

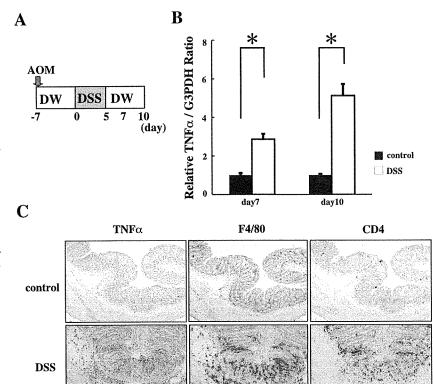


Fig. 1. TNF- α is profoundly induced in dextran sodium sulfate (DSS) colitis. A: protocol for acute DSS colitis. Mice were preinjected with 10 mg/kg of azoxymethane (AOM) or vehicle control 7 days before the start of DSS administration. DW, distilled water. B: relative mRNA expression of TNF- α in whole colon tissues that were taken from mice treated with control (regular water) or DSS at days 7 and 10. The levels of the mRNA were quantified by real-time PCR and normalized to the level of glyceraldehyde-3-phosphate dehydrogenase (G3PDH) (n=3). *P<0.01. C: Immunohistochemistry. Frozen sections of colon tissues from control or DSS-treated mice at day 10 were stained with anti-TNF- α , anti-CD4 or anti-F4/80 antibodies.

AJP-Gastrointest Liver Physiol • VOL 296 • APRIL 2009 • www.ajpgi.org

submucosa and some in the tunica muscularis (Fig. 1 $^{\circ}$ C). In addition, such TNF- α upregulation in DSS-treated colitis was not affected regardless of AOM preinjection (data not shown). Immunohistochemistry also revealed that the injured colonic tissues during the recovery phase were profoundly infiltrated by F4/80⁺ macrophages as well as CD4⁺ T cells compared with the untreated mice. Interestingly, the majority of TNF- α -expressing cells seemed to be macrophages rather than T cells (Fig. 1 $^{\circ}$ C). These results are consistent with the previous studies using BALB/c mice (37).

Administration of DSS Leads to Upregulation of TNFR2 but not TNFR1 in Colonic Epithelia

TNF-α-specific receptors composed of TNFR1 (p55) and 2 (p75) are known to be expressed in human intestinal epithelial cells and can be upregulated by IFN-γ (45, 49). Furthermore, it has been suggested that TNF- α is involved in the tissue repair of wounded epithelial layer (10). On the basis of the induction of TNF- α in colonic tissues by DSS treatment, TNFR1 and 2 protein expressions in colonic epithelial cells were predicted to be upregulated in this model. Therefore, we next assessed the expression levels of these molecules in the inflamed epithelial cells of AOM/DSS-treated mice. Primary colonic epithelial cells were isolated from the AOM-preinjected mice with or without DSS treatment described above at day 10 (Fig. 1A). As expected, quantitative RT-PCR (Fig. 2A) and Western blotting (Fig. 2B) showed that colonic epithelial cells expressed endogenous low amount of both TNFR1 and 2. Notably, such expression of TNFR2, but not TNFR1, was significantly upregulated by DSS treatment (Fig. 2).

NF-KB Pathway, but not Death Domain Cascade, in Colonic Epithelial Cells Is Activated by DSS Treatment

It is suggested that the binding of TNF- α to TNFRs potentially results in the activation of two independent pathways, NF- κ B and death domain (DD) (48). Given the result of TNFR2 upregulation in DSS colitis, we next assessed the activities of NF- κ B and DD pathways in primary colonic epithelial cells from AOM/DSS-treated mice. As depicted in

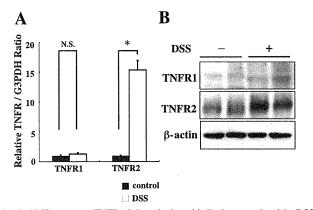


Fig. 2. TNF receptor (TNFR) 2 in colonic epithelia is upregulated in DSS colitis. A: relative mRNA expression levels of TNFR1 and 2 in colonic epithelial cells from mice treated with control (regular water) or DSS at day 10. The levels of the mRNAs were quantified by real-time PCR and normalized to the level of G3PDH (n=3). *P<0.01. B: protein lysates of isolated colonic epithelial cells from control- or DSS-treated mice at day 10 were subjected to Western blotting with anti-TNFR1, anti-TNFR2, or anti- β -actin antibodies.

Fig. 3A, $I\kappa B\alpha$, which is upstream molecule of NF- κB , and p65/Rel A, one of the NF- κB components, were significantly activated in association with TNFR2 upregulation in AOM/DSS-treated colonic epithelia at *day 10*. In contrast, such treatment did not affect the expression of neither p-FADD nor cleaved (c)-caspase 3, a downstream molecule of DD, in these cells during the recovery phase (Fig. 3B).

 $TNF-\alpha$ Stimulates $NF-\kappa B$ Pathway in Intestinal Epithelial Cells

Given the upregulation of TNFR2 and specific activation of NF-κB, but not DD, in colonic epithelial cells in AOM/DSS colitis, we next utilized a mouse colonic epithelial cell line, CT26, to examine whether TNFR2 signaling is associated with NF-kB activation in these epithelial cells. CT26 cells were cultivated in the absence or presence of rIFN-y to induce TNFRs upregulation. Although CT26 cells endogenously expressed TNFR2, its level was not upregulated in the presence of IFN-γ. This suggested that CT26 cells constitutively express maximum level of TNFR2 in the condition (data not shown). Moreover, we also observed that these cells express both p65 and IkBa (Fig. 4A). To further confirm whether TNFR2 in those cells is functional, the activation of NF- κ B by rTNF- α was examined. Intestinal CT26 cells were stimulated with several concentrations of rTNF- α for 5 min. As shown in Fig. 4A, in vitro stimulation with rTNF- α led to the phosphorylation of p65 and IκBα in CT26 cells in a dose-dependent fashion.

Given the upregulated expression of TNFR2 and its signal profile in the stimulated-CT26 cells, we next examined the effect of anti-TNF-α MAb on NF-κB activation in these cells. CT26 cells were stimulated with 10 ng/ml of rTNF-\alpha for 5 min in the presence of various concentrations of anti-TNF- α MAb, MP6-XT22. Although total expression level of p65 in rTNFα-stimulated CT26 cells were not affected, phosphorylation of p65 in these cells was suppressed by the blockade of TNF-α with MP6-XT22 in a dose-dependent fashion (Fig. 4B). Similarly, neutralization of rTNF-α by MP6-XT22 also attenuated the phosphorylation status of IkBa in CT26 cells in a dosedependent fashion. Furthermore, our kinetic assessment revealed that such suppression of NF-κB pathway by anti-TNF-α MAb did not express delayed signal response since both MP6-XT22-treated and control IgG-treated cells showed maximum level of p-p65 and p-IκBα around 10 min after the stimulation with rTNF- α (Fig. 4C). It should be noted that we consistently observed the degradation of IkBa 15 min after rTNF-α stimulation although the expressions of p-p65 and p-IκBα reach maximum level at 10 min. These results indicate that TNF-α stimulation against colonic epithelial cells results in activation of NF-kB via TNFR2 and, moreover, MP6-XT22 can arrest such activation.

Anti-TNF- α MAb Treatment Suppresses NF- κB Activation in Acute DSS Colitis Model

On the basis of the in vitro evidence of NF- κB inactivation by MP6-XT22 in rTNF- α -stimulated CT26 cells, we next confirmed this observation in the acute DSS colitis model to pursue more physiological function of MP6-XT22 in vivo. Because NF- κB is known to be critical in the induction of tissue inflammation such as colitis, it was initially anticipated that treatment with anti-TNF- α MAb would suppress the de-

G854 EPITHELIAL TNF-α SIGNALING ON COLITIC CARCINOGENESIS

A

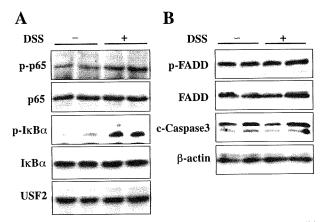
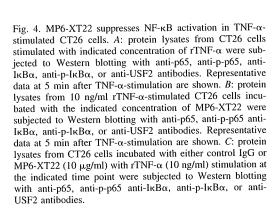
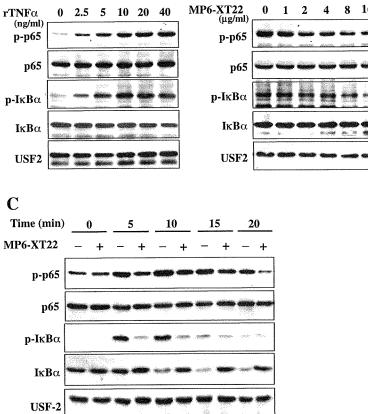


Fig. 3. NF- κ B pathway in colonic epithelial cells is activated in DSS colitis. Protein lysates of isolated colonic epithelial cells from control or DSS-treated mice at day 10 were subjected to Western blotting with either anti-p65, anti-p-p65, anti-p-F κ B activity (A) and anti-FADD, anti-p-FADD, anti-cleaved (c)-caspase 3, or anti- β -actin antibodies for apoptosis activity (B).


velopment of colitis. Therefore, we administered either control IgG or MP6-XT22 ip to the AOM/DSS-administered mice at day 5 after DSS ingestion (Fig. 5A) followed by histological assessment at days 7 and 10. Then colonic epithelial cells were isolated at day 10. Unexpectedly, however, there was no significant difference in the histological score between two


groups irrespective of administration of anti-TNF-α MAb or control IgG (Fig. 5B). On the other hand, AOM/DSS-treated epithelial samples with control IgG showed markedly upregulated p-IκBα and p-p65 expressions. However, injection with MP6-XT22 into AOM/DSS-treated mice resulted in suppression of IκBα and p65 phosphorylation, although total expression levels of p65 and IkBa were not affected in these samples (Fig. 5C). Given this discrepancy between the activities of NF-kB and the proportions of colitis in our experiments, we subsequently evaluated cytokine production such as IL-1β, IL-6, and MIP-2 (mouse homolog of human IL-8) in this model. Total RNA samples were extracted from colonic tissues of mice treated as above. Interestingly, quantitative RT-PCR analysis revealed significantly reduced mRNA expressions for IL-1β, IL-6, and MIP-2 in whole colons from MP6-XT22treated mice at day 7 compared with those of the control group (Fig. 5D). These results indicate that induced TNF- α in mucosal tissues may not be essential for colitis exacerbation but is somehow responsible for the production of these cytokine secondary to NF-kB activation in the DSS model.

Repetitive Anti-TNF-α MAb Treatment Suppresses Development of CAC in AOM/DSS-Treated Mice

B

The present protocol of anti-TNF- α MAb (MP6-XT22) administration has been useful in the assessment of TNF- α /TNFR signaling pathway on the development of CAC, because this does not affect the inflammation of DSS colitis but rather

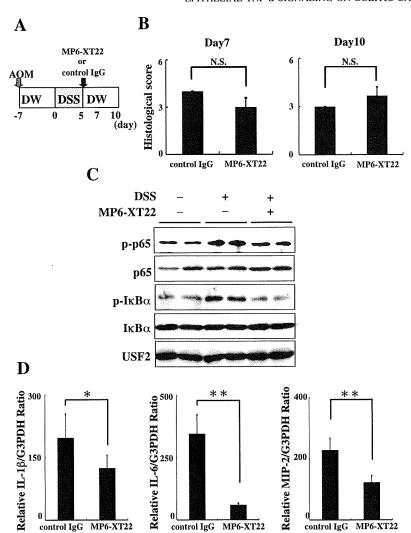


Fig. 5. MP6-XT22 treatment diminishes NF-kB activity in DSS-treated colonic epithelial cells, but it does not ameliorate severity of colitis. A: protocol for acute DSS colitis. Mice received MP6-XT22 or control IgG (1 mg/ mouse) at day 5. B: histological scores at day 7 (n = 3)and day 10 (n = 6) are shown. Data are expressed as means \pm SE. C: protein lysates of isolated colonic epithelial cells from control or DSS-treated mice at day 10 with or without MP6-XT22 injection were subjected to Western blotting with anti-I κ B α , anti-p-I κ B α , anti-p65, anti-p-p65, or anti-USF2 antibodies. D: relative mRNA expressions for IL-1β, IL-6 and MIP-2 in whole colons from mice treated with control IgG or MP6-XT22 injection at day 10. Each mRNA level was quantified by real-time PCR and normalized to the level of G3PDH (n = 3). *P < 0.01, **P < 0.05.

suppress activation of NF-kB in epithelial cells. Therefore, this excludes the possibility that different degree of inflammation by the treatment secondarily affect the development of CAC. Thus we next investigated whether repetitive administration anti-TNF-α MAb suppresses the development of CAC in AOM/DSS-treated mice. Mice received AOM IP at day -7, followed by three cycles of DSS treatment and weekly injection of either control IgG or MP6-XT22 from day 5 until day 68. These mice were then euthanized on day 70 (see Fig. 6A). Consistent with acute model of DSS colitis as mentioned above, both groups of mice showed similar severity of clinical phenotypes as determined by weight loss, rectal bleeding, and diarrhea regardless of the treatments with MP6-XT22 (Fig. 6B). Histological findings of crypt destruction, mucosal ulceration, and infiltration were similarly observed in both groups of mice in association with the clinical scores of these mice (Fig. 6C). It should be noted that clinical and histological scores showed that the severity of inflammation was not affected by AOM treatment (data not shown).

It has been recently reported that NF- κ B activation in epithelial cells and myeloid cells plays a crucial role in carcinogenesis (12). Thus it was suggested that blockade of TNF- α

may be effective for incidence and/or progression of tumors. Therefore, we investigated the effect of anti-TNF-α MAb on the development of colitis-associated tumors in chronic DSS/ AOM model. Mice administered with combination of AOM, DSS, and control IgG showed development of multiple nodular or polyploid tumors in the middle to distal colon (Fig. 7A). In contrast, decreased number of tumors was observed in mice administered with the combination of AOM, DSS, and MP6-XT22 (Fig. 7, A and B). Moreover, MP6-XT22 treatment also decreased the numbers of small tumors as well as larger tumors (Fig. 7C), despite similar morphological diversity in both groups (Fig. 7D), suggesting that the suppressed tumorigenesis in MP6-XT22-treated group is not only due to the reduced progression of tumors. Next, we thoroughly examined the histological sections, and no evidence of carcinoma such as tumor invasion into the lamina propria was observed in both control IgG and MP6-XT22 treated groups. Therefore, we defined the histology of this colitis-associated tumor model as adenoma. In addition, we also examined the β-catenin expression in these sections. The expression of β-catenin was observed in the cytoplasm, but not in the nuclei, of intestinal epithelia with colitis, as seen in Fig. 7E. However, the tumor

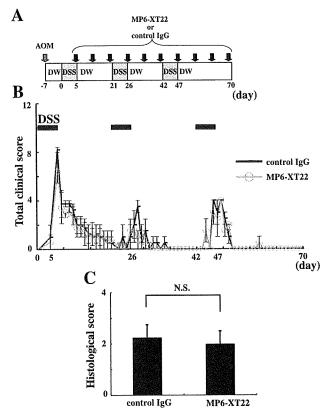
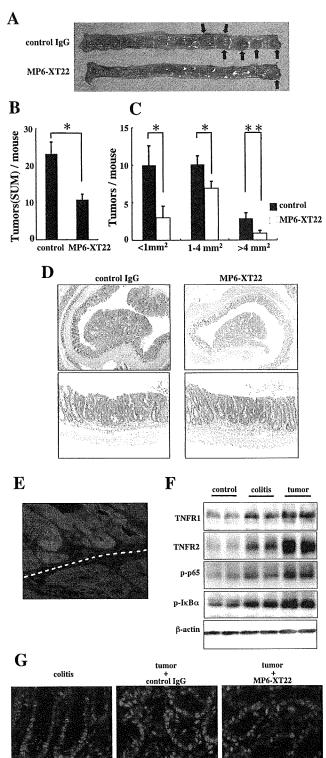



Fig. 6. MP6-XT22 does not ameliorate chronic DSS colitis. A: schema of the AOM/DSS colitis-associated tumor model. Mice were preinjected with AOM 7 days before starting DSS administration, and subsequently administered weekly injections of MP6-XT22 or isotype control from day 5 until day 68 during the three cycles of DSS administration. B and C: clinical (B) and histological (C) scores are shown. Data (n = 10) are expressed as means \pm SE. N.S., not significant.

cells showed the nuclear expression of β -catenin as well as its overexpression in the cytoplasm (Fig. 7*E*). Given the nuclear translocation of β -catenin in our tumor model (Fig. 7*E*) and the attenuation of tumor development by anti-TNF- α therapy (Fig. 7, A–C), we next examined TNFR2 expression as well as NF- κ B activities in this model. Interestingly, TNFR2 expression was more upregulated in the colitis-associated tumor. In addition, the phosphorylation of I κ B α and p65 was further induced in

Fig. 7. MP6-XT22 reduces tumor development in AOM/DSS model. A: macroscopic overview of representative colonic samples from each group is shown. Arrows indicate tumors. B: numbers of microscopically indicated tumors per colon in AOM/DSS-administered mice with isotype control or MP6-XT22 treatment (n = 10). Data are express as means $\pm \dot{S}\dot{E}$. *P < 0.01, **P < 0.05. C: histogram shows tumor size distribution. Tumors were determined under the microscope. D: microscopic morphology of AOM/DSS tumor model. Representative histological sections with hematoxylin and eosin staining from each group are shown. E: β-catenin expression in colitisassociated cancer (CAC). Cryosections from AOM/DSS-treated mice were stained with anti-β-catenin MAb and anti-mouse IgG1-Alexa⁵⁹⁴. Representative sample at day 70 is shown. Top, tumor area; bottom, nontumor area. F: protein lysates of isolated epithelial cells from nontreated control, colitis or tumor tissues were subjected to Western blotting with anti-TNFR1, anti-TNFR2, anti-p-p65, anti-p-I κ B α or anti- β -actin antibodies. G: cryosections of colon tissues of healthy control, colitis, CAC with control IgG or CAC with MP6-XT22 treatment were stained with anti-p-p65 PAb and anti-rabbit IgG-Alexa594.

the tumors in association with the upregulation of TNFR2 (Fig. 7F). These studies indicate that the NF-kB activation via TNFR2 in intestinal epithelial cells is closely associated with epithelial tumorigenesis. Moreover, we also observed that the nuclear expression of p65 was induced in the epithelia in tumor

AJP-Gastrointest Liver Physiol • VOL 296 • APRIL 2009 • www.ajpgi.org

tissues. However, such nuclear translocation of p65 was significantly suppressed by MP6-XT22 treatment (Fig. 7G). These findings indicate that blockade of TNF- α may contribute to suppressed initiation of colitis-associated tumors in our AOM/DSS model as well as reduction of tumor progression.

DISCUSSION

Our studies showed that blockade of TNF- α in vivo did not affect the severity of DSS-induced inflammation but rather reduced the development and progression of CAC. It has been recently reported by another group that reduced inflammation in TNFR1-deficient mice may contribute to the suppression of CAC (37). However, our results suggest that continuous suppression of TNF- α activity by MAb injection for patients with IBD, even if they are refractory to anti-TNF- α therapy, may reduce the risk of CAC.

TNF-α is a pivotal cytokine in the pathogenesis of IBD since anti-TNF-α MAb therapy is used as a powerful and promising treatment for patients with CD (13, 41, 44) or UC (40) in recent years. It has been also reported that the anti-TNF-α treatment is also effective therapy in several animal models of colitis such as TNBS colitis model, CD4+CD45RBhigh T cell-reconstituted model, bone marrow transplanted tge 26 model, and Cottontop tamarin model (24, 30, 38). Interestingly, however, the effect of TNF-α MAb therapy is controversial in the DSS colitis model, which is an epithelial damage model rather than a T cell-mediated model. For example, it has been reported that anti-TNF-α antibody treatment can ameliorate acute and chronic DSS-induced colitis (20, 28). Moreover, multiple injections of anti-TNF-α Ab during the process of chronic DSS reduced the disease activity and cytokine productions in the first two cycles although adverse effects were observed in the third cycle of the DSS treatment (27). However, other groups have reported that the antibody therapy against TNF- α failed to suppress the severity of colitis in this model (20, 33). Moreover, it has been reported that DSS-induced inflammation was significantly enhanced in TNF- α deficient-animals (29). This observation is somewhat similar to our results since anti-TNF- α treatment did not affect the clinical symptoms and pathological studies. Since the wounded epithelial layer by DSS treatment results in the translocation of luminal bacteria into the intestinal mucosa in this model, one of the potential interpretations regarding the different observations by others and ours is that in the setting of inflammation in acute and/or chronic DSS colitis, environmental effect such as the different microflora in different animal facilities may explain the discrepancy among the above results. Another interpretation might be that the colitis model in our studies was relatively mild compared with the others' and therefore we did not observe explicit abrogation of colitis by anti-TNF MAb administration.

Secreted TNF- α molecules in inflamed tissues can be recognized by its specific receptors such as TNFR1 and 2, which are known to be expressed in several cell types including macrophages and intestinal epithelial cells. The cytoplasmic domains of TNFR1 and 2 are known to be associated with TRAF2 by which activation of IKK is induced. Subsequently, activated IKK induces phosphorylation of IkB, resulting in activation of NF-kB, which consists of p50 and Rel A/p65, due to dissociation of IkB/NF-kB complex. In addition to NF-kB

activation, however, TNFR1 is also capable of being recruited by FADD and TNFR-associated DD protein (TRADD) by TNF- α activation. The oligomerization of such molecules induces activation of cysteine proteases such as caspase 8, resulting in apoptosis. Interestingly, however, TNFR2, which is not coupled with FADD/TRADD complex, does not induce proapoptotic signaling when interacting with TNF- α . In this regard, we observed that TNFR2 is preferentially upregulated in regenerating epithelial cells in DSS colitis. Our interpretation of these results are that intestinal epithelial cells, when rapidly expanding, is associated with the expression of TNFR2 rather than TNFR1, and thus counter that of the proapoptotic signals of intestinal epithelia. Consistent with this, we also observed specific activation of IkB and p65 in association with TNFR2 upregulation in wounded mucosal epithelia by DSS administration. Thus it is suggested that regenerating intestinal epithelial cells may have susceptibility of NF-kB inactivation by blockade of TNF- α due to the specific upregulation of TNFR2 in these cells.

It is well known that long-standing UC (8, 18, 25) and CD (4, 7) are closely associated with an increased risk of CAC. To investigate the role of TNF-α signaling in colon carcinogenesis, we here used an established murine CAC model based on the mutagenic agent AOM (32, 43) along with the colitogenic administration of DSS. It has been suggested by Greten and colleagues (12) that IKK-β contributes to tumor promotion in AOM/DSS-induced CAC model. They indicated that the deletion of IKK-B in myeloid cells or epithelial cells resulted in decreased size of tumors due to reduced expression of proinflammatory cytokines that may serve as tumor growth factors (12). Moreover, it has been reported that blockade of IL-6 prevents tumor progression in AOM/DSS-induced CAC model (3). In addition, Popivanova and colleagues (37) have recently reported that the TNFR1 signaling in hematopoietic cells in colonic tissues results in production of chemokines such as CXCL1 and CCL2, which are chemotactic for neutrophils and macrophages. They also suggested that such activation of hematopoietic cells in the mucosal tissue is critical for the progression of CAC in association with suppression of DSS colitis. In our studies, colitis was mild and not clearly affected by anti-TNF-α MAb treatment despite the depressed CAC initiation and progression observed. One of the interpretations regarding different observations is that TNFR1 deficient neutrophils and macrophages on the BALB/c background may have different immunological context from that of our model on the C57BL/6 background. Some of our observation is consistent with these, because blockade of TNF- α in chronic DSS colitis by treatment with MP6-XT22 resulted in decreased cytokine expression including IL-1B, IL-6, and MIP-2, which are considered to encourage protumorigenic activities such as angiogenesis and tumor proliferation (5, 6, 19, 21). Thus it is suggested that the blockade of TNF- α may function to suppress the secretion of these chemokines and cytokines from infiltrating lymphocytes in colitic tissue through the inhibition of NK-KB activity in these cells. It should be noted that anti-TNF-α MAb treatment is also effective for suppression of tumorigenesis in unique mouse CAC model, which is promoted by transferring of CD4⁺CD45RB^{high} lymphocytes that may produce proinflammatory cytokine into Apc (Min/+) mice (39). This might be another evidence for the proinflammatory cytokineinduced epithelial carcinogenesis.

G858 EPITHELIAL TNF-α SIGNALING ON COLITIC CARCINOGENESIS

On the other hand, it was also suggested by Greten and colleagues (12) that deletion of IKK-\(\beta\) in intestinal epithelial cells led to a decrease in tumor incidence although inflammation in the tissue was not abrogated. Consistent with this, it was also suggested by another group that inactivation of NF-κB in the hepatocytes had no effect during the course of hepatitis but failed to progress to carcinoma in an animal model of hepatitisinduced hepatocellular carcinoma (36). Although the amelioration of colitis was not apparent in our study, anti-TNF-α Ab significantly suppressed the tumor development in our AOM/ DSS model in association with the downregulation of p-p65 and p-IkB. Thus our results are consistent with observations by others above since treatment with MP6-XT22 resulted in the reduction of TNF-α-induced NF-κB activity in colonic epithelial cells, which may influence the cell growth of colonic epithelia in DSS colitis. Regarding the involvement of apoptosis, we have tried to detect p-FADD and c-caspase 3 expressions in DSS-receiving mice, but we did not observe any significant differences compared with nontreated controls, as seen in Fig. 3B. Moreover, we have also tried to detect DNA fragmentation from rTNF-α-stimulated CT26 cells as well as TUNEL staining in the setting of recovery phase of DSS-treated or AOM/ DSS-treated mice with or without anti-TNF-α treatment. However, we were not able to observe any significant difference of apoptosis activities in these experiments compared with the controls (data not shown). Therefore, we conclude that apoptosis is unlikely to be associated with the development of our colitis-associated tumor model. Moreover, we have also observed that the NF-kB pathway is further activated in CAC tissues compared with nontumor tissues in DSS/AOMreceiving mice in association with nuclear expression of β-catenin (Fig. 7E) and extraordinary upregulation of TNFR2 (Fig. 7F). These observations evidently imply that NF-κB activation via TNFR2 in the intestinal epithelial cells is directly correlated with the carcinogenesis induced by TNF-α stimulation. Thus it should be clarified that TNFR2 signaling in intestinal epithelia is also required for such tumor promotion as well as TNFR1 signaling in hematopoietic cells. We have therefore tried to focus on addressing this issue by using a "conventional" TNFR2-deficient model. We administered AOM and DSS treatment to these mice; however, we were not able to quantify and compare tumor development in such mice, because these mice were more sensitive to DSS colitis and had higher mortality compared with WT mice (data not shown). Our interpretation of this result is that serum TNF- α levels in conventional TNFR2-deficient mice may be elevated with LPS stimulation as previously reported by other group (35). We therefore realized that an "intestinal epithelia-specific" deficient model rather than conventional knockout mice would likely be the better model for our study. However, we were not able to obtain such conditional deficient mice. On the other hand, Fukata and colleagues (11) have recently reported that impaired Toll-like receptor-4 (TLR4) signaling reduced AOM/ DSS-induced colon cancer without significant impact on inflammation. Their findings and ours may imply an important mechanism by which NF-кВ pathway is regulated in intestinal epithelial cells in setting of carcinogenesis. Thus one potential mechanism by which anti-TNF-α MAb is able to reduce the numbers and size of tumors in AOM/DSS-administered mice is that blocking TNFR2 signaling, which was presumably triggered by TLR4-mediated epithelial stimulation, in the context

of chronic intestinal wound healing may somehow decrease neoplasia even without significantly impairing inflammation. In addition, we have also observed that TNFR2 signaling in colonic epithelial cells results in the epithelial barrier dysfunction (M. Onizawa and T. Nagaishi, unpublished data). This observation suggests that TNFR2 signaling-mediated impairment of epithelial tight junction may be associated with the mechanism of tumor development.

In summary, administration of anti-TNF- α MAb directly inhibits NF- κ B activities in intestinal epithelial cells that may induce tumor formation in collaboration with independent mechanisms by another NF- κ B activity in the hematopoietic cells. Although more detail mechanism still remains to be elucidated, distinct TNF- α signaling in colonic epithelial cells may be one potential therapeutic target in the treatment of IBD-associated tumorigenesis, resulting in the change of natural history of patients with IBD.

ACKNOWLEDGMENTS

The authors thank Drs. Emiko Mizoguchi and Timothy Kuo for helpful discussions on this study.

GRANTS

This study was supported in part by grants-in-aid for Scientific Research, Scientific Research on Priority Areas, Exploratory Research and Creative Scientific Research from the Japanese Ministry of Education, Culture, Sports, Science and Technology; the Japanese Ministry of Health, Labor and Welfare; the Japan Medical Association; Foundation for Advancement of International Science; Terumo Life Science Foundation; Ohyama Health Foundation; Yakult Bio-Science Foundation; Research Fund of Mitsukoshi Health and Welfare Foundation; Japan Foundation for Applied Enzymology; Memorial Fund of Nihon University Medical Alumni Association; Abbott Japan Allergy Research Award; and Takeda Science Foundation.

REFERENCES

- Abrams JS, Roncarolo MG, Yssel H, Andersson U, Gleich GJ, Silver JE. Strategies of anti-cytokine monoclonal antibody development: immunoassay of IL-10 and IL-5 in clinical samples. *Immunol Rev* 127: 5-24, 1992.
- Araki A, Kanai T, Ishikura T, Makita S, Uraushihara K, Iiyama R, Totsuka T, Takeda K, Akira S, Watanabe M. MyD88-deficient mice develop severe intestinal inflammation in dextran sodium sulfate colitis. J Gastroenterol 40: 16–23, 2005.
- Becker C, Fantini MC, Schramm C, Lehr HA, Wirtz S, Nikolaev A, Burg J, Strand S, Kiesslich R, Huber S, Ito H, Nishimoto N, Yoshizaki K, Kishimoto T, Galle PR, Blessing M, Rose-John S, Neurath MF. TGF-beta suppresses tumor progression in colon cancer by inhibition of IL-6 trans-signaling. *Immunity* 21: 491–501, 2004.
- Bernstein CN, Blanchard JF, Kliewer E, Wajda A. Cancer risk in patients with inflammatory bowel disease: a population-based study. Cancer 91: 854-862, 2001.
- Coussens LM, Werb Z. Inflammation and cancer. Nature 420: 860–867, 2002.
- Driscoll KE, Hassenbein DG, Howard BW, Isfort RJ, Cody D, Tindal MH, Suchanek M, Carter JM. Cloning, expression, and functional characterization of rat MIP-2: a neutrophil chemoattractant and epithelial cell mitogen. J Leukoc Biol 58: 359–364, 1995.
- Ekbom A, Helmick C, Zack M, Adami HO. Increased risk of largebowel cancer in Crohn's disease with colonic involvement. *Lancet* 336: 357–359, 1990.
- Ekbom A, Helmick C, Zack M, Adami HO. Ulcerative colitis and colorectal cancer. A population-based study. N Engl J Med 323: 1228– 1233, 1990.
- Ekbom A, Helmick CG, Zack M, Holmberg L, Adami HO. Survival and causes of death in patients with inflammatory bowel disease: a population-based study. Gastroenterology 103: 954–960, 1992.
- Feiken E, Romer J, Eriksen J, Lund LR. Neutrophils express tumor necrosis factor-alpha during mouse skin wound healing. *J Invest Dermatol* 105: 120–123, 1995.

- Fukata M, Chen A, Vamadevan AS, Cohen J, Breglio K, Krishnareddy S, Hsu D, Xu R, Harpaz N, Dannenberg AJ, Subbaramaiah K, Cooper HS, Itzkowitz SH, Abreu MT. Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors. *Gastroenterology* 133: 1869– 1881 2007
- Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ, Kagnoff MF, Karin M. IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118: 285–296, 2004.
- Hanauer SB, Feagan BG, Lichtenstein GR, Mayer LF, Schreiber S, Colombel JF, Rachmilewitz D, Wolf DC, Olson A, Bao W, Rutgeerts P. Maintenance infliximab for Crohn's disease: the ACCENT I randomised trial. *Lancet* 359: 1541–1549, 2002.
- 14. Itzkowitz SH. Cancer prevention in patients with inflammatory bowel disease. *Gastroenterol Clin North Am* 31: 1133–1144, 2002.
- Kanai T, Totsuka T, Uraushihara K, Makita S, Nakamura T, Koganei K, Fukushima T, Akiba H, Yagita H, Okumura K, Machida U, Iwai H, Azuma M, Chen L, Watanabe M. Blockade of B7-H1 suppresses the development of chronic intestinal inflammation. *J Immunol* 171: 4156-4163, 2003.
- Karhausen J, Furuta GT, Tomaszewski JE, Johnson RS, Colgan SP, Haase VH. Epithelial hypoxia-inducible factor-1 is protective in murine experimental colitis. J Clin Invest 114: 1098–1106, 2004.
- Karin M, Cao Y, Greten FR, Li ZW. NF-kappaB in cancer: from innocent bystander to major culprit. *Nature Rev* 2: 301–310, 2002.
- Karlen P, Lofberg R, Brostrom O, Leijonmarck CE, Hellers G, Persson PG. Increased risk of cancer in ulcerative colitis: a populationbased cohort study. Am J Gastroenterol 94: 1047–1052, 1999.
- Koch AE, Polverini PJ, Kunkel SL, Harlow LA, DiPietro LA, Elner VM, Elner SG, Strieter RM. Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 258: 1798-1801, 1992.
- Kojouharoff G, Hans W, Obermeier F, Mannel DN, Andus T, Scholmerich J, Gross V, Falk W. Neutralization of tumour necrosis factor (TNF) but not of IL-1 reduces inflammation in chronic dextran sulphate sodium-induced colitis in mice. Clin Exp Immunol 107: 353–358, 1997.
- Lahm H, Petral-Malec D, Yilmaz-Ceyhan A, Fischer JR, Lorenzoni M, Givel JC, Odartchenko N. Growth stimulation of a human colorectal carcinoma cell line by interleukin-1 and -6 and antagonistic effects of transforming growth factor beta 1. Eur J Cancer 28A: 1894–1899, 1992.
- Li Q, Verma IM. NF-kappaB regulation in the immune system. Nat Rev Immunol 2: 725–734, 2002.
- MacDonald TT, Monteleone G, Pender SL. Recent developments in the immunology of inflammatory bowel disease. Scand J Immunol 51: 2–9, 2000.
- Mackay F, Browning JL, Lawton P, Shah SA, Comiskey M, Bhan AK, Mizoguchi E, Terhorst C, Simpson SJ. Both the lymphotoxin and tumor necrosis factor pathways are involved in experimental murine models of colitis. *Gastroenterology* 115: 1464-1475, 1998.
- Mellemkjaer L, Olsen JH, Frisch M, Johansen C, Gridley G, McLaughlin JK. Cancer in patients with ulcerative colitis. Int J Cancer 60: 330-333, 1995.
- Moore RJ, Owens DM, Stamp G, Arnott C, Burke F, East N, Holdsworth H, Turner L, Rollins B, Pasparakis M, Kollias G, Balkwill F. Mice deficient in tumor necrosis factor-alpha are resistant to skin carcinogenesis. Nat Med 5: 828-831, 1999.
- Murthy S, Cooper HS, Yoshitake H, Meyer C, Meyer CJ, Murthy NS. Combination therapy of pentoxifylline and TNFalpha monoclonal antibody in dextran sulphate-induced mouse colitis. *Aliment Pharmacol Ther* 13: 251–260, 1999.
- Myers KJ, Murthy S, Flanigan A, Witchell DR, Butler M, Murray S, Siwkowski A, Goodfellow D, Madsen K, Baker B. Antisense oligonucleotide blockade of tumor necrosis factor-alpha in two murine models of colitis. J Pharmacol Exp Ther 304: 411–424, 2003.
- Naito Y, Takagi T, Handa O, Ishikawa T, Nakagawa S, Yamaguchi T, Yoshida N, Minami M, Kita M, Imanishi J, Yoshikawa T. Enhanced intestinal inflammation induced by dextran sulfate sodium in tumor necrosis factor-alpha deficient mice. *J Gastroenterol Hepatol* 18: 560–569, 2003.
- Neurath MF, Fuss I, Pasparakis M, Alexopoulou L, Haralambous S, Meyer zum Buschenfelde KH, Strober W, Kollias G. Predominant pathogenic role of tumor necrosis factor in experimental colitis in mice. Eur J Immunol 27: 1743–1750, 1997.
- Nielsen OH, Vainer B, Madsen SM, Seidelin JB, Heegaard NH.
 Established and emerging biological activity markers of inflammatory bowel disease. Am J Gastroenterol 95: 359–367, 2000.

- Okayasu I, Ohkusa T, Kajiura K, Kanno J, Sakamoto S. Promotion of colorectal neoplasia in experimental murine ulcerative colitis. *Gut* 39: 87-92, 1996.
- Olson AD, DelBuono EA, Bitar KN, Remick DG. Antiserum to tumor necrosis factor and failure to prevent murine colitis. *J Pediatr Gastroenterol Nutr* 21: 410–418, 1995.
- 34. Oshima S, Nakamura T, Namiki S, Okada E, Tsuchiya K, Okamoto R, Yamazaki M, Yokota T, Aida M, Yamaguchi Y, Kanai T, Handa H, Watanabe M. Interferon regulatory factor 1 (IRF-1) and IRF-2 distinctively up-regulate gene expression and production of interleukin-7 in human intestinal epithelial cells. *Mol Cell Biol* 24: 6298-6310, 2004.
- Peschon JJ, Torrance DS, Stocking KL, Glaccum MB, Otten C, Willis CR, Charrier K, Morrissey PJ, Ware CB, Mohler KM. TNF receptor-deficient mice reveal divergent roles for p55 and p75 in several models of inflammation. *J Immunol* 160: 943–952, 1998.
- Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S, Gutkovich-Pyest E, Urieli-Shoval S, Galun E, Ben-Neriah Y. NFkappaB functions as a tumour promoter in inflammation-associated cancer. *Nature* 431: 461–466, 2004.
- Popivanova BK, Kitamura K, Wu Y, Kondo T, Kagaya T, Kaneko S, Oshima M, Fujii C, Mukaida N. Blocking TNF-αlpha in mice reduces colorectal carcinogenesis associated with chronic colitis. *J Clin Invest* 118: 560–570, 2008.
- Powrie F, Leach MW, Mauze S, Menon S, Caddle LB, Coffman RL. Inhibition of Th1 responses prevents inflammatory bowel disease in scid mice reconstituted with CD45RBhi CD4+ T cells. *Immunity* 1: 553–562, 1994.
- Rao VP, Poutahidis T, Ge Z, Nambiar PR, Horwitz BH, Fox JG, Erdman SE. Proinflammatory CD4+ CD45RB(hi) lymphocytes promote mammary and intestinal carcinogenesis in Apc(Min/+) mice. Cancer Res 66: 57-61, 2006.
- Rutgeerts P, Sandborn WJ, Feagan BG, Reinisch W, Olson A, Johanns J, Travers S, Rachmilewitz D, Hanauer SB, Lichtenstein GR, de Villiers WJ, Present D, Sands BE, Colombel JF. Infliximab for induction and maintenance therapy for ulcerative colitis. N Engl J Med 353: 2462–2476, 2005.
- 41. Sands BE, Anderson FH, Bernstein CN, Chey WY, Feagan BG, Fedorak RN, Kamm MA, Korzenik JR, Lashner BA, Onken JE, Rachmilewitz D, Rutgeerts P, Wild G, Wolf DC, Marsters PA, Travers SB, Blank MA, van Deventer SJ. Infliximab maintenance therapy for fistulizing Crohn's disease. N Engl J Med 350: 876-885, 2004.
- 42. Szlosarek P, Charles KA, Balkwill FR. Tumour necrosis factor-alpha as a tumour promoter. *Eur J Cancer* 42: 745–750, 2006.
- Tanaka T, Kohno H, Suzuki R, Yamada Y, Sugie S, Mori H. A novel inflammation-related mouse colon carcinogenesis model induced by azoxymethane and dextran sodium sulfate. *Cancer Sci* 94: 965–973, 2003.
- 44. Targan SR, Hanauer SB, van Deventer SJ, Mayer L, Present DH, Braakman T, DeWoody KL, Schaible TF, Rutgeerts PJ. A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor alpha for Crohn's disease. Crohn's Disease cA2 Study Group. N Engl J Med 337: 1029–1035, 1997.
- Taylor CT, Dzus AL, Colgan SP. Autocrine regulation of epithelial permeability by hypoxia: role for polarized release of tumor necrosis factor alpha. *Gastroenterology* 114: 657–668, 1998.
- 46. Totsuka T, Kanai T, Iiyama R, Uraushihara K, Yamazaki M, Okamoto R, Hibi T, Tezuka K, Azuma M, Akiba H, Yagita H, Okumura K, Watanabe M. Ameliorating effect of anti-inducible costimulator monoclonal antibody in a murine model of chronic colitis. *Gastroenterology* 124: 410-421, 2003.
- 47. Totsuka T, Kanai T, Uraushihara K, Iiyama R, Yamazaki M, Akiba H, Yagita H, Okumura K, Watanabe M. Therapeutic effect of anti-OX40L and anti-TNF-αlpha MAbs in a murine model of chronic colitis. Am J Physiol Gastrointest Liver Physiol 284: G595–G603, 2003.
- Wajant H, Pfizenmaier K, Scheurich P. Tumor necrosis factor signaling. Cell Death Differ 10: 45–65, 2003.
- Wang F, Schwarz BT, Graham WV, Wang Y, Su L, Clayburgh DR, Abraham C, Turner JR. IFN-gamma-induced TNFR2 expression is required for TNF-dependent intestinal epithelial barrier dysfunction. Gastroenterology 131: 1153–1163, 2006.
- 50. Wang M, Bronte V, Chen PW, Gritz L, Panicali D, Rosenberg SA, Restifo NP. Active immunotherapy of cancer with a nonreplicating recombinant fowlpox virus encoding a model tumor-associated antigen. *J Immunol* 154: 4685–4692, 1995.

VI. 研究班構成

特定難治性疾患患者の回腸・大腸生検組織バンク構築

区分	氏 名	所 属 等	職名
研究代表者	渡辺 守	東京医科歯科大学大学院医歯学総合研究科消化器病態学	教 授
研究分担者	宮坂 信之	東京医科歯科大学大学院医歯学総合研究科膠原病・リウマチ内科学	教 授
研究協力者	土屋 輝一郎	東京医科歯科大学大学院医歯学総合研究科消化器病態学	講 師
	竹内 勤	慶應義塾大学リウマチ内科	教 授
	服部 正平	東京大学大学院新領域創成科学研究科	教 授
	大野 博司	理化学研究所・横浜研究所・免疫アレルギー科学総合研究センター 免疫系構築研究チーム	チームリーダー
事 務 局	薊 麻里子	東京医科歯科大学大学院医歯学総合研究科消化器内科	
	山瀬 明子	〒113-8510 東京都文京区湯島1-5-45	
		TEL: 03-5803-5877 FAX: 03-5803-0268	:
		E-mail:ibd.gast@tmd.ac.jp	
事経理事務担当	池内さやか	東京医科歯科大学学術国際部・研究推進課	,
		〒113-8510 東京都文京区湯島1-5-45	
		TEL: 03-5803-5872 FAX: 03-5803-0179	
		E-mail: ikeuchi.adm@cmn.tmd.ac.jp	

