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ARTICLE INFO ABSTRACT

Article history:

Monosomy 7 and interstitial deletions in the long arm of chromosome 7 (-7/7q—) is a common non-
random chromosomal abnormality found frequently in myeloid disorders including acute myeloid leuke-
mia (AML), myelodysplastic syndrome (MDS), and juvenile myelomonocytic leukemia (JMML). Using a
short probe-based microarray comparative genomic hybridization (mCGH) technology, we identified a
common microdeletion cluster in 7q21.3 subband, which is adjacent to ‘hot deletion region’ thus far iden-
tified by conventional methods. This common microdeletion cluster contains three poorly characterized
genes; Samd9, Samd9L, and a putative gene LOC253012, which we named Miki. Gene copy number assess-
ment of three genes by real-time PCR revealed heterozygous deletion of these three genes in adult
patients with AML and MDS at high frequency, in addition to JMML patients. Miki locates to mitotic spin-
dles and centrosomes and downregulation of Miki by RNA interference induced abnormalities in mitosis
and nuclear morphology, similar to myelodysplasia. In addition, a recent report indicated Samd9 as a
tumor suppressor. These findings indicate the usefulness of the short probe-based CGH to detect mic-
rodeletions. The three genes located to 7q21.3 would be candidates for myeloid tumor-suppressor genes
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on 7q.
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Introduction

Monosomy 7 and interstitial deletions in 7q (—7/7q—) are a
common nonrandom chromosomal abnormality found frequently
in myeloid disorders. In 1964, prior to chromosome band identifi-
cation, monosomy 7 was first reported in three patients with
refractory anemia as monosomy of a C-group chromosome [1].
Since that time, —7/7q— have been identified in 10-20% of a
wide range of myeloid malignancies including MDS, AML, and
JMML [2].

Enormous efforts have been made to identify genes responsible
for —7/7q—. In the absence of definitive familial cases, the basic
strategy for gene hunting began with identifying patients that car-
ried 7q—. Detailed maps of regions deleted from individual patients
were then generated from the results of loss of heterogeneity as-
says or fluorescence in situ hybridization. Unfortunately, the cumu-
lative results from thousands of patients were confounded by the
fact that the boundaries of commonly deleted regions derived by
separate research groups showed a poor degree of overlap [3].

* Corresponding author. Fax: +81 82 256 7103.
E-mail address: tinaba@hiroshima-u.ac.jp (T. Inaba).

0006-291X/$ - see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.bbrc.2009.04.004

Currently, it is generally accepted that two or more genes near
bands 7q22 and/or 7q34 are involved in myeloid tumors.

Microarray-based comparative genomic hybridization (mCGH)
technology allows efficient detection of microdeletions (<100 kb)
that affect one or a few genes, enabling to search for small 7q dele-
tions that are not visible cytogenetically in marrow cells of MDS/
AML patients. Initially, bacterial artificial chromosome (BAC)-
based mCGH systems were developed, but this system had limited
potential to detect microdeletions because of the long probe size
(>100 kb). Thereafter, SNP-array hybridization turned out to be a
powerful method for detecting not only single nucleotide polymor-
phism, but also microdeletions [4]. However, because SNPs tend to
cluster within introns and intergenic spaces, SNP-array may bias
against the detection of microdeletions in critical genes.

Here, we describe the application of a modified BAC-based
mCGH system that uses short (<10 kb) genomic DNA fragments
without any repetitive sequences as probes to improve the detec-
tion of small deletions and reduce background hybridization. Be-
cause repeat-free fragments generally overlap exon-containing
regions, this type of probe not only yields a high signal/noise ratio,
but also can be useful in determining the copy number of a corre-
sponding gene. Using this system for identification of responsible
gene(s) for —7/7q—, we report the isolation of a common microde-



246 H. Asou et al./Biochemical and Biophysical Research Communications 383 (2009) 245-251

letion among JMML patients that contains three poorly character-
ized genes.

Materials and methods

Short probe-based mCGH. This system was similar to that de-
scribed by others [5]. Briefly, total 292 repeat-free segments
(2.7-9.5 kb) were identified using BlastN at the NCBI server (235
probes in 7q21.2-7q31.1, 15 in 4q12, 27 in 20q, and 15 in 21q).
Each of these fragments was PCR amplified from human placenta
DNA (Clontech, Mountain View, CA) and cloned into the pCR-XL-
TOPO vector (Invitrogen, Carlsbad, CA). The primer sets uséd to
amplify probes #14-#16 are listed in Table 1. Sequences of other
primer sets are available upon request. Five micrograms of each
target DNA, PCR-amplified fragments using universal primers in
the vector, was printed on poly-L-lysine coated glass slides (Mats-
unami Glass, Osaka, Japan) using a spotter (SPBIO, Hitachi Soft-
ware, Tokyo, Japan). Bone marrow samples were obtained after
informed consent and approval from the Institutional Review
Board at Hiroshima University. Test samples and reference pla-
centa DNA (2.5 pug) were random-prime labeled with CY3- and
CY5-dCTP (GE healthcare), respectively, and then hybridized to
the slide. Scanning of microarrays was performed using G2505A
scanner (Agilent Technologies, Santa Clara, CA) and signals were
analyzed with ArrayVision (GE healthcare).

Cell culture and gene transfer. EOL-1 and MUTZ-3 cells ([6] and
references in it) were cultured in RPMI1640 medium with 10%
(FBS). 293 and HeLa(tc) [7] cells were cultured in Dulbecco’s mod-
ified Eagle’s medium supplemented with 10% fetal bovine serum
(FBS). siRNA oligonucleotides (100 nM, otherwise indicated, Table
2) were transfected using Oligofectamine (Invitrogen). C-terminal
FLAG-tagged Mikio or B protein, or MikiAN-FLAG(C) protein (lack-
ing N-terminal hydrophobic 30 aa of MikiB) was expressed using
the pcDNA3 expression vector (Invitrogen).

Other experimental procedures and reagents. Copy number
assessment by qPCR was performed according to the procedure de-
scribed [8]. qRT-PCR was performed as previously described [9]
using primer sets (Table 1). Immunoprecipitation and immunoblot
analyses were performed according to the standard procedures
[10] using 2% gelatin as a blocking agent. Immunostaining and im-
age analyses were performed as described [7,11]. Rabbit anti-Miki
antibodies was raised against GST-Mikiol (377-462 aa) and affinity
purified according to the standard procedures [10].

Table 2

Target sequences for RNAi.

Name Sequence

siRNA#79 CGGUUGAUGAUCCUGUCAC
siRNA#80 GGAAGACAUUGGGAAUUAC
siRNA#81 AGGCAUUUAUGCAAAUUGAA
shMiki#1 AUGCAUCUCUGCUUAUCAACC
shMiki#2 GAAGGCAAUUACAUCGUGAAG
shMiki#3 UCAGGGAAAUGGAACUCUAUC
shMiki#4 AGAAGACAAUGGACUAUGUGU
shMiki#5 GAAACUCAUUUCACAGUUAUC
shMiki#6 UGACUUCGGAAUAUAUGAAUU
Results

Identification of three candidate myeloid tumor-suppressor genes in a
common microdeletion cluster among JMML patients

Two hundred thirty-five probes in a region spanning 21.7 Mb
within 7q21.2-7q31.1 and additional 57 control probes in 4q,
20q, and 21q were applied to a search for microdeletions using a
short probe-based mCGH system (see Materials and methods). Test
(leukemia) and reference DNA samples were labeled with CY3- and
CY5-dCTP, respectively, and then hybridized to slides on which
probes were printed.

We initially tested whether this system can detect copy number
changes in a small region. Genomic DNA extracted from EOL-1
cells, which is known to harbor a deletion spanning 800 Kb be-
tween the Rhe (FIP1L1) gene and the PDGFx gene in 4q [12]. All
eight probes (#239-#246) that locate within the deletion showed
low fluorescence ratios (Fig. 1A, bracket), demonstrating the poten-
tial of this system to detect microdeletions. For detection of mic-
rodeletion in myeloid leukemia cells, we selected fresh bone
marrow samples from adult AML/MDS patients or DNA from mye-
loid leukemia cell lines that did not show apparent 7q abnormali-
ties. However, as shown, for an example, in Fig. 1B, gross regional
copy number changes were still detected, and ‘single copy events’,
which could include both real copy number changes in a small re-
gion and noise of the system, were frequently observed, recognized
as general problems in detection of microdeletions in leukemia
cells [13]. We then applied the microarray CGH system to samples
from JMML patients, which is a subtype of MDS and is occasionally
associated with monosomy 7 [2]. In contrast to adult MDS/AML pa-

Table 1
Primer sets.

Forward Reverse
Probe#14 5'-AACTTCTCCTGACTCCAGTCATAGCTCCTT-3' 5'-ATCCATAGACCTGACATGTGTATCATATCC-3’
Probe#15 5'-GTGGGAATCGTCTACTTCCTGCACTCAAGA-3' 5'-TGATTAAAGACTGGACCAAAGAGCATGTGA-3'
Probe#16 5'-TGCTCACTCAACCGAAATCAATATTGAGAT-3' 5'-ATGCTTTAGGCTCCTAAGCCTTCTTTCCTT-3'
Top2b 5'-CAACTTTTTGCTGGCATCTG-3' 5'-GCTGGAATGTCTGGAAAAGC-3'

Tel 5'-ACAAATCACCGGCCTTCTCCTGACCC-3’
Albumin 5'-AGCTATCCGTGGTCCTGAAC-3'
c7orf16 5'-CAGGCCCAGCCTCGGTGAGC-3’
DDC 5'-CTCATGGCTCACGCGTCCAG-3'

Cdk6 5/-ACACTGCCTTGTTGGCAAAG-3'
Samd9-5' 5'-AACCCAGATATGGCTAATCC-3'
Samd9-3’ 5'-CGTTTACAAGGTCGAGCTGA-3'
Samd9L 5'-CATTCCTGTGCTTCTCCTTG-3'

Miki-5’ 5'-CCTGGTGAGGAACCCTGTCA-3’
Miki-3' 5'-CAAGGCATTCGGTTTGTAAG-3'
CCDC132 5'-AGGATACCCTGGGTCGGCTC-3'
Col1A2 5'-GCAGTAACCTTATGCCTAGC-3'
Rint-1 5'-GCTGAGTATGTCTGTTGAAG-3'

Lep 5'-GTATCTCCAGGATTGAAGAG-3'
Miki(RT) 5'-AACTCTATCTGCCAGTCAGAAG-3’
HPRT(RT) 5'-CCTCATGGACTAATTATGGACAG-3’

5'-GGCTGGATGGCTTCGGGTGGGACTC-3'
5'-TTCTCAGAAAGTGTGCATATATCTG-3'
5'-GCACAACCCCGTGCCACCAG-3’
5'-CAAGCCGACCTAGGTTGGTG-3'
5'-AGGTTTGCAGAATCGAGGCC-3’
5'-CAGGTCTATGGATGGTTGCC-3'
5’-CCCAGGTAAAAAGACACCTT-3'
5'-GGATTCCGGGATCTCATGCA-3'
5'-TCTCTGTGACTATCCTGGGA-3’
5'-CTCTGGTGAAGCAGAATTCT-3’
5'-TTCAGCCGCCGCGACTTACC-3’
5'-GAGAGTCTGCCCTCCAAGTG-3'
5'-CCAAACTAGATACAGGTGCC-3’
5’-CCCACTCTTTGCTGGGTGGA-3'
5'-TTTAGCCATTGGTAAGCTAGCC-3'
5'-GCAGGTCAGCAAAGAATTTATAG-3’
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tients and cell lines, JMML patients mostly carried no gross regio-
nal copy number changes nor single copy events (Fig. 1C). How-
ever, three contiguous probes (#14-#16) in the 7q21.2-21.3
subband were repeatedly found to show a low fluorescence ratio
(Fig. 1D). In eight of the 21 JMML patients with normal karyotype,
at least one of these three probes detected a microdeletion in one
allele (Fig. 1E, left), suggesting that a region containing these
probes is deleted frequently in JMML.

Three contiguous genes (Samd9, Samd9L, and LOC253012) identi-
fied by the human genome sequencing consortium (http://
www.ncbi.nlm.nih.gov/) were found to overlap probes #14-#16,
respectively (Fig. 2A). This region does not contain any known copy
number polymorphisms (CNPs) [ 14], nor does it represent any micr-
oRNA sequence in miRBase [15] (http://microrna.sanger.ac.uk/).

To confirm the presence of a microdeletion cluster in chromo-
some 7 of JMML patients, we prepared five primer sets for real-
time quantitative PCR analyses (qPCR) that efficiently amplify
DNA fragment to allow estimating the copy number of each of
these three genes (Fig. 2A) [8]. One allele loss of either one of the
three genes was detected in all four patients whose DNA samples
were available (Fig. 1E, right). We then extended the qPCR copy
number assessment to 65 adult AML or MDS patients with diploid
or near-diploid karyotype using the five primer sets for the three
genes and additional sets for control genes on chromosome 7
and other chromosomes (Fig. 2B). Nearly 25% (15/61) of patients
showed loss of one allele in at least one of the three genes
(Fig. 2C), indicating that these three genes are heterozygously de-
leted at high frequency in both adult and childhood myeloid leuke-
mia. In contrast to the chromosome 7 microdeletions among JMML

patients (Fig. 1D), these three genes are more commonly lost with
larger deletions in adult MDS/AML patients (Fig. 2D).

Miki-downregulation induced mitotic arrest and abnormal nuclear
morphology

Among the three genes, we named a putative gene LOC253012
Miki (mitotic kinetics regulator), because of the function of the
gene product described below. Candidate Miki orthologues were
identified in other vertebrates by search of Ensemble Genome
Browser (http://www.ensembl.org/index.html), but not in inverte-
brates, plants, yeast, or prokaryotes. Miki transcript was detected
on a Northern blot as a single 2.6 kb band in kidney and small
intestine RNA with very weak signals, suggesting relatively low
expression (data not shown). However, two alternatively splicing
Miki messages, Mikio. (LOC253012 transcript variant-1, Genbank
Accession No. NM_001039372) and Mikip (variant-2,
NM_198151), which are derived from separate first coding exons
(1a and 1b, Fig. 2A), were readily amplified by RT-PCR analyses
of all examined organs (data not shown). Mikio. and Mikip tran-
scripts encode distinctive 26- and 14-amino acid (aa) N-termini,
respectively, which precede the same 436-aa C-terminal sequence
(Fig. 3A).

Both Miki polypeptides encode three domains suggestive of cell
surface proteins: an N-terminal hydrophobic region, a central re-
gion homologous to the immunoglobulin superfamily cell adhesion
molecule, and a transmembrane domain-like region. Unexpect-
edly, immunostaining of HeLa cells using antibodies against the
C-terminus of Miki showed an intense signal in the perinuclear re-
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gion (Fig. 3B, left), which co-localized with Golgi-markers such as
Golgin-97 in the interphase (middle). In mitosis, Miki immuno-
staining localized to centrosomes/spindles (right).

Miki seems to be modified post-translationally in a complex
way. Four major bands were detected in immunoblots of 293-cell
extracts with anti-Miki antibody (Fig. 3C, lane 1). The migration
of the fastest band agreed with the predicted molecular mass
(50 kDa). In contrast, transient expression of plasmid pcDNA3-Mi-
kip-FLAG(C) generated C-terminal FLAG-tagged Mikip proteins that
migrated as a broad band between 75 and 95 kDa (lane 2). Because
peptide N-glycosidase F (PNGaseF) treatment of immunoprecipi-

tated products from the transfected cells altered the migration of
these bands to 50 kDa (lanes 3-5). Treatment of transfected cells
with tunicamycin, a glycosylation inhibitor, also shifted the broad
band to 50 kDa (lanes 6-7), suggesting that this broad band repre-
sents glycosylated forms of Miki. In transfected cells, exogenously
expressed Mikio. protein also migrated as a broad band (lane 8);
however, expression of MikiAN-FLAG(C) (which lacks the N-termi-
nal hydrophobic region) produced only one band that migrated
slightly faster than p50 (lane 9), suggesting that Miki’s N-terminal
region functions as a signal peptide. The same blot analyzed with
anti-FLAG antibody confirmed the identities of the broad band of
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Immunoblot analysis using Miki (C, top), FLAG (D, top) or f-actin (bottom) antibodies. Lane 1, untreated 293 cells; lane 2, cells transfected with pcDNA3-Mikip-FLAG(C); lane
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Mikio-FLAG(C) or pcDNA3-MikiAN-FLAG(C).

exogenous Miki protein (Fig. 3D, lanes 2-3, 6, 8), as well as degly-
cosylated Miki (lanes 5, 7) or MikiAN protein (lane 9).

Because transient expression of Miki from a variety of virus-de-
rived or eukaryotic promoters resulted uniformly in glycosylated
protein, we predict that exogenously expressed Miki is altered by
cryptic glycosylation events. In view of these results with Miki
overexpression, we applied RNA interference to downregulate
endogenous Miki. Six candidate Miki-specific short hairpin RNA
(shRNA) sequences were selected and corresponding shRNA-
expressing vectors [piGENE-mU6(neo)-hMiki#1-#6] were pre-
pared. Immunoblot analysis of 293 cells co-transfected with
pcDNA3-MikiB-FLAG(C) and each one of the six shRNA-expressing
vectors demonstrate that three shRNAs (#1, #3, and #6) downreg-
ulated levels of glycosylated Miki efficiently (Fig. 4A). When cells
were transfected with the shRNA-expressing vectors alone, shRNAs
expressed from piGENE-mU6(neo)-hMiki#1, #3, or #6 also down-
regulated steady-state levels of endogenous Miki p125 and p50
(and p100 and p60 less effectively) (Fig. 4B).

In an alternate experiment, three Miki-based short interference
RNAs (siRNAs) reduced steady-state levels of Miki mRNA to vary-
ing degrees when transfected directly into 293 cells (Fig. 4C).
Immunoblots prepared from these cells showed that the intensities
of Miki p125 and p50 signals (and p100 and p60 less effectively)

were attenuated within 48 h of transfection with siRNA#79 or siR-
NA#80 (Fig. 4D), but not by siRNA#81 and control siRNA. These
observations indicated that the p50 represents the unmodified
Miki and that p125 could be a post-translationally modified Miki
protein, although additional experiments for confirmation are re-
quired. Also demonstrated was that siRNA#79 and #80, as well
as shRNA#1 efficiently downregulate Miki expression.

To elucidate function of Miki, HeLa cells were treated with siR-
NAi#80 for 48 h. Mitotic cells increased from 3% (control siRNA-
treated cells) to 12%, suggesting that Miki-downregulation causes
mitotic arrest. As expected, Miki staining decreased significantly
in cells treated with siRNA#80 (Fig. 4E, left and middle), and
showed disorganized spindle formation (middle). Hoechst 33342
staining revealed scattered chromosomes (middle), which is
clearly distinguishable from normal prometaphase by wide and
irregular distribution of chromosomes. These abnormal prometa-
phases were observed in 15-43% of mitotic cells treated with
either siRNA#79 or siRNA#80 (Fig. 4E, right). In contrast, cells
treated with control siRNA rarely (<2%) showed scattered chro-
mosomes. Miki-downregulation also affects nuclear morphology.
Cultures of HeLa cells which stably expressed shRNA#1 fre-
quently (approximately 20%) contained more than two nuclei
(Fig. 4F, left).
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Fig. 4. Miki-downregulation by RNAi. (A) Immunoblot analysis using FLAG (top) or B-actin (bottom) antibodies: lane 1, lysate from untreated 293 cells; lanes 2-9, cells
transfected with pcDNA3-Miki-FLAG(C) with shRNA-expressing vectors for six candidate Miki-based shRNA (lanes 2-7) or empty shRNA-expressing vector (lane 8). (B)
Immunoblot analysis of HeLa(tc) cells transfected with shRNA-expressing vectors for six candidate Miki-based shRNA (lanes 1-6), or an empty shRNA-expressing vector (V;
lane 7). Lysates from untreated 293 cells (lane 8). (C) Miki mRNA expression levels in 293 cells treated with control siRNA, siRNA#79, #80, or #81 for 48 h are expressed as
percent signal (measured using qRT-PCR) relative to an untreated control. The mean and SD for four independent experiments. (D) 293 cells were either untreated (lane 1) or
transfected with control siRNA (lane 2), siRNA#79 (lanes 3), siRNA#80 (lane 4 at 40 nM), or siRNA#81 (lanes 5). (E) Immunostaining with Miki antibody of mitotic HeLa(tc)
cells treated with control siRNA or siRNA#80 (48 h). DNA was stained with Hoechst 33342 (left and middle). Percentages of mitosis with scattered chromosomes in 200
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These findings suggested a possibility that Miki-downregula- malignancies (Fig. 4F, middle and right). To test this hypothesis,
tion may be implicated in mitosis with scattered chromosomes mRNA levels of Miki in bone marrow cells from MDS or AML pa-
and bi- or tri-nucleated cells that are routinely observed in myeloid tients were estimated by real-time qRT-PCR. Expression levels of



