TABLE II. (Continued) | Dinasas | eres II | Serum
mmunoglobulin | a ay ay a Newton | Associated features | Inheritance. | | fects/presumed | Relative
frequency
among PIDs | |--|---------|------------------------|------------------|--------------------------------|--------------|---------|----------------|-------------------------------------| | 5. Specific
antibody deficiency
with normal Ig
concentrations
and normal numbers
of B cells | Norma | al · | | | Variable | Unknown | see syst | Relatively
common | | 6. Transient
hypogammaglobuline
of infancy
with normal numbers
of B cells | mia | nd IgA decreased | | nt moderate
rial infections | Variable | Unknown | | Common | AD, Autosomal-dominant inheritance; AID, activation-induced cytidine deaminase; AR, autosomal-recessive inheritance; BLNK, B-cell linker protein; TABLE III. Other well defined immunodeficiency syndromes | Disease | Circulating
T cells | Circulating
B cells | Serum
Immunoglobulin | Associated
features | Inheritance | Genetic defects/
presumed
Pathogenesis | Relative
frequency
among PIDs | |---|---|------------------------|--|--|-------------|---|-------------------------------------| | 1. Wiskott-
Aldrich syndrome
(WAS) | Progressive decrease, abnormal lymphocyte responses to anti-CD3 | Normal | Decreased IgM: antibody
to polysaccharides
particularly decreased;
often increased IgA
and IgE | Thrombocytopenia with small platelets; eczema; lymphomas; autoimmune disease; IgA nephropathy; bacterial and viral infections XL thrombocytopenia is a mild form of WAS, and XL neutropenia is caused by missense mutations in the GTPase binding domain of WASP | XL | Mutations in WAS;
cytoskeletal
defect affecting
hematopoietic
stem cell
derivatives | Rare | | 2. DNA repair
defects (other than
those in Table I) | l e | | | | | | | | (a) Ataxia-
telangiectasia | Progressive decrease | Normal | Often decreased IgA,
IgE, and IgG
subclasses; increased
IgM monomers;
antibodies variably
decreased | Ataxia; telangiectasia; pulmonary infections; lymphoreticular and other malignancies; increased α fetoprotein and X-ray sensitivity; chromosomal instability | AR | Mutations in ATM;
disorder of cell
cycle check-point
and DNA double-
strand break
repair | Relatively
common | BTK, Bruton tyrosine kinase; ICOS, inducible costimulator; $Ig(\kappa)$, immunoglobulin of κ light-chain type; UNG, uracil-DNA glycosylase; XL, X-linked inheritance. *Common variable immunodeficiency disorders: there are several different clinical phenotypes, probably representing distinguishable diseases with differing immunopathogeneses. **Alterations in TNFRSF13B (TACI) and TNFRSF13C (BAFF-R) sequence may represent disease-modifying mutations rather than disease-causing mutations. ^{******}CD40L and CD40 deficiency are also included in Table I. *****CD40L and CD40 deficiency are also included in Table I. *****Deficiency of AID or UNG present as forms of the hyper-IgM syndrome but differ from CD40L and CD40 deficiencies in that the patients have large lymph nodes with germinal centers and are not susceptible to opportunistic infections. TABLE III. (Continued) | Disease No. | Circulating
T cells | Circulating
B cells | Serum
immunoglobulin | Associated features | Inheritance | Genetic defects/
presumed
Pathogenesis | Relative
frequency
among PIDs | |--|-------------------------|---|---|---|----------------------------|--|-------------------------------------| | (b) Ataxia-
telangiectasia like
disease (ATLD) | Progressive
decrease | Normal | Antibodies variably decreased | Moderate ataxia;
pulmonary
infections; severely
increased
radiosensitivity | AR | Hypomorphic mutations in <i>MRE11</i> ; disorder of cell cycle checkpoint and DNA double-strand break | Very rare | | | | | | | | repair | | | (c) Nijmegen
breakage
syndrome | Progressive decrease | Variably
reduced | Often decreased IgA,
IgE, and IgG subclasses
increased IgM;
antibodies variably
decreased | Microcephaly;
is birdlike face;
lymphomas; solid
tumors; ionizing
radiation sensitivity;
chromosomal
instability | AR | Hypomorphic
mutations in
NBS1 (Nibrin);
disorder of cell
cycle checkpoint
and DNA double-
strand break
repair | Rare | | (d) Bloom
syndrome | Normal | Normal | Reduced | Short stature; birdlike
face; sun-sensitive
erythema; marrow
failure; leukemia;
lymphoma;
chromosomal
instability | AR | Mutations in <i>BLM</i> ;
RecQ like | | | (e) Immuno-
deficiency with | Decreased or normal | Decreased or normal | Hypogammaglobulinemia;
variable antibody | Facial dysmorphic features; | AR | Mutations
in DNA | Very
rare | | centromeric
instability and
facial anomalies
(ICF) | | | deficiency | macroglossia;
bacterial/
opportunistic
infections;
malabsorption;
multiradial
configurations of
chromosomes 1, 9,
16; no DNA breaks | | methyltransferase DNMT3B, resulting in defective DNA methylation | | | (f) PMS2
deficiency
(class-switch
recombination
[CSR] deficiency
caused by
defective
mismatch repair) | Normal | Switched and
nonswitched B
cells are
reduced | Low IgG and IgA,
elevated IgM,
abnormal
antibody
responses | Recurrent infections;
café-au-lait spots;
lymphoma,
colorectal
carcinoma, brain
tumor | AR | Mutations in PMS2,
resulting in
defective CSR-
induced DNA
double strand
breaks in Ig
switch regions | Very rare | | 3. Thymic defects
DiGeorge anomaly
(chromosome
22q11.2 deletion
syndrome | Decreased or normal | Normal | Normal or decreased | Conotruncal
malformation;
abnormal facies;
large deletion
(3Mb) in 22q11.2
(or rarely a deletion
in 10p) | De novo
defect or
AD | 9 | Common | TABLE III. (Continued) | nectoring the control of | Circulating
T cells | Circulating
B cells | Serum
immunoglobulin | Associated features | Inheritance | Genetic defects/
presumed
Pathogenesis | Relative
frequency
among PIDs | |--|---
--|--|---|-------------------------|--|-------------------------------------| | I. Immune-osseous
dysplasias | | | | | | | | | (a) Cartilage hair
hypoplasia | Decreased
or normal;
impaired
lymphocyte
proliferation* | Normal | Antibodies
variably
decreased | Short-limbed
dwarfism with
metaphyseal
dysostosis, sparse
hair, bone marrow
failure,
autoimmunity, | AR | Mutations in RMRP
(RNase MRP
RNA)
Involved in
processing of
mitochondrial
RNA and cell | Rare | | | | | | susceptibility to
lymphoma and
other cancers,
impaired
spermatogenesis,
neuronal dysplasia
of the intestine | | cycle control | | | (b) Schimke syndrome | Decreased | Normal According to the second secon | Normal State of the second | Short stature, spondiloepiphyseal dysplasia, intrauterine growth retardation, nephropathy; bacterial, viral, fungal infections; may present as SCID; bone marrow failure | AR | Mutations in SMARCALI Involved in chromatin remodeling | Very rare | | 5. Comel-Netherton
syndrome | Normal | Switched and
nonswitched B
cells are
reduced | Elevated IgE and IgA
Antibody variably
decreased | Congenital ichthyosis,
bamboo hair,
atopic diathesis,
increased bacterial
infections, failure to
thrive | | Mutations in
SPINK5 resulting in lack of the serine protease inhibitor LEKTI, expressed in epithelial cells | Rare | | 6. Hyper-IgE
syndromes (HIES |) | | | | | | | | (a) AD-HIES
(Job syndrome) | Normal T _H 17 cells decreased | Normal Commission (Commission Commission Com | Elevated IgE; specific antibody production decreased | Distinctive facial features (broad nasal bridge), eczema, osteoporosis and fractures, scoliosis, failure/delay of shedding primary teeth, hyperextensible joints, bacterial infections (skin and pulmonary abscesses/ pneumatoceles) caused by Staphylococcus aureus, candidiasis | AD Often de novo defect | Dominant-negative heterozygous mutations in STAT 3 | Rare | TABLE III. (Continued) | Disease and | Circulating
T cells | Circulating
B cells | Serum
immunoglobulin | Associated features | Inheritance | Genetic defects/
presumed
Pathogenesis | Relative
frequency
among PIDs | |---|--|--|---|---|---------------------|--|-------------------------------------| | (b) AR-HIES | Normal | Normal | Elevated IgE | No skeletal and connective tissue abnormalities; i) susceptibility to | AR | Mutation in TYK2 | Extremely | | | | | | intracellular bacteria (mycobacteria, Salmonella), fungi and viruses | | | rare | | | Reduced | Reduced | Elevated IgE, low IgM | ii) recurrent respiratory infections; extensive cutaneous viral and staphylococcal infections, increased risk of cancer, severe atopy with anaphylaxis | | Mutation in DOCK8 | Very rare | | | Normal | Normal | Elevated IgE | iii) CNS
hemorrhage, fungal
and viral infections | | Unknown | Extremely rare | | 7. Chronic mucocutaneous candidiasis | Normal (defect
of Th17 cells
in CARD9
deficiency) | Normal | Normal
Section 1998 | Chronic mucocutaneous candidiasis, impaired delayed-type hypersensitivity to Candida antigens, autoimmunity, no ectodermal dysplasia | AD, AR,
sporadic | Mutations in CARD9 in one family with AR inheritance: defect unknown in other cases | Very rare | | 8. Hepatic veno-
occlusive
disease with
immunodeficiency
(VODI) | Normal
(decreased
memory
T cells) | Normal
(decreased
memory
B cells) | Decreased IgG,
IgA, IgM | Hepatic veno-
occlusive disease;
Pneumocystis
jiroveci pneumonia;
thrombocytopenia;
hepatosplenomegaly | AR | Mutations in SP110 | Extremely rare | | 9. XL-dyskeratosis
congenita
(Hoyeraal-
Hreidarsson
syndrome) | Progressive
decrease | Progressive
decrease | Variable Section 1999 | Intrauterine growth retardation, microcephaly, nail dystrophy, recurrent infections, digestive tract involvement, pancytopenia, reduced number and function of NK cells | XL | Mutations in
dyskerin
(DKCI) | Very rare | AD, Autosomal-dominant inheritance; AR, autosomal-recessive inheritance; ATM, ataxia-telangiectasia mutated; BLM, Bloom syndrome; DNMT3B, DNA methyltransferase 3B; MRE11, meiotic recombination 11; NBS1, Nijmegen breakage syndrome 1; TBX1, T-box 1; TYK2, tyrosine kinase 2; XL, X-linked inheritance. *Patients with cartilage-hair hypoplasia can also present with typical SCID or with Omenn syndrome. TABLE IV. Diseases of immune dysregulaton | enament
namene
garien
Disease | | | Circulating
B cells | Serum
immunoglobulin | Associated features | Inheritance | Genetic defects,
presumed
Pathogenesis | Relative
frequency
among
PIDs | |--|----------------|--------------------|------------------------|------------------------------------|---|-------------|--|--| | 1. Immunodefic | iency | | | | | | | | | with hypopigi
(a) Chediak-F
syndrome | Iigashi | | | | Partial albinism, giant
lysosomes, low NK and
CTL activities,
heightened acute-phase
reaction, late-onset | AR | Defects in <i>LYST</i> ,
impaired lysosomal
trafficking | Rare | | | | | | | primary
encephalopathy | | | | | (b) Griscelli s
type 2 | syndrome, | Normal | Normal | Normal | Partial albinism, low NK and CTL activities, heightened acute phase reaction, encephalopathy in some patients | AR | Defects in RAB27A
encoding a GTPase in
secretory vesicles | Rare | | (c) Hermansky-
syndrome, typ | | Normal | Normal | Normal | Partial albinism,
neutropenia, low NK
and CTL activity,
increased bleeding | AR | Mutations of AP3B1
gene, encoding for the
β subunit of the AP-3
complex | Extremely rare | | 2. Familial
hemophagocy
lymphohistion
(FHL) syndro | ytosis . | | | | | | | | | (a) Perforin d | | Normal | Normal | Normal | Severe inflammation,
fever, decreased NK
and CTL activities | AR | Defects in <i>PRF1</i> ;
perforin, a major
cytolytic protein | Rare | | (b) UNC13D deficiency | 13-D | Normal | Normal | Normal | Severe inflammation,
fever, decreased NK
and CTL activities | AR | Defects in <i>UNC13D</i> required to prime vesicles for fusion | Rare | | (c) Syntaxin
(STX11) defic | | Normal | Normal | Normal | Severe inflammation,
fever, decreased NK
activity | AR | Defects in STX11,
involved in vesicle
trafficking and fusion | Very rare | | 3. Lymphoproli | ferative | | | | | | 23 A 24 | | | syndromes (a) XLP1, SF deficiency | 12DIA | Normal | Normal or reduced | Normal
or low
immunoglobulin | Clinical and immunologic abnormalities triggered by EBV infection, including hepatitis, aplastic anemia, lymphoma | XL | Defects in SH2D1A encoding an adaptor protein regulating intracellular signals | Rare | | (b) XLP2, XI
deficiency | AP | Normal | Normal or reduced | Normal or low
immunoglobuling | | XL | Defects in XIAP,
encoding an inhibitor
of apoptosis | Very rare | | (c) ITK defic 4. Syndromes wautoimmunity (a) Autoimmulymphoprolife syndrome | ith
une | Modestly decreased | Normal | Normal or
decreased | EBV-associated lymphoproliferation | AR | Mutations in ITK | Extremely rare | TABLE IV. (Continued) | . keesaah
residence
geogra
Visease keesaan | | Circulating
B cells | Serum
immunoglobulin | Associated features | Inheritance | presumed | Relative
frequency
among
PIDs | |---|--|--------------------------------|--|---|---------------------------------|---|--| | (i) CD95 (Fas)
defects, ALPS
type 1a | Increased CD4* CD8*
double negative (DN)
T cells | Normal | Normal or
increased | Splenomegaly,
adenopathy,
autoimmune blood
cytopenias, defective
lymphocyte apoptosis
increased lymphoma
risk | AD (rare
severe AR
cases) | Defects in TNFRSF6, cell
surface apoptosis
receptor; in addition to
germline mutations,
somatic mutations
cause a similar
phenotype | | | (ii) CD95L (Fas
ligand) defects, ALPS
type 1b | | | Normal | Splenomegaly,
adenopathy,
autoimmune blood
cytopenias, defective
lymphocyte apoptosis,
SLE | AD
AR | Defects in TNFSF6,
ligand for CD95 | Extremely rare | | (iii) Caspase 10
defects, ALPS type 2a | Increased DN T cells | Normal | Normal | Adenopathy,
splenomegaly,
autoimmune disease,
defective lymphocyte
apoptosis | AR | Defects in CASP10,
intracellular apoptosis
pathway | Extremely rare | | (iv) Caspase 8
defects, ALPS type 2b | Slightly increased
DN T cells | Normal | Normal or
decreased | Adenopathy,
splenomegaly,
recurrent bacterial and
viral infections,
defective lymphocyte
apoptosis and
activation; | AR | Defects in CASP8,
intracellular apoptosis
and activation
pathways | Extremely rare | | (v) Activating N-Ras
defect, N-Ras-dependent
ALPS | Increased DN T cells | Elevation
of CD5 B
cells | Normal | Adenopathy,
splenomegaly,
leukemia, lymphoma,
defective lymphocyte
apoptosis after IL-2
withdrawal | AD | Defect in NRAS encoding
a GTP binding protein
with diverse signaling
functions, activating
mutations impair
mitochondrial
apoptosis | Extremely
rare | | (b) APECED,
autoimmune
polyendocrinopathy
with candidiasis and
ectodermal dystrophy | Normal | Normal | Normal The Control of o | Autoimmune disease,
particularly of
parathyroid, adrenal
and other endocrine
organs plus
candidiasis, dental
enamel hypoplasia and
other abnormalities | AR | Defects in AIRE,
encoding a
transcription regulator
needed to establish
thymic self-tolerance | Rare | | (c) IPEX, immune
dysregulation,
polyendocrinopathy,
enteropathy (X-linked) | Lack of CD4+CD25+ FOXP3+ regulatory T cells | Normal | Elevated
IgA, IgE | Autoimmune diarrhea,
early onset diabetes,
thyroiditis, hemolytic
anemia,
thrombocytopenia,
eczema | XL | Defects in FOXP3,
encoding a T cell
transcription factor | Rare | | (d) CD25 deficiency | Normal to modestly decreased | Normal | Normal | Lymphoproliferation,
autoimmunity,
impaired T-cell
proliferation | AR |
Defects in IL-2Ra chain | Extremely
rare | AD, Autosomal-dominant; AIRE, autoimmune regulator; AP3B1, adaptor protein complex 3 beta 1 subunit; AR, autosomal-recessive; CASP, caspase; CTL, cytotoxic T lymphocyte; DN, double-negative; FOXP3, forkhead box protein 3; LYST, lysosomal trafficking regulator; NRAS, neuroblastoma Ras protein; PRF1, perforin 1; RAB27A, Ras-associated protein 27A; SH2D1A, SH2 domain protein 1A; TNFRSF6, tumor Necrosis Factor Receptor Soluble Factor 6; TNFSF6, tumor Necrosis Factor Soluble Factor 6; IAP, X-linked inhibitor of apoptosis; XL, X-linked; XLP, X-linked lymphoproliferative disease TABLE V. Congenital defects of phagocyte number, function, or both | Disea | straga (m. 1921)
S e llet graduta — katiga | Affected cells | Affected function | Associated features | Inheritance | Gene defect—pre-
sumed pathogenesis | Relative frequency
among PIDs | |-------------|--|-------------------|--|---|-------------|--|---| | | Severe congenital | N | Myeloid
differentiation | Subgroup with myelodysplasia | AD | ELA2: mistrafficking of elastase | Rare | | | engen ≢uge in general (1995) kilomoti en en et telefon i filo et filosofie.
E | N | Myeloid
differentiation | B/T lymphopenia | AD | GFI1: repression of elastase | Extremely rare | | 3. 1 | Kostmann disease | N | Myeloid
differentiation | Cognitive and neurological defects* | AR | HAX1: control of apoptosis | Rare | | 4 | urogenital
malformations | | Myeloid
differentiation | Structural heart defects,
urogenital
abnormalities, and
venous angiectasias of
trunks and limbs | AR | G6PC3: abolished
enzymatic activity of
glucose-6-
phosphatase and
enhanced apoptosis
of N and F | | | 5 | Glycogen storage
disease type 1b | N + M | Killing,
chemotaxis,
O ₂ production | Fasting hypoglycemia,
lactic acidosis,
hyperlipidemia,
hepatomegaly,
neutropenia | AR | G6PT1: Glucose-6-
phosphate
transporter 1 | Very rare | | 6. | Cyclic neutropenia | N | ? | Oscillations of other leukocytes and platelets | AD | ELA2: mistrafficking of elastase | Very rare | | 7. | X-linked neutropenia/
myelodysplasia | N + M | 7 | Monocytopenia | XL | WAS: Regulator of actin cytoskeleton (loss of | Extremely rare | | 8. | P14 deficiency | N+L
Mel | Endosome
biogenesis | Neutropenia Hypogammaglobulinemia †CD8 cytotoxicity Partial albinism Growth failure | AR | autoinhibition) MAPBPIP: Endosomal adaptor protein 14 | Extremely rare | | 9. | Leukocyte adhesion
deficiency type 1 | N + M +
L + NK | Adherence
Chemotaxis
Endocytosis
T/NK cytotoxicit | Delayed cord separation,
skin ulcers
Periodontitis | AR | ITGB2: Adhesion protein | Very rare | | 10. | Leukocyte adhesion deficiency type 2 | N + M | Rolling
chemotaxis | Mild LAD type 1 features
plus hh-blood group plus
mental and growth
retardation | AR | FUCT1: GDP-Fucose transporter | Extremely rare | | 11. | Leukocyte adhesion deficiency type 3 | N + M +
L + NK | Adherence | LAD type 1 plus bleeding tendency | AR | KINDLIN3: Rap1-activation of β1-3 integrins | Extremely rare | | 12. | Rac 2 deficiency | N | Adherence
Chemotaxis
O ₂ production | Poor wound healing,
leukocytosis | AD | RAC2: Regulation of actin cytoskeleton | Extremely rare:
Regulation of acti
cytoskeleton | | 13. | β-Actin deficiency | N + M | Motility | Mental retardation, short stature | AD | ACTB: Cytoplasmic actin | Extremely rare | | 14. | Localized juvenile periodontitis | N | Formylpeptide-
induced
chemotaxis | Periodontitis only | AR | FPR1: Chemokine receptor | Very rare | | 15. | Papillon-Lefèvre
syndrome | N + M | Chemotaxis | Periodontitis,
palmoplantar
hyperkeratosis† | AR | CTSC: Cathepsin C
activation of serine
proteases | Very rare | | 16. | Specific granule deficiency | N | Chemotaxis | N with bilobed nuclei | AR | CEBPE: myeloid transcription factor | Extremely rare | | 17. | Shwachman-Diamond syndrome | N | Chemotaxis | Pancytopenia, exocrine pancreatic insufficiency, chondrodysplasia | AR | SBDS | Rare | | 18. | X-linked chronic
granulomatous
disease (CGD) | N + M | Killing (faulty O ₂ production) | McLeod phenotype in a subgroup of patients | XL | CYBB: Electron
transport protein
(gp91phox) | Relatively common | TABLE V. (Continued) | lisease to graduate the | Affected cells | Affected function | Associated features | Inheritance | Gene defect—pre-
sumed pathogenesis | Relative frequency among PIDs | |--|---|--|---|--|---|---------------------------------| | 9 Autosomal CGDs 21. | N + M | Killing (faulty O ₂ * production) | | AR Interest to the second of t | CYBA: Electron
transport protein
(p22phox)
NCF1: Adapter
protein (p47phox)
NCF2: Activating
protein (p67phox) | Relatively common | | 22. IL-12 and IL-23 receptor β1 chain deficiency | en en L. + NKre
Gebruare
Gebruare | IFN-γ secretion | Susceptibility to
mycobacteria and
Salmonella | asse AR em (K) | IL12RB1: IL-12 and
IL-23 receptor
β1 chain | Rares
Recovered
Recovered | | 23. IL-12p40 deficiency | M | IFN-γ secretion | Susceptibility to
mycobacteria and
Salmonella | AR | IL12B: subunit of IL12/IL23 | Very rare | | 24. IFN-γ receptor
1 deficiency | M+L | IFN-γ binding
and signaling | Susceptibility to mycobacteria and Salmonella | AR, AD | IFNGR1:
IFN-γR ligand
binding chain | Rare | | 25. IFN-γ receptor 2 deficiency | M + L | IFN-γ signaling | Susceptibility to
mycobacteria and
Salmonella | AR | IFNGR2: IFN-γR accessory chain | Very rare | | 26. STAT1 deficiency
(2 forms) | M + L | IFN α/β, IFN-γ,
IFN-λ, and IL-
27 signaling | | AR | STATI | Extremely rare | | 27. AD hyper-IgE | L+M+N+
epithelial | IFN-γ
signaling | Susceptibility to mycobacteria and Salmonella | AD | STAT1 | Extremely rare | | 28. AR hyper-IgE (TYK2 deficiency) | L+M+N+ others | IL-6/10/22/23
signaling
IL-6/10/12/
23/IFN-α/
IFN-β
signaling | Distinctive facial features (broad nasal bridge); eczema; osteoporosis and fractures; scoliosis; failure/delay of shedding primary teeth; hyperextensible joints; bacterial infections (skin and pulmonary abscesses/ pneumatoceles) caused by Staphylococcus aureus; candidiasis Susceptibility to intracellular bacteria (mycobacteria, Salmonella), Staphylococcus, and viruses. | | STAT3
TYK2 | Rare Extremely rare | | 29. Pulmonary alveolar | Alveolar | GM-CSF | Alveolar | biallelic | CSF2RA | extremely rare | ACTB, Actin beta; AD, autosomal-dominant; AR, autosomal-recessive inheritance; CEBPE, CCAAT/Enhancer-binding protein epsilon; CTSC, cathepsin C; CYBA, cytochrome b alpha subunit; CYBB, cytochrome b beta subunit; ELA2, elastase 2; IFN, interferon; IFNGR1, interferon-gamma receptor subunit 1; IFNGR2, interferon-gamma receptor subunit 2;
L12B, interleukin-12 beta subunit; IL12RB1, interleukin-12 receptor beta 1; F, fibroblasts; FPR1, formylpeptide receptor 1; FUCT1, fucose transporter 1; GFI1, growth factor independent 1; HAX1, HLCS1-associated protein X1; ITGB2, integrin beta-2; L, lymphocytes; M, monocytes-macrophages; MAPBPIP, MAPBP-interacting protein; Mel, melanocytes; N, neutrophils; NCF1, neutrophil cytosolic factor 1; NCF2, neutrophil cytosolic factor 2; NK, natural killer cells; SBDS, Shwachman-Bodian-Diamond syndrome; STAT, signal transducer and activator of transcription; XL, X-linked inheritance. ^{*}Cognitive and neurologic defects are observed in a fraction of patients. [†]Periodontitis may be isolated. TABLE VI. Defects in innate immunity | protestadi
grammayon
adiyil qayanay
Disease | Affected cell | Functional defect | Associated features | Inheritance | Gene
defect/presumed
pathogenesis | Relative
frequency
among
PIDs | |--|--|---|---|-------------|---|--| | Anhidrotic ectodermal
dysplasia with
immunodeficiency
(EDA-ID) | Lymphocytes + monocytes | NF-kB signaling pathway | Anhidrotic ectodermal dysplasia + specific antibody deficiency (lack of antibody response to polysaccharides) Various infections (mycobacteria and pyogenic bacteria) | XL | Mutations of <i>NEMO</i> (<i>IKBKG</i>), a modulator of NF-κB activation | Rare | | EDA-ID | Lymphocytes + monocytes | NF-κB signaling pathway | Anhidrotic ectodermal
dysplasia + T-cell
defect + various
infections | AD | Gain-of-function
mutation of <i>IKBA</i> ,
resulting in impaired
activation of NF-κB | Extremely rare | | IL-1 receptor associated
kinase 4 (IRAK4)
deficiency | Lymphocytes + monocytes | TIR-IRAK signaling pathway | | AR | Mutation of IRAK4, a
component of TLR
and IL-1R-signaling
pathway | Very rare | | MyD88 deficiency | Lymphocytes + monocytes | TIR-MyD88
signaling pathway | Bacterial infections (pyogens) | AR | Mutation of MYD88,
a component of the
TLR and IL-1R
signaling pathway | Very rare | | WHIM (warts,
hypogammaglobulinemia
infections,
myelokathexis)
syndrome | Granulocytes +
lymphocytes | Increased response
of the CXCR4
chemokine receptor
to its ligand
CXCL12 (SDF-1) | Hypogammaglobulinemia,
reduced B-cell number,
resevere reduction of
neutrophil count, warts/
HPV infection | AD | Gain-of-function
mutations of
CXCR4, the
receptor for
CXCL12 | Very rare | | Epidermodysplasia verruciformis | Keratinocytes and leukocytes | ? | HPV (group B1) infections and cancer of the skin | AR | Mutations of EVER1,
EVER2 | Extremely rare | | Herpes simplex encephalitis (HSE) | Central nervous system resident cells, epithelial cells and leukocytes | UNC-93B-dependent
IFN-α, IFN-β, and
IFN-λ induction | Herpes simplex virus 1
encephalitis and
meningitis | AR | Mutations of UNC93B1 | Extremely rare* | | HSE | Central nervous system
resident cells, epithelial
cells, dendritic cells,
cytotoxic lymphocytes | TLR3-dependent
IFN-α, IFN-β, and
IFN-λ induction | Herpes simplex virus 1 encephalitis and meningitis | AD | Mutations of TLR3 | Extremely rare* | | Chronic mucocutaneous candidiasis | Macrophages | Defective Dectin-
1 signaling | Chronic mucocutaneous candidiasis | AR | Mutations of CARD9
leading to low number
of Th17 cells | Extremely
r rare** | | Trypanosomiasis | | APOL-I | Trypanosomiasis | AD | Mutation in APOL-I | Extremely rare* | AD, Autosomal-dominant; AR, autosomal-recessive; EDA-ID, ectodermal dystrophy immune deficiency; EVER, epidermodysplasia verruciformis; HPV, human papilloma virus; IKBA, inhibitor of NF-kB alpha; IRAK4, interleukin-1 receptor associated kinase 4; MYD88, myeloid differentiation primary response gene 88; NEMO, NF-kB essential modulator; NF-κB, nuclear factor-κB; SDF-1, stromal-derived factor 1; TIR, toll and IL-1 receptor; TLR, toll-like receptor; XL, X-linked. TABLE VII. Autoinflammatory disorders | Disease | Affected cells | Functional
defects | Associated features | Inheritance | Gene defects | Relative
frequency
among PIDs | |------------------------------|---|--|----------------------------|-------------|-------------------|-------------------------------------| | Familial Mediterranean fever | Mature granulocytes,
cytokine-activated
monocytes | Decreased production of pyrin permits ASC- induced IL-1 processing and inflammation after subclinical serosal injury; macrophage apoptosis decreased | inflammation responsive to | AR | Mutations of MEFV | Common | ^{*}Only a few patients have been genetically investigated, and they represented a small fraction of all patients tested, but the clinical phenotype being common, these genetic disorders may actually be more common. **Mutations in CARD9 have been identified only in one family. Other cases of chronic mucocutaneous candidiasis remain genetically undefined. TABLE VII. (Continued) | Statement Disease | Affected cells | Functional defects | Associated features | Inheritance | Gene defects | Relative
frequency
among PIDs | |---|---|---|---|-------------|--|--| | TNF receptor-associated | | Mutations of 55-kD TNF | | AD | Mutations of TNFRSF1A | Rare | | periodic syndrome
(TRAPS) | , aceannaidh — Ce
1931/1944
Antailea | receptor
leading to intracellular
receptor retention or
diminished | serositis, rash,
and ocular or joint
inflammation | | | en arminen.
e medige
harenen.
e Charles | | | | soluble cytokine
receptor
available to bind TNF | | | | | | Hyper IgD syndrome | | Mevalonate kinase
deficiency affecting
cholesterol
synthesis; pathogenesis
of disease unclear | Periodic fever
and leukocytosis with
high IgD levels | AR | Mutations of MVK | Rare | | Muckle-Wells syndrome* | PMNs, monocytes | Defect in cryopyrin,
involved in leukocyte
apoptosis and NF-κB
signaling
and IL-1 processing | Urticaria, SNHL,
amyloidosis
Responsive to IL-1R/
antagonist | AD | Mutations of CIASI (also
called PYPAF1 or
NALP3) | Rare | | Familial cold
autoinflammatory
syndrome* | PMNs, monocytes | Same as above | Nonpruritic urticaria,
arthritis, chills,
fever, and leukocytosis
after cold exposure
Responsive to IL-1R/
antagonist (Anakinra) | AD | Mutations of CIAS1 Mutations of NLRP12 | Very rare | | Neonatal onset multisystem inflammatory disease (NOMID) or chronic infantile neurologic cutaneous and articular syndrome (CINCA)* | PMNs, chondrocytes | Same as above | Neonatal onset rash, chronic meningitis, and arthropathy with fever and inflammation responsive to IL-1R antagonist (Anakinra) | AD | Mutations of CIASI | Very rare | | Pyogenic sterile
arthritis, pyoderma
gangrenosum, acne
(PAPA) syndrome | Hematopoietic tissues,
upregulated in activated
T cells | Disordered actin
reorganization leading
to compromised
physiologic signaling
during
inflammatory response | Destructive arthritis,
inflammatory skin rash
myositis | AD | Mutations of <i>PSTPIP1</i> (also called C2BP1) | Very rare | | Blau syndrome | Monocytes | Mutations in nucleotide
binding site of
CARD15, possibly
disrupting interactions
with LPSs and NF-κB
signaling | Uveitis, granulomatous
synovitis,
camptodactyly,
rash and cranial
neuropathies, 30%
develop
Crohn disease | | Mutations of NOD2 (also called CARD15) | Rare | | Chronic recurrent multifocal osteomyelitis and congenital dyserythropoietic anemia (Majeed syndrome) | Neutrophils, bone marrow cells | Undefined | Chronic recurrent
multifocal
osteomyelitis,
transfusion-dependent
anemia, cutaneous
inflammatory disorders | | Mutations of LPIN2 | Very rare | | DIRA (deficiency of
the IL-1 receptor
antagonist) | PMNs, monocytes | Mutations in the IL-
1 receptor
antagonist allows
unopposed
action of IL-1 | Neonatal onset
of sterile multifocal
osteomyelitis,
periostitis
and pustulosis | AR | Mutations of ILIRN | Very rare | AD, Autosomal dominant inheritance; AR, autosomal-recessive inheritance; ASC, apoptosis-associated specklike protein with a caspase recruitment domain; CARD, caspase recruitment domain; CD2BP1, CD2 binding protein 1; CIAS1, cold-induced autoinflammatory syndrome 1; LPN2, lipin-2; MEFV, Mediterranean fever; MVK, mevalonate kinase; NF-κB, nuclear factor-κB; PMN, polymorphonuclear cell; PSTPIP1, proline/serine/threonine phosphatase-interacting protein 1; SNHL, sensorineural hearing loss. *All 3 syndromes associated with similar CIAS1 mutations; disease phenotype in any individual
appears to depend on modifying effects of other genes and environmental factors. TABLE VIII. Complement deficiencies | Disease | Functional defect | Associated features | Inheritance | Gene defects | Relative frequenc
among PIDs | |-----------------|--|---|--|--------------|---------------------------------| | C1q deficiency | Absent C hemolytic activity, defective MAC* Faulty dissolution of immune complexes Faulty clearance of apoptotic cells | SLE-like syndrome,
rheumatoid disease,
infections | SSESSE AR | Clq | Very rare | | C1r deficiency* | Absent C hemolytic activity, defective MAC Faulty dissolution of immune complexes | SLE-like syndrome,
rheumatoid disease,
infections | | Clr* | Very rare | | C1s deficiency | Absent C hemolytic activity | SLE-like syndrome;
multiple autoimmune
diseases | AR | Cls* | Extremely
rare | | C4 deficiency | Absent C hemolytic activity, defective MAC Faulty dissolution of immune complexes Defective humoral immune response | SLE-like syndrome, rheumatoid disease, | AR | C4A and C4B† | Very rare | | C2 deficiency‡ | Absent C hemolytic
activity, defective MAC
Faulty dissolution
of immune complexes | SLE-like syndrome,
vasculitis,
polymyositis,
pyogenic infections | AR | C2‡ | Rare | | C3 deficiency | Absent C hemolytic activity, defective MAC Defective bactericidal activity Defective humoral immune response | Recurrent pyogenic infections | AR | C3 | Very rare | | C5 deficiency | Absent C hemolytic
activity, defective MAC
Defective bactericidal
activity | Neisserial infections, SLE | AR | | Very rare | | C6 deficiency | Absent C hemolytic
activity, defective MAC
Defective bactericidal
activity | Neisserial infections, SLE | AR | C6 | Rare | | C7 deficiency | Absent C hemolytic activity, defective MAC Defective bactericidal activity | Neisserial infections,
SLE, vasculitis | AR | | Rare | | C8a deficiency§ | Absent C hemolytic
activity, defective MAC
Defective bactericidal
activity | Neisserial infections, SLE | AR | C8α | Very rare | | C8b deficiency | -Absent C hemolytic
activity, defective MAC
Defective bactericidal
activity | Neisserial infections, SLE | AR TO THE PROPERTY OF PRO | C8β | Very rare | | C9 deficiency | -Reduced C hemolytic
activity, defective MAC
Defective bactericidal
activity | Neisserial infections | AR | C9 | Rare | TABLE VIII. (Continued) | Disease | Functional defect | Associated features | Inheritance | Gene defects | Relative frequency
among PIDs | |---|--|--|----------------------------|--------------|----------------------------------| | C1 inhibitor deficiency | Spontaneous activation of the complement pathway with consumption of C4/C2 Spontaneous activation of the contact system with generation of bradykinin from high-molecular-weight kininogen | Hereditary angioedema | | C1 inhibitor | Relatively common | | Factor I deficiency | Spontaneous activation of the alternative complement pathway with consumption of C3 | Recurrent pyogenic
infections,
glomerulonephritis,
hemolytic-uremic
syndrome | | Factor 1 | Very rare | | Factor H deficiency | Spontaneous activation of the alternative complement pathway with consumption of C3 | Hemolytic-uremic
syndrome,
membranoproliferative
glomerulonephritis | AR | Factor H | Rare | | Factor D deficiency | Absent hemolytic activity by the alternate pathway | Neisserial infection | AR | Factor D | Very rare | | Properdin deficiency | Absent hemolytic activity by the alternate pathway | Neisserial infection | XL | Properdin | Rare | | MBP deficiency¶ | Defective mannose recognition Defective hemolytic activity by the lectin pathway. | Pyogenic infections with very low penetrance, mostly asymptomatic | AR | MBP¶ | Relatively common | | MASP2 deficiency | Absent hemolytic activity by the lectin pathway | SLE syndrome, pyogenic infection | AR SEEDING | MASP2 | Extremely rare | | Complement receptor 3 (CR3) deficiency | See LAD1 in Table V | | AR | ITGB2 | Rare | | Membrane cofactor
protein (CD46)
deficiency | Inhibitor of complement
alternate pathway,
decreased C3b binding | Glomerulonephritis,
atypical
hemolytic uremic
syndrome | | MCP | Very rare | | Membrane attack
complex inhibitor
(CD59) deficiency | Erythrocytes highly
susceptible to
complement-mediated
lysis | Hemolytic anemia,
thrombosis | AR | CD59 | Extremely
rare | | Paroxysmal nocturnal hemoglobinuria | Complement-mediated hemolysis | Recurrent hemolysis | Acquired X-linked mutation | PIGA | Relatively common | | Immunodeficiency associated with ficolin 3 deficiency | Absence of complement activation by the ficolin 3 pathway | Recurrent severe pyogenic infections mainly in the lungs | AR | FCN3 | Extremely
rare | AD, Autosomal-dominant inheritance; AR, autosomal-recessive inheritance; MAC, membrane attack complex; MASP-2, MBP associated serine protease 2; MBP, mannose binding protein; PIGA, phosphatidylinositol glycan class A; SLE, systemic lupus erythematosus; XL, X-linked inheritance. *The C1r and C1s genes are located within 9.5 kb of each other. In many cases of C1r deficiency, C1s is also deficient. [†]Gene duplication has resulted in 2 active C4A genes located within 10 kb. C4 deficiency requires abnormalities in both genes, usually the result of deletions. †Type 1 C2 deficiency is in linkage disequilibrium with HLA-A25, B18, and -DR2 and complotype, SO42 (slow variant of Factor B, absent C2, type 4 C4A, type 2 C4B) and is common in Caucasian subjects (about 1 per 10,000). It results from a 28-bp deletion resulting in a premature stop codon in the C2 gene; C2 mRNA is not produced. Type 2 C2 deficiency is very rare and involves amino acid substitutions, which result in C2 secretory block. $[\]S C8\alpha$ deficiency is always associated with C8 γ deficiency. The gene encoding C8 γ maps to chromosome 9 and is normal. C8 γ is covalently bound to C8 α . Association is weaker than with C5, C6, C7, and C8 deficiencies. C9 deficiency occurs in about 1 per 1,000 Japanese. [¶]Population studies reveal no detectable increase in infections in MBP-deficient adults. # Hemophagocytosis after bone marrow transplantation for JAK3-deficient severe combined immunodeficiency Hashii Y, Yoshida H, Kuroda S, Kusuki S, Sato E, Tokimasa S, Ohta H, Matsubara Y, Kinoshita S, Nakagawa N, Imai K, Nonoyama S, Oshima K, Ohara O, Ozono K. Hemophagocytosis after bone marrow transplantation for JAK3-deficient severe combined immunodeficiency. Pediatr Transplantation 2009. © 2009 John Wiley & Sons A/S. Abstract: HSCT is the optimal treatment for patients with SCID. In particular, HSCT from a HLA-identical donor gives rise to successful engraftment with long survival. We report a six-month-old girl with JAK3-deficient SCID who developed hemophagocytosis after BMT without conditioning from her HLA-identical father. She had suffered from pneumonia and hepatitis before BMT. Prophylaxis for GVHD was short-term methotrexate and tacrolimus. On day 18 after BMT, the patient developed hemophagocytosis in bone marrow when donor lymphocytes were increasing in peripheral blood. Analysis of chimerism confirmed host origin of macrophages and donor origin of lymphocytes. Thus, host macrophage activation was presumably induced in response to donor lymphocytes through immunoreaction to infections and/or
alloantigens. HSCT for SCID necessitates caution with respect to hemophagocytosis. Yoshiko Hashii¹, Hisao Yoshida¹, Sato Kuroda¹, Shigenori Kusuki¹, Emiko Sato¹, Sadao Tokimasa¹, Hideaki Ohta¹, Yasutaka Matsubara², Seiji Kinoshita², Noriko Nakagawa³, Kohsuke Imai³, Shigeaki Nonoyama³, Koichi Oshima^{4,5}, Osamu Ohara^{4,5} and Keiichi Ozono¹ ¹Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan, ²Department of Pediatrics, Higashiosaka City General Hospital, Higashiosaka, Japan, ³Department of Pediatrics, National Defense Medical College, Tokorozawa, Japan, ⁴Department of Human Genome Technology, Kazusa DNA Research Institute, Kisarazu, Japan, ⁵Laboratory for Immunogenomics, Research Center for Allergy and Immunology, RIKEN Yokohama Institute, Yokohama, Japan Key words: bone marrow transplantation – hemophagocytosis – JAK3 mutation – severe combined immunodeficiency Yoshiko Hashii, Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan Tel.: +81-6-6879-3932 Fax: +81-6-6879-3939 E-mail: yhashii@ped.med.osaka-u.ac.jp Accepted for publication 3 June 2009 SCID is a uniformly fatal disease unless promptly treated with HSCT, which reconstitutes a normal immune system (1–3). Patients with SCID have often been affected by various kinds of infections prior to HSCT and the Abbreviations: γc , γ chain; BCG, Bacille de Calmette et Guérin; BM, bone marrow; BMT, bone marrow transplantation; CMV, cytomegalovirus; EBV, Epstein-Barr virus; FISH, fluorescence in situ hybridization; GVHD, graft-versus-host disease; HHV, human herpes virus; HLA, human leukocyte antigen; HSCT, hematopoietic stem cell transplantation; HSV, herpes simplex virus; IFN, interferon; IL, interleukin; m-PSL, methyl PSL; NK, natural killer; PCR, polymerase chain reaction; PSL, prednisolone; RT, reverse transcription; SCID, severe combined immunodeficiency; TNF, tumor necrosis factor; TRECs, T-cell-receptor excision circles; VNTR, variable number of tandem repeat. presence of pulmonary infection is a powerful predictor of death after HSCT (1). In addition, hemophagocytosis has been reported as an important complication early after HSCT (4–7). This phenomenon is in many cases triggered by infections (4, 5) and in some cases by an alloimmune response (6, 7). We report a girl with JAK3-deficient SCID who developed hemophagocytosis after BMT without conditioning from her HLA-identical father, where donor lymphocytes presumably activated host macrophages. # Case report A five-month-old girl, born to consanguineous Chinese parents, had repeatedly developed viral and bacterial bronchitis and oral candidiasis from two months of age. She had received no BCG vaccination. White blood cell count was $2690/\mu$ L (63.5% neutrophils, 27.1% lymphocytes, 1.6% eosinophils, 0% basophils, 7.8% monocytes). Serum IgG, IgA, and IgM levels were 213, 1, and 34 mg/dL, respectively. Lymphocyte subset analysis showed absence of T lymphocytes (0.6% CD3⁺, 0.3% CD4⁺, 1.2% CD8⁺) and NK cells (1.6% CD16⁺, 0.6% CD56⁺) with normal numbers of B lymphocytes (96.9% CD19⁺, 97.3% CD20⁺). A diagnosis of T⁻B⁺NK⁻SCID was made, and genetic analysis revealed a novel homozygous non-sense mutation of JAK3: a C to T point mutation at nucleotide 623 that changed amino acid 175 in the JH6 domain from arginine to a stop codon (C623T; R175X) (Fig. 1). The clinical course of the patient is summarized in Fig. 2. When she was referred to our Fig. 1. Sequence analysis showing a non-sense mutation. The JAK3 gene of the patient showed a C to T point mutation (C623T) as shown by arrowhead. CTL, control; hospital, she suffered from severe interstitial pneumonia and liver dysfunction. No sign of infection was observed on studies by RT-PCR of her serum for CMV, HHV6, HHV7, adenovirus, HSV-1 or -2, and EBV genomes. Aspergillus spp. and Pneumocystis jiroveci were not detected in her sputa by PCR analysis. β -D-glucan was not detected in her serum. She received oxygen therapy and infusion of hyperalimentation because of poor feeding. At the age of six months, she underwent unmanipulated BMT from her genotypically HLA-identical father without conditioning. Both the patient and her father had the same genotype: HLA-A*0101/3001-B*1302/ 3701-C*0602-DRB1*0701/1501. Prophylaxis for GVHD was short-term methotrexate (days 1, 3, 6, and 11) and tacrolimus. She developed grade 3 acute GVHD with watery diarrhea (stage 2) and skin eruption (stage 1) on day 9 after BMT, for which she was treated with 2 mg/kg/day of PSL. On day 16, her interstitial pneumonia deteriorated in both lungs on chest X-ray. RT-PCR analysis of sputa showed negative results of CMV, Aspergillus spp., and P. jiroveci. Her WBC count decreased to 330/μL on day 18 and BM aspiration revealed hypoplastic marrow with hemophagocytosis by activated macrophages (nuclear cell count, $4000/\mu L$; megakaryocyte count, $0/\mu L$) (Fig. 3). Serum ferritin level was 715 ng/mL and serum soluble IL-2 receptor level was 3295 U/mL. Hemophagocytosis improved three days after administration of etoposide 30 mg/m² and pulsed m-PSL 30 mg/kg/day on day 18. VNTR analysis revealed that donor cells were almost completely absent from whole cells and macrophages (CD14+ cells) of the BM cells on days 18 and 20, respectively (Fig. 4). Meanwhile, donor cells were detected in peripheral blood cells on days 20 and 24, including T lymphocytes (CD3 + cells) on day 24 (Fig. 4). A serial flow cytometric analysis of lymphocyte-gated cells also demonstrated that CD3⁺ cells with predominance of CD4⁺ cells, most likely donor cells, increased to 3.59% and 5.03% on days 18 and 21, respectively (Table 1). Furthermore, FISH analysis of sex chromosome detected donor cells in 10.8% and 8.6% of peripheral blood cells on days 20 and 28, respectively (data not shown). As her respiratory condition deteriorated, she received repeated courses of pulsed m-PSL (30 mg/kg/day) therapy and underwent mechanical ventilation on day 20. Despite intensive therapy, she died on day 32 due to respiratory failure. Lung necropsy showed necrotized cells Fig. 2. Clinical course and changes in white blood cell counts. WBC, white blood cells (solid squares); Neu, neutrophil (open triangles); Ly, lymphocyte (open circles); M-CSF, macrophage-colony stimulating factor; G-CSF, granulocyte-colony stimulating factor. without inflammatory cells. No bacterial, viral, or fungal components were detected in the tissue. # Discussion SCID is a rare syndrome with heterogeneous genetic inheritance. Common ye mutations have been identified in X-linked SCID, characterized by lack of T cells and NK cells with presence of B cells (T⁻B⁺NK⁻SCID). JAK3 mutations have been identified in some patients of autosomal SCID, which shares similar clinical features to X-linked SCID but with normal γc (8–10). JAK3, Fig. 3. Bone marrow aspiration on day 18 showing aggregate of activated macrophages. On the far right an erythroblast appears to be undergoing endocytosis. Fig. 4. VNTR analysis. Specific primers designed to flank the repetitive unit, D1S80, were used for the PCR (17). Amplified DNA was electrophoresed and visualized with ethidium bromide. CD14⁺ or CD3⁺ cells were purified by magnetic cells sorting enrichment kit (MACS: Miltenyi Biotec GmbH, Bergisch Gladbach, Germany). Arrowhead indicates a donor-specific band. Prespecific bands cannot be separated from donor-specific bands. Table 1. Flow cytometric analysis of lymphocyte-gated cells in peripheral blood | | Lymphocytes (μL) | CD19
(%) | CD3
(%) | CD4 ·
(%) | CD8
(%) | CD56
(%) | |------------------|-----------------------|-------------|------------|--------------|------------|-------------| | Pre
(Day -15) | 838 | 96.7 | 0.55 | NE | NE | 1.46 | | Day +7 | 243 | 87.9 | 2.82 | 1.31 | 0.44 | 0.28 | | Day +11 | 111 | 98.4 | 0.53 | NE | NE | 0.34 | | Day +13 | 707 | 98.6 | 0.39 | NE | NE | 0.15 | | Day +18 | 330 | 91.6 | 3.59 | 3.28 | ND | 0.24 | | Day +21 | 167 | 88.3 | 5.03 | 4.15 | 0.52 | 0.88 | NE, not evaluable: ND, not done. a member of the Janus family intracellular protein kinases, associates with intracellular domain of ye and is required for signal transduction from ye-containing receptors (8-10). To date, more than 30 mutations of JAK3 have been reported according to RAPID (Resource of Asian Primary Immunodeficiency Database) (http://rapid.rcai.riken.jp/RAPID/mutation?pid_ id=AGID_86); most of them are sporadic and lacking preferential hot spots. The JAK3 gene has an open reading frame of 3372 bp that is translated into a 1124 amino acid protein (10). In our patient, we identified a novel non-sense homozygous mutation Arg157X) leading to a premature stop codon in the JH6 domain. Although we did not evaluate protein expression, this non-sense mutation, nearer to the amino-terminus, probably resulted in abrogated protein expression. The homozygosity was in line with other reported cases with parental consanguinity (8). Prompt HSCT is an effective life-saving treatment modality for reconstitution of T-cell immunity in this defect (1-3). Our patient therefore underwent BMT immediately after diagnosis from her genotypically HLA-identical father without conditioning. A large European study (1), which analyzed 475 HSCTs for SCID from 1968 to 1999, showed 81% and 72% three-yr survival after HSCT in patients after HSCT from genotypically and phenotypically HLA-identical related donors, respectively. This study furthermore reported 96% sustained engraftment from HLA-identical HSCT, and better engraftment at 93% in SCID with B-cell-positive phenotype, i.e., yc- or JAK3-deficient SCID, compared with 88% in SCID with B-cell-negative phenotype. Recent studies also showed successful HSCT outcome with >90% survival with engraftment in SCID including ye- or JAK3-deficient SCID (2, 3). Hemophagocytosis early after HSCT has been reported as an important complication
(4-7), which is thought to be caused by infections (4, 5) or an alloimmune response (6, 7). The previous reports did not show any detailed analysis of macrophage origin, and the exact mechanism of macrophage activation remains unclear. Moreover, hemophagocytosis after HSCT for SCID as the cause of the graft failure has been reported in only some cases. Norris et al. (11) reported hemophagocytosis after three months HSCT in a T-B+ SCID patient who had received T celldepleted HSCT from an HLA-haploidentical donor without a conditioning regimen. They demonstrated that the hemophagocytosis occurred as a result of donor T-cell engraftment with incomplete immune function, since B-cell reconstitution and tri-lineage hematopoiesis including macrophages showed host type. In our case, hemophagocytosis also occurred after donor T-cell engraftment. Our patient developed hemophagocytosis and respiratory distress, accompanied by unexpected slow and low engraftment of donor cells. Hemophagocytosis was caused by host macrophages when donor lymphocytes were increasing. Since the patient congenitally had no functioning T cells, it is most probable that donor lymphocytes responded to host cells or resident infectious organisms, leading to IFN-y production and to activation of host macrophages (12, 13). In SCID patients, maternal engraftment of T cells can lead to GVHD of the skin and liver. Dvorak et al. (14) reported that the T(-)B(+) NK(-) SCID patient with complete CD132 deficiency represented hemophagocytosis without GVHD and that hemophagocytosis was most likely caused by maternal perforin-expressing CD8 T cells. In our case, maternal T cells were not detected pre-SCT (Table 1), which suggests that paternal CD8 T cells or NK cells were involved in hemophagocytosis. Monocyte function in JAK3-deficient SCID patients has been reported to be intact with respect to cytokine production in response to stimulation (15). The activated macrophages, in turn, probably produced the pro-inflammatory cytokines, TNF α , IL-1 β , and IL-6 (12, 13), which might have caused the lung injury as no organism was detected by post-mortem examination. A conditioning regimen is generally not administered to SCID patients during HSCT from HLA-identical related donors (1-3). However, in our patient, residual macrophages would appear to play an important role in causing hemophagocytosis, which might have led to poor engraftment. Furthermore, Cavazzana et al. (16) analyzed primary T-cell-immunodeficient patients who had undergone HSCT and demonstrated that all patients having undergone full myeloablation had donor myeloid cells and persistent thymopoiesis, as evidenced by the presence of naive T cells carrying TRECs, which indicates the importance of the complete absence of thymic progenitors by myeloablative conditioning in providing a favorable environment for thymic seeding by early progenitor cells. Our results lead us to surmise that, even when transplanted from an HLA-identical donor, some kind of immunosuppressive conditioning is needed to prevent hemophagocytosis. In conclusion, we describe a child with JAK3-deficient SCID who developed hemophagocytosis after HSCT from her HLA-identical father. Host macrophage activation would appear to be induced by donor lymphocytes through immune reaction to alloantigen or infectious organisms. HSCT for SCID necessitates caution with respect to hemophagocytosis. # **Acknowledgment** We thank Ms. Tokuko Okuda for performing the flow cytometric analysis and VNTR analysis. ### References - ANTOINE C, MULLER S, CANT A, et al. Long-term survival and transplantation of haemopoietic stem cells for immunodeficiencies: Report of the European experience 1968-99. Lancet 2003: 361: 553-560. - ROBERTS JL, LENGI A, BROWN SM, et al. Janus kinase 3 (JAK3) deficiency: Clinical, immunologic, and molecular analyses of 10 patients and outcomes of stem cell transplantation. Blood 2004: 103: 2009-2018. - GRUNEBAUM E, MAZZOLARI E, PORTA F, et al. Bone marrow transplantation for severe combined immune deficiency. JAMA 2006: 295: 508-518. - LEVY J, WODELL RA, AUGUST CS, BAYEVER E. Adenovirusrelated hemophagocytic syndrome after bone marrow transplantation. Bone Marrow Transplant 1990: 6: 349-352. - SATO M, MATSUSHIMA T, TAKADA S, et al. Fulminant, CMVassociated, haemophagocytic syndrome following unrelated - bone marrow transplantation. Bone Marrow Transplant 1998: 22: 1219-1222. - ISHIKAWA J, MAEDA T, MIYAZAKI T, et al. Early onset of hemophagocytic syndrome following allogeneic bone marrow transplantation. Int J Hematol 2000: 72: 243-246. - ABE Y, CHOI I, HARA K, et al. Hemophagocytic syndrome: A rare complication of allogeneic nonmyeloablative hematopoietic stem cell transplantation. Bone Marrow Transplant 2002: 29: 799-801. - Notarangelo LD, Mella P, Jones A, et al. Mutations in severe combined immune deficiency (SCID) due to JAK3 deficiency. Hum Mutat 2001: 18: 255-263. - O'SHEA JJ, HUSA M, LI D, et al. Jak3 and the pathogenesis of severe combined immunodeficiency. Mol Immunol 2004: 41: 727-737. - PESU M, CANDOTTI F, HUSA M, HOFMANN SR, NOTARANGELO LD, O'SHEA JJ. Jak3, severe combined immunodeficiency, and a new class of immunosuppressive drugs. Immunol Rev 2005: 203: 127-142. - NORRIS R, PAESSLER M, BUNIN N. Donor T-cell-mediated pancytopenia after haploidentical hematopoietic stem cell transplant for severe combined immunodeficiency. J Pediatr Hematol Oncol 2009: 31: 148-150. - 12. LARROCHE C, MOUTHON L. Pathogenesis of hemophagocytic syndrome (HPS). Autoimmun Rev 2004: 3: 69-75. - ROUPHAEL NG, TALATI NJ, VAUGHAN C, CUNNINGHAM K, MOREIRA R, GOULD C. Infections associated with haemophagocytic syndrome. Lancet Infect Dis 2007: 7: 814-822. - DVORK CC, SANDFORD A, FONG A, et al. Maternal T-cell engraftment associated with severe hemophagocytosis of the bone marrow in untreated X-linked severe combined immunodeficiency. J Pediatr Hematol Oncol 2008: 30: 396-400. - VILLA A, SIRONI M, MACCHI P, et al. Monocyte function in a severe combined immunodeficient patient with a donor splice site mutation in the Jak3 gene. Blood 1996: 88: 817–823. - 16. CAVAZZANA-CALVO M, CARLIER F, LE DEIST F, et al. Long-term T-cell reconstitution after hematopoietic stem-cell transplantation in primary T-cell-immunodeficient patients is associated with myeloid chimerism and possibly the primary disease phenotype. Blood 2007; 109: 4575-4581. - BUDOWLE B, CHAKRABORTY R, GIUSTI AM, EISENBERG AJ, ALLEN RC. Analysis of the VNTR locus DIS80 by the PCR followed by high-resolution PAGE. Am J Hum Genet 1991: 48: 137-144: