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MODERN PATHOPHYSIOLOGIC VIEW

Basic aspects for a functional understanding

Ichthyoses exhibit a generalized impaired desquamation as clinically evidenced by hyperkeratosis
and/or scaling. Desquamation is achieved by proteolytic degradation of the intercellular connectors,
corneodesmosomes, aided by friction and corneocyte hydration. The process is based on normal
epidermal differentiation and regulated by the balance of pH, protease inhibitors, and the generation
of small hygroscopic molecules within the corneocyte ® ''. Through one defective pathway or
another, all of the ichthyoses result in varying degrees of abnormal epidermal differentiation and
abnormal desquamation, e. g. showing impaired corneocyte shedding (retention hyperkeratosis) or

accelerated production (epidermal hyperplasia).

Concept of the impaired permeability barrier and homeostatic response

The stratum corneum (SC) provides a barrier, which abruptly impedes the outward movement of

interstitial fluid at the stratum granulosum/corneum (SG/SC) interface '>>'%

, and which is formed
by a series of highly hydrophobic lipid lamellae deposited through secretion of lamellar body (LB)
contents at the SG/SC interface between a mechanically resilient, yet pliable scaffold of corneocytes
157 138 11 recent years, it has become evident that this most critical SC function - the permeability
barrier - is impaired in most ichthyosis forms ' ¢ 1*1%* Several murine knock-out models for
ichthyosis (Spink5 (-/-), Tgml (-/-), Abcal2 (-/-) mice ">, Alox12b (-/-)'®, Cldnl(-/-)'®°) have
demonstrated neonatal lethality due to dehydration, underscoring the critical role of these genes in
permeability barrier competence. Mutations that either alter the lipid composition of the SC
membranes - disorders of lipid metabolism - or affect the function of the corneocyte structural
proteins - disorders of keratinocyte proteins - both result in increased water movement through the

intercellular pathway. Therefore, the phenotypic expression of many ichthyoses should be analyzed

within the context of stereotypical homeostatic response mechanisms that are activated by barrier



280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

18
abrogation in an attempt to restore the impaired barrier (and avoid lethal desiccation). For example,
these mechanisms include delivery of preformed LB (within minutes), up-regulation of epidermal
lipid synthesis (within hours), epidermal hyperproliferation (within days) and/or inflammation "
1 Healthy epidermis may need three to seven days for complete barrier repair '”', but in
ichthyosis, where a genetic mutation produces an inherent epidermal barrier defect, repair efforts
are continuously stimulated and do not terminate °. Differences of the pathogenic situations of the
disorders have to be considered, but from the functional point of view, the skin phenotype
‘ichthyosis” may be regarded as a ‘summation’ of the genetic epidermal barrier defect and the
homeostatic response ® 2. For example, this concept is illustrated by a recent mouse model, where
Alox12b(-/-) skin was transplanted on nude mice. The neonatal Alox12b(-/-) mouse phenotype
presented with thin highly inflamed skin leading to dehydration and death within several hours
(“genetically impaired SC barrier”), but the transplanted “rescued adult phenotype” of the
lipoxygenase deficient skin developed a mouse ichthyosis with severe hyperkeratosis (“homeostatic
response”) ' . Such functional models help understanding the ‘phenotypic shift’ in epidermolytic
ichthyosis (or harlequin ichthyosis), where differences in barrier requirements between the wet
intrauterine vs. the dry postnatal environments produce strikingly different phenotypes at birth vs.

thereafter.

Towards a pathophysiologic classification

Unraveling the pathogenic sequence of each disorder from the responsible genetic cause to clinical
disease expression is important for the development of new targeted therapies. Therefore, a
‘pathophysiologic/functional classification’ of all MEDOC may be a long-term goal, which,
however, will require further studies before it can be fully realized. At present, an initial
pathophysiologic scheme for ichthyoses and related diseases is proposed recognizing the following

main categories: disorders of keratinocyte proteins (“bricks”), e. g. referring to 'cytoskeleton’,
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'cornified lipid/cell envelope', 'proteases/protease-inhibitors', 'keratohyaline', and disorders of lipid
metabolism, assembly and/or transport (“mortar”), e. g. referring to ‘steroid sulfatase deficiency’,
the proposed ‘hepoxilin pathway’ # “Jamellar body (LB) defects’, and a variety of multisystem
lipid metabolism defects such as lysosomal or neutral lipid storage disease. The inclusion of the
connexin disorders, i. e. EKV and KID, the ichthyosis-hypotrichosis-sclerosing cholangitis
syndrome and trichothiodystrophies into the ichthyosis family indicates the additional categories:
disorders of cell-cell junctions, and disorders of DNA transcrzption/repair, respectively. Table IX is
open for new categories, summarizes the different groups and specifies the most important

pathophysiologic aspects of each disorder as known to date.
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DIAGNOSTIC ASPECTS

Molecular genetics

The genetic causes, meaning the genes and pathogenic mutations, for most of the 36 forms of

inherited ichthyoses (Table 1.1-2) have been successfully identified within the last two decades 1317,

22-26, 32, 37, 40-42, 44, 53, 57, 59, 67, 69-71, 73, 75, 84, 86, 90, 96, 98, 99, 102, 104, 106, 114-116, 121, 125, 174-186 The molecular

bases of only a few remain to be elucidated. As such the present classification was designed to

reference each clinical diagnosis with the associated gene defect (Table 11.1-2). Nevertheless,

because of the genetic diversity and costs of testing, an initial, carefully made clinical diagnosis,

assisted by relevant laboratory and pathological evaluations is essential to narrow the search for the

affected gene (Figure 6). Helpful contacts to initiate molecular diagnostic procedures are given in

Table 10 or will be given by the authors of this article (see http://www.netzwerk-

ichthyose.de/index.php?id=27&L=1). In consanguineous populations, homozygosity mapping may

be a screening test to identify the causative gene, while at the same timesaving time and reducing
diagnostic costs '¥” '8 It is of note that in some patients suffering from ichthyosis with a well-
defined genetic basis, even extensive gene sequencing does not identify the pathogenic mutation(s),

e. g. in KPI'®.

In summary, molecular diagnosis is a crucial diagnostic tool and has become in some countries the
“gold standard” for the diagnosis of the ichthyoses and MEDOC in general. It provides a firm basis
for genetic counseling of affected individuals and families and permits DNA-based prenatal
diagnosis in families at risk, as has been demonstrated in Netherton syndrome **'2, keratinopathic

197, 198

ichthyoses '**'%°, Sjogren-Larsson syndrome '*°, harlequin ichthyosis , and others.

Utility of ultrastructural analyses



338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

21
In disorders of cornification, subcellular changes that occur in the keratinocyte organelles and
structural proteins are even more heterogeneous than expected from the clinical and light
microscopic view alone. Transmission electron microscopy (EM) is therefore a valuable tool and
may provide important clues to the clinical diagnosis of the ichthyoses by identification of
consistent and sometimes highly specific ultrastructural markers ** '** % 2 Given appropriate
expertise, about 30% -40% of patients with suspicion of an ichthyosis form can be classified based
on conventional ultrastructural criteria, i.e. certain types of ichthyosis may be excluded, or the list
of differential diagnoses may be narrowed. For example, in IV a pronounced rarefaction of
keratohyaline granules (KG) can be visualized 21" and the extent of the ultrastructural abnormality
correlates with the presence of one or two loss-of-function mutations in the FLG gene, encoding

202

filaggrin ©°. RXLI typically shows retained corneodesmosomes within the SC and nonlamellar

phase separation in the SC interstices, provided that a ruthenium tetroxide (RuO,) fixation (see

203

3

below) has been performed " ®. Harlequin ichthyosis exhibits abnormal lamellar bodies (LB)
with a marked deficiency of intercellular lamellae in the SC '® **. Disruption of the keratin
cytoskeleton, with detachment from the desmosomal plaques and often perinuclear shell formation
is observed in the keratinopathic ichthyoses >* *! 3% 3% 626517 ' Ay ormal intranuclear granules seen
in the SG and SC are observed in loricrin keratoderma that is ultrastructurally further characterized
by a reduced thickness of the cornified cell envelope (CE) 96,205 A markedly thinned CE throughout
the SC is typical for TGase-1 deficiency '®. The ultrastructural features of the so-called EM
classification described by the ‘Heidelberg group’ are based on a glutaraldehyde fixation of the skin
biopsy “°°*!°. With this technique polygonal clefts in the SC can be observed as an ultrastructural

211

key feature of TGase-1 deficiency °°, aberrant vesicular structures may indicate NIPAL4

(~ICHTHYIN) mutations in ARCI **, and trilamellar membrane aggregations in the SC and SG (EM

type IV) are pathognomonic for ichthyosis prematurity syndrome ¥, Detachment of the SC from the

SG with asymmetric cleavage of corneodesmosomes is a specific feature of Netherton syndrome '

212
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The image of the SC as viewed by conventional electron microscopy is still artifactual. In frozen
sections, where lipid extraction is avoided, e. g. by hydrophilic staining procedures, the compact
structure of the SC can be appreciated. Similarly, the recent development of both osmium tetroxide
and ruthenium tetroxide (RuOj) post-fixation enables improved visualization of extracellular lipids,
postsecretory changes in LB contents, and alterations of the lamellar bilayers in the SC, e. g.
lamellar/non-lamellar phase separation '. The combination of all alterations observed with this
technique may be diagnostic for many forms of ichthyosis ¥ Most importantly, the ultrastructural
demonstration of disturbances of lipid metabolism gives valuable insights into the pathophysiologic

11, 60, 159-164

basis of many ichthyoses and enables a ‘function-driven’ approach TE

Histology, immunochemistry, and other non-genetic analyses

Routine histopathological findings in most ichthyoses are non-diagnostic, often demonstrating only

epidermal hyperplasia and varying degrees of orthohyperkeratosis. However, in combination with

characteristic features, routine histology can give an important clue for ichthyosis vulgaris (IV) 213,

. Do . 52, 61, 62, 215, 2 :
214 or epidermolytic ichthyosis ** °" 1 However, one should consider that a reduced or

absent SG suggestive for IV can also be seen in acquired ichthyosis, Netherton syndrome, Refsum
syndrome, trichothiodystrophies, or Conradi-Hiinermann-Happle syndrome. Hair mounts can
demonstrate “bamboo hairs” (trichorrhexis invaginata) in Netherton syndrome '*; although not

invariably present, bamboo hairs are pathognomonic of this disorder. Parakeratosis and

96, 205

hypergranulosis is regarded a histological clue to loricrin keratoderma . Polarization

217, 218

microscopy can demonstrate the tiger-tail pattern of frichothiodystrophy that corresponds to

the diagnostic low-sulfur protein content of the hair 2'* 2%°. Special immunohistochemical

v 202, 221

procedures can be combined, e. g. to confirm filaggrin deficiency in , or demonstrate

absent or reduced expression of LEKTI that supports the diagnosis of NS 22224 T4 screen for

TGase-1 deficiency in ARCI unfixed cryosections are used for the enzyme activity assay 22> %
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Alternatively, superficial SC material can be subjected to a ‘SDS heating test’ that visualizes absent

cross-linked envelopes in TGase-1 deficiency >

Special useful analyses given in Table III-VIII: For instance,.steroid sulfatase deficiency underlying
RXLI can be demonstrated by reduced arylsulfatase-C activity of leucocytes, or can readily be
diagnosed by the widely available FISH test (florescent in situ-hybridization for the STS gene
region), since more than 90% of the cases are caused by a gene deletion. Gas chromatography-mass
spectrometry reveals elevated serum levels of 8-dehydrocholesterol and cholestenol in Conradi-
Hiinermann-Happle syndrome and can identify‘ a somatic EBP gene mosaicism in unaffected

individuals “*°.
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RESOURCES FOR CLINICIANS AND PATIENTS

Currently, therapy of most ichthyoses is neither type-specific nor corrective, but rather its goal is to

3, 5, 46, 229-232 6

relieve symptoms . Importantly, clinicians have to consider the functional

consequences of the epidermal barrier defect, i. e. increased risk of systemic absorption and toxicity,

. o 2233
especially in infants '

. Neonates with severe congenital phenotypes may require intensive care
using humidified isolettes (incubators) to avoid temperature instability and hypernatremic
dehydration, and observation for signs of cutaneous infections and septicaemia. Caloric
insufficiency due to evaporative energy losses places infants with severe phenotypes at risk for

growth failure and requires early intervention 234,235,

Affected individuals and/or their families should be offered genetic counseling to explain the nature
of the disorder, its mode of inheritance and the probability of future disease manifestations in the
family " . They should be offered psychological support and be informed of patient organizations

or foundations (Table X).
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