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whereas those in group B showed rather compromised pubertal

BGF‘Z‘;’%‘P . wwgg growth with wersening of scoliosis (supplementary Fig. 1).
&y e o There was no phenotypic difference between AS03V-positive
::ﬁ o g ga §§ : and -negative cases of group B (supplementary Table 2). In ad-
oA i g b2t 00 dition, the phenotypes in group C were grossly similar to those
Baal Stmuisied Baal  Simusted in group B (Table 2). In particular, craniosynostosis was iden-
B fs'o "M°1 gé,’"”"": Aoy gg;,g’om oM P tified in all cases except for case 33 with R457H and E580Q, and
1 H *

. adrenal crisis was manifested by case 35 with Y578C and
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1704))HP~M5 . (157E)0HP‘M8 D iscus Si on
sl 1 1l ! % Melecular studies
: B¢ . . L
]g : % 3, o Detailed molecular studies were performed in this study, pro-
-10) -10 - . .
AEC "2hec -2FEE viding two notable findings. First, all 35 cases were found to be
Twhydroxylase 17,204yase  21-hydroxylase homezygotes or compound heterozygotes for POR mutations
FIG. 2. Adrenal steroidogenic dysfunctions in groups A-C. Light blue areas including intragenic microdeletion and transcription failure, Be-

represent the normal ranges. Red asteris|
differences between groups A
hormone values. B, Basal u
androstenedione; 11DOF, J

resence of significant mse the microdeletion was found in case 21 with apparent

ygosity, such a microdeletion might be hidden in
s ‘reported patients with apparent homozygosity (1,

5). Similasly, ibecause transcription failure was invariably iden-
.tifiedin cases 18, 26, and 27 with apparent heterozygosity, it may
2 revxous!y repotted patxentsl w1th ap?arent

and 24 had ovari
case 10 markedly
(E,) (supplementa

ol squxence( ) for the transcnptlon of POR as has been réperted
“for several genes (24).

3). Whereas childhood heights:tende: b high in both groups,?_ .
A and B, pubertal growth was differént between the two groups.
Cases in group A lacked obvious pubertal growth spurt but con-
tinued to grow for a long term, attaining tall adult heights,

mesk
Q555 st6 12718 thls context,‘a]l the premature termination
codons caused by the nonsense and the four frameshift mutations
satisfy the positienal conditions for the occurrence of NMD that
functions as an mRNA surveillance mechanism to prevent the

formation of aberrant proteins (13, 14). Thaus,

Group A it is likely that the remaining three mutations
Helght Hv Height # : ar X S74) ar
st L Helght e i Hoight e, ” o - (Q201X, R48f§X63, |:xd Y5671s 5? ) ‘are
180 160 also null mutations subject to NMD i vivo.
160{ 25 160{ 25 "
I I 7% Genotype-phenotype correlations
I ol ' Genotype-phenotype correlations also pro-
a0 ' a0 vide several informative findings. Skeletal fea-
6oy 6 60} & tures were clearly different between groups A
Age (yoar) St O St 2 and B Bccal.xse ch(;)lestero! proc%uct:on in skel-
Case3 Case 8 Case 10 etal tissues is carried out in a simple one way
Group B manner (Fig. 4), this would explain why the
Helght v Height v . .
ik Sl ©m) (cmap temi”_ ey Hoign e skeletal phenotype is obvu?usly deperlldem on
el 25 o the R457H dosage, reflecting the residual ac-
180 .. g
1a0] 20/ 10! 201 tivity. It is likely that the threshold level for the
120] o 120] o) development of severe skeletal phenotypes re-
‘: 1] ot 1Y sides between a single copy and two copies of
s i the R457H residual activity.
€0 sof § . . :
@ o \¥ Adrenal steroidogenic dysfunction was
g e h oo - grossly similar between groups A and B, al-
Case 15 Case 16 Case 24 Case 25

) though it was somewhat milder in group A
FIG. 3. Growth charts of eight cases plotted on the sex-matched longitudinal growth curves for the & . . group
normal Japanese children (+2 so, +1 sp, the mean, —1 so, and ~2 sp). The triangles in cases 2, 3, and 10 than group B. Such a relatively minor role of

represent the target heights. Cases 10 and 24 are placed on E, replacement therapy. Hv, Height velocity. R457H dosage in adrenal steroidogenesis
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" Motheﬂ  Placenta | tl;ie tw;: e?camined eas;_s of group 1.31_, thisdi@-
S e — A‘ plies the compromise maximum T produc-

1 | tion capacity. By contrast, the backéoor- and

Teakoititn e Estrodiol placenta-derived androgen productions com-

mon to both 46,XY and 46,XX cases may be

16-OH AR similar between groups A and B: 1) whereas

ﬁCYM 17-OHP as the source metabolite for the

backdoor pathway is higher in group B than

\ - group A, the supporting activity for fetal ad-

Eosin + ; M}DH i renal CYP17A1 involved in the backdoor

pathway would be lower in group B than
group A; and 2) whereas fetal adrenal derived
dehydroepiandrosterone as the source me-
tabolite for placental androgens would be
lower in group B than group A (4, 9, 25), the
residual supporting activity for placental
CYP19A1 would be lower in group B than
group A. Thus, the total amount of androgens
would be relatively well preserved in 46,XY
cases with a mild difference in the fetal testis-
aited cholesterologeneﬂs and, steroldogene i derived T between groups A and B and in-
fate: A%A, androstenedione; DHT, . 5.~ variably and similarly increased in 46,XX
AZ,.CYPI9A1, and CYPIAT are POR- dependent cases of both groups A and B. Furthermore,

the react 'steps in which'some Ms are omitted are i
i,s'ynthes:zed the placenta or eiééedg this notion explams whymatemal virilization
: i durmg pregnanqy was ’strmlat ..between

FIG. 4. Simplified scl

in PORD. DHEA, Dehy
dihydrotestosterol
enzymes. The impol
indicated by two
the total amount

4 ", groups'A and B because it is pnmanly due to
foidégenesis in androgens of the placental origin rather than the fetal gonadal or
n the backdoor ongm §3 4, 2,5)

] Assessment of pub bettal development was p0551ble ina limited

may primaril -
PORD (Fig. 4).

Vi

en
enzymatic reactions wou pend onthe R457H dosage and the ¥ umbet of panents : owever, pubertal development appeared
differential supporting activity: of the R457H protein for target to differ between | groups ‘A and B and between 46,XY and 46,XX
enzymes as well as the amount of substrates and products. Fur-  cases. In this regard, T and E, biosynthesis during puberty is also
thermore, the basal cortisol values imply that the baseline ste-  performed in a simple one-way manner, and T production is
roidogenic capacity can grossly be sustained, even in group B.  mediated by CYP17A1 and E, production is mediated by both
Indeed, whereas basal blood 17-OHP values were significantly =~ CYP17A1 and CYP19A1 (Fig. 4). Thus, gonadal steroid pro-
higher in group B than group A, some of them remained within  duction would depend on the R457H dosage, with T production
the normal range, and several cases of both groups were not  being less compromised than E, production. In addition, our
detected in neonatal mass screening. Nevertheless, the R457H  observation suggests the frequent occurrence of PCO in infancy
dosage would have important clinical relevance, because the  and puberty when gonadotropins are physiologically elevated
ACTH-stimulated blood cortisol was drastically reduced espe-  (27) and the beneficial effect of estrogen replacement therapy in
cially in group B, and adrenal crisis was observed only in group B.  the amelioration of PCO.
Furthermore, because 17,20 lyase activity alone was significantly Evaluation of growth pattern also remained fragmentary.
different between groups A and B (Fig. 2B), this would provide = However, two implications are possible. First, the intrinsic skel-
further support for the previous finding that 17,20 lyase activity is  etal abnormalities may be relevant to the growth pattern. Indeed,
the most sensitive index of defective POR activity (5, 15). relative tall stature in childhood may be compatible with the
46,XY DSD was not so remarkable, whereas 46, XX DSDwas  elongation of long bones as indicated by arachnodactyly and
invariably identified. This suggests a mildly reduced androgen  dolichostenomelia, and worsening of scoliosis during puberty in
production in genetic males and a definitely excessive androgen  group B would also be consistent with the low POR activity
production in genetic females. In this context, there are three  (supplementary Fig. 1). Second, the spontaneous pubertal growth
androgen sources during the fetal life in PORD, i.e. the fetal  pattern of cases 2 and 3 without scoliosis is considered to rep-
testis, backdoor pathway, and placenta (3, 4, 9,25, 26) (Fig. 4).  resent a mild form of that of male patients with aromatase de-
For fetal testicular T production specific to 46,XY cases, pla-  ficiency (28, 29). Such a qualitatively similar but quantitatively
cental hCG-stimulated T production around the critical period  different pubertal growth pattern would be explained by assum-
for sex development would be more compromised in group B ing a drastically attenuated but not abolished in vivo supporting
than group A because testicular T production is performedina  function of the R457H protein for aromatase.
simple one-way manner, as in cholesterologenesis. Furthermore, Lastly, clinical features were similar between A503V-positive
because T responses to hCG stimulation were reduced, atleastin  and -negative cases in group B. However, this would not argue
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against a possible phenotypic effect of mildly hypomorphic
AS503V, because A503V of the four cases in group B was present
on the alleles carrying apparently null mutations. Thus, it re-
mains unknown whether A503V can modify phenotypic features
in PORD, although the previous study argues against a modify-
ing effect of A5O3V on clinical phenotypes in 21-hydroxylase
deficiency (30). Furthermore, because A503V was absent from
all of 47 alleles carrying R457H, this would previde further
support for the previous notion that R457H is a founder muta-
tion accompanied by a specific haplotype (6, 7). Thus, whereas
A503V was identified in only eight of the 70 alleles (11.4%) in
this study, this frequency is obviously biased by the high prev-
alence of R457H in Japanese patients. Rather, the frequency of
A503V in R457H-negative allcles suggests that the prevalence of
A503V is considerably high in the Japanese population, as re-
ported in other populations (from 19.1% in African American to
36.7% in Chinese American) (15).

Remarks and conclusio
It should be pointe
the studies of]apanes

positive patients
and five with 46,
differences betws
tive patients: 1)
pears to be grossly
DSD is variable and
dosage; 3) 46,XX DS
homozygote and one o

A287P; and 4) maternal virilization-during pregnancy is not de-
scribed (1, 2, 5, 31, 32). Thus, skeletal phenotype would be
explained by assuming that both R457H and A287P have dras-
tically lost supporting activities for CYP5S1A1 and/or SQLE in-
volved in cholesterologenesis, although functional studies have
not been performed. Furthermore, clinical features relevant to
steroidogenic dysfunction would be grossly consistent with the
previous in vitro functional data. It has been reported that
R457H yields only 1-3% supporting activities for 17e-hydrox-
ylase and aromatase, and virtually no activity for 17,20 lyase,
whereas A287P provides supporting activities of about 40% for
17a-hydroxylase, about 20% for 17,20 lyase, about 70% for
21-hydroxylase, and about 100% for aromatase (1, 5, 11, 33).
Thus, the relative activities of frontdoor and backdoor pathways
would be different largely between R457H-positive and A287P-
positive patients, and placental T production would remain mi-
nor, if any, in A287P-positive patients. Collectively, the Japanese
data would not apply simply to other populations.

In conclusion, the present study in Japanese patients argues
against the heterozygote manifestation and suggests that the re-
sidual POR activity reflected by the R457H dosage constitutes
the underlying factor for the clinical variability in some features
but not other features, probably because of the simplicity and the
complexity of the POR-dependent metabolic pathways relevant
to each phenotype. Further studies including genotype-pheno-
type analyses in various ethnic groups will permit a better clas-
ification of the molecular and clinical characteristics of PORD.

compound-heterozygotes with
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Recent focus on the cytochrome P450 oxidoreductase
(POR) gene has resulted in the discovery of numerous
new polymorphic alleles. Many of these were found [1-6]
because of their association with steroidogenic disorders
and congenital skeletal malformations resembling the
phenotype of Antley-Bixler syndrome [7], whereas other
alleles have been found as a consequence of sequenc-
ing the POR gene in normal unrelated individuals [8,9].
The association of POR variants with clinical phenotypes
is the result of POR serving as the major electron donor
for cytochrome P450 (CYP) enzymes with important
endogenous functions in hormone biosynthesis. Conse-
quently, defective POR alleles can be the cause of abnormal
glucocorticotd, mineralocorticoid, and sex steroid synthesis
[10], thus leading to a form of congenital adrenal hyper-
plasia. In addition, POR deficiency can cause skeletal
defects, the mechanism of which is yet unknown but
has been suggested to result from impaired sterol
synthesis [11] because of decreased electron flow from
POR to lanosterol 14-alpha-demethylase (CYP51A1) and
squalene monooxygenase (SQLE). In addition, as POR is

1744-6872 © 2009 Wolters Kluwer Health | Lippincott Williams & Wilkins
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equally important as an electron donor to CYP enzymes
involved in the metabolism of drugs, POR variants may
affect drug bioavailability. The effect of POR mutations
on the activity of some drug-metabolizing CYP enzymes
has been documented # vitro [12-14], but not yet i vivo.
In addition, POR is an electron donor for heme
oxygenase, cytochrome bs, and several additional small
molecules that can be directly metabolized by POR
without CYP enzymes. Thus, an increasing focus on the
importance of POR in drug response and adverse drug
reactions is to be expected.

Until now, no systematic guidelines have been proposed
for the naming of POR alleles. To standardize POR allelic
nomenclature, the Human CYP Allele Nomenclature
Chair and Committee have taken the initiative to devise
a system for the designation of POR alleles that follows
the guidelines for CYP allelic star (CYP*) nomenclature
(Aetp./fwww.cypalleles.biseleriteriahtm). The POR allele
nomenclature web page (hup:/fwww.cypalleles.ki.selporhem)
was launched in September 2008, listing 35 different
alleles. On this POR web page, the alleles are presented
together with their corresponding nucleotide and
amino acid changes, and the phenotypic consequences
observed by i vitro and in vivo studies. Among the more
important POR variants are POR*2 and *5 (Argd457His
and Ala287Pro, respectively), the former being the
most frequent mutation in Japanese and Chinese
POR-deficient patients [5,15], whereas the latter is the
POR mutation most frequently found in Caucasians.
Alleles with frameshift mutations (POR*9, *10, and
*20-24), deletions, insertions, and several of the alleles
that result in amino acid substitutions are also associated
with i wvivo phenotypes, as is a splice defect in the
POR*3 allele.

To maintain a common nomenclature system within
the field, fellow scientists investigating POR polymorph-
isms are highly recommended to submit novel POR
allelic variants to the Human CYP Allele Nomenclature
Committee (A2tp:/fwww.cypalleles.fi.sefcriteria.itm) by con-
tacting the Webmaster for designation and reservation
of novel POR allele names.

The authors of this Letter, a number of whom have
identified the novel POR alleles, are supportive of this
new nomenclature system, and will use this system in
their future work.

DOI: 10.1097/FPC.0b013e32832af5b7
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Maternal Uniparental Disomy 14 Syndrome Demonstrates Prader-Willi
Syndrome-Like Phenotype
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Objective To delineate the significance of maternal uniparental disomy 14 (upd(14)mat) and related disorders in
patients with a Prader-Willi syndrome (PWS)-like phenotype.

Study design We examined 78 patients with PWS-like phenotype who lacked molecular defects for PWS. The
MEG3 methylation test followed by microsatellite polymorphism analysis of chromosome 14 was performed to
detect upd(14)mat or other related abnormalities affecting the 14g32.2-imprinted region.

Results We identified 4 patients with upd(14)mat and 1 patient with an epimutation in the 14g32.2 imprinted
region. Of the 4 patients with upd(14)mat, 3 had full upd(14)mat and 1 was mosaic.

Conclusions Upd(14)mat and epimutation of 14g32.2 represent clinically discernible phenotypes and should be .
designated “upd(14)mat syndrome.” This syndrome demonstrates a PWS-like phenotype particularly during
infancy. The MEG3 methylation test can detect upd(14)mat syndrome defects and should therefore be performed
for all undiagnosed infants with hypotonia. (J Pediatr 2009;155:900-3).

7 aternal uniparental disomy 14 (upd{14)mat) is characterized by prenatal and postnatal growth retardation, neonatal
# hypotonia, small hands and feet, feeding difficulty, and precocious puberty.! Chromosome 14q32.2 contains several
7 @ imprinted genes, and loss of express1on of paternally expressed genes including DLK1 and RTLI is believed to be
responsxble for upd(14)mat phenotype.” Thus far, 5 patients with epimutations and 4 patients with a microdeletion affecting
the 14q32.2 imprinted region have been reported to have upd(14)mat-like phenotype.”™ Paternal uniparental disomy 14 (up-

d(14)pat) shows a dlStlIlCt and much more severe phenotype characterized by facial abnormality, bell-shaped thorax and
abdominal wall defects.” Initially, upd(14)mat was identified in patients with Robertsonian translocatlons involving chromo-
some 14, but increasing numbers of patients with a normal karyotype have been recognized.! Because maternal uniparental
disomy 15 is responsible for the condition in more than 20% of patients with Prader-Willi syndrome (PWS), of which the over-
all prevalence is more than 1 in 15000 births,® one could suspect that upd(14)mat is underestimated. Phenotype of upd(14)mat
is known to resemble that of PWS, which is characterized by neonatal hypotonia, small hands and feet, mental retardation, and
hyperphagia resulting in obesity beyond infancy. Mitter et al” recently reported that upd(14)mat was detected in 4 of 33 patients
who were suspected to have PWS and raised the question that upd(14)mat could be present in patients with PWS-like pheno-
type. Thus we examined patients who presented with PWS-like phenotype, but in whom PWS had been excluded.

The median age of the 78 patients enrolled in the study was 18.5 months, and the range was 1.4 to 324 months. Sex ratio was 1:1.
All patients demonstrated PWS-like phenotype including hypotonia during infancy. We initially performed the SNURF-
SNRPN DNA methylation test, and normal methylation results excluded the diagnosis of PWS.®

This study was approved by the Institutional Review Board Committees at
Hokkaido University Graduate School of Medicine and National Center for

Child Health and Development. The parents of the patients gave written
informed consent.

DNA methylation status at the promoter region of imprinted MEG3, located
in 14932.2, was examined (Figure 1). Genomic DNA was extracted from leuko-
cytes and treated with sodium bisulfite, and methylated allele- and unmethylated
allele-specific primers were used to polymerase chain reaction amplify each
allele, as described previously.” If aberrant DNA methylation was identified,

PWS Prader-Willi syndrome
Upd(14)mat Maternal uniparental disomy 14
Upd(14)pat Paternal uniparental disomy 14
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we carried out microsatellite polymorphism analysis for 16
loci on chromosome 14 (ABI PRISM Linkage Mapping Set
v2.5; Applied Biosystems, Foster City, California) with
DNA from the patients and their parents (Figure 1). Poly-
merase chain reaction products were analyzed on an
ABI310 automatic capillary genetic analyzer and with Gene-
Mapper software (Applied Biosystems). If aberrant DNA
methylation was identified but the patient demonstrated bi-
parental origin of the chromosome 14s, we further examined
the chromosomes for DNA methylation state, parental
origin, and microdeletion in 14q32.2, as described previously.> *

We identified abnormal hypomethylation at the MEG3 pro-
moter in 5 of 78 patients (Figure 2). Almost complete lack of
methylation was found in 4 patients (case 1 to 4), but 1
patient (case 5) demonstrated faint methylation. Polymor-
phism studies demonstrated that 3 (cases 2 to 4) of the 4
patients with complete lack of MEG3 promoter methylation
had complete upd(14)mat, but 1 patient (case 1) had
inherited both parental alleles (Table I; available at www.
jpeds.com). We further examined the DNA methylation state
and microdeletion or segmental upd at 14q32.3, and con-
cluded that this patient (case 1) had an epimutation. The
detailed data have been reported previously.> The patient
(case 5) with faint MEG3 methylation was demonstrated to
have 2 maternal alleles, as well as 1 paternal allele with lower
signal intensity. This indicated mosaicism of upd(14)mat
(80%) and a normal karyotype (20%) (Figure 3; available
at www.jpeds.com).
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Figure 1. Schematic map of the 14g32.2 imprinted region.
Loci on chromosome 14 represent markers used for micro-
satellite polymorphism analysis. Paternally expressed genes
are shown in blue, matemally expressed genes in red, and
nonimprinted genes are shown in black. Differentially meth-
ylated regions (DMRs) are shown in green. IG-DMR, Inter-
genic DMR. Reported microdeletions are demonstrated as
horizontal bars.

Figure 2. MEG3 methylation test. P, Paternal methylated
signal; M, maternal unmethylated signal; 7-5, cases 1-5,
respectively; 6, paternal uniparental disomy 14; 7, patient with
PWS; 8, normal control. Cases 1-4 show only the maternal
unmethylated signal, and case 5 shows a faint paternal
methylated signal.

The profiles of the patients with upd(14)mat or an epimu-
tation are shown in Table II. We compared clinical features
in these patients (Table III). All patients were referred to us
during infancy because of hypotonia and motor develop-
mental delay. Small hands and feet were also present in all
patients. Prenatal growth retardation was present in all but
1 patient (case 1) who was later shown to have an epimuta-
tion. However, this patient had development of postnatal
growth retardation, which was present in all patients. Prema-
ture onset of puberty was not evaluated in this study because
the patients were too young. Apparent intellectual delay was
only present in the patient who had upd(14)mat mosaicism
(case 5). The clinical features of the patients with epimuta-
tion or with mosaic upd(14)mat were not distinct from those
of the patients with full upd(14)mat.

We detected 5 patients with upd(14)mat or epimutation at
the 14q32.2-imprinted region in 78 subjects who had ini-
tially been suspected to have PWS. Mitter et al’ reported
that upd(14)mat was detected in 4 of 33 patients who
were suspected to have PWS. However, Cox et al'® re-
ported that they did not find any upd(14)mat in 35 pa-
tients suspected to have PWS. Our study suggests that
a significant number of patients with upd(14)mat are sus-
pected to have PWS during infancy. To clarify how up-
d(14)mat and PWS share clinical features, we examined
the clinical manifestations of our patients with upd(14)mat
or an epimutation. All patients showed neonatal hypotonia
and were referred to us during infancy. Feeding difficulty
in the neonatal period and small hands and feet were
also common to these patients and resembled features of
PWS. 1t is noteworthy that all patients were referred during
infancy, suggesting that upd(14)mat and PWS resemble
each other, particularly during this period. Therefore up-
d(14)mat and related disorders, as well as PWS, should
be important differential diagnoses for infants with hypoto-
nia and feeding difficulty. Distinct features for upd(14)mat
included less-specific facial characteristics, constant prena-
tal growth failure, and better intellectual development. Pre-
cocious puberty is not present in PWS; however, this was
not evaluated in this study because the patients were not
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Case 1 Case 2 Case 3 Case 4 Case 5
Molecular class Epimutation Upd(14)mat Upd(14)mat Upd(14)mat Upd(14)mat (mosaic}
Age 2y2m 4y2m 2y7m 1y9m 3ydm
Sex Female Male Female Female Female
Karyotype 46,XX 46,XY 46,XX 46,XX 46,XX
Gestational age 41 w5d Bwid 7w3d Pwdad 3Bw
Birth weight g (SD) 3034 (0) 1855 (—2.6) 1680 (-3.3) 1858 (-2.8) 1434 (-3.9)
Birth length cm (SD) 50 (+0.7) 45.7 (—1.5) 40 (—4.0) 45 (-1.6) 39 (-3.9)
Birth OFC cm (SD) Unknown 32(-1.0) 30.4 (-2.0) 32 (-0.8) 30(-2.2)
Present height cm (SD) 76.1 (-3.1) 89.5 (-2.8) 79 (-2.7) 72.5(-3.4) 778 (—4.5)
Present weight kg (SD) 8.18 (—-2.4) 11.6 (-2.1) 8.4 (-2.38) 6.4 (—3.7) 8.84 (-3.3)
Present OFC cm (SD) 452 (-1.5) 51.0 (+0.5) 48 (0) 44 (-1.8) 46.0 (-1.6) )

old enough to demonstrate this feature. It is possible that
when the patients get older, the clinical features of
upd(14)mat may become more distinct from those of PWS.

We detected an epimutation in the 14q32.2-imprinted
region, as well as upd(14)mat. The clinical features of the
patient with the epimutation were grossly similar to those
of patients with upd(14)mat. Thus far 5 patients with an epi-
mutation in the paternal allele, including our patient, have
been identified.*'' These patients exhibit clinical features
indistinguishable from those with full upd(14)mat. Our
patient with an epimutation demonstrated normal birth
weight, but previously reported patients with an epimutation
have shown intrauterine growth retardation. *!! Therefore
normal birth weight is not a specific feature related to epimu-
tation.

One of the patients with upd(14)mat was mosaic for
upd(14)mat and normal karyotype. It is not easy to under-
stand the pathogenesis of such a mosaic, but similar mosai-
cism of chromosome 15 has been reported.'> Mosaicism for
upd(15)mat and normal cell lines has been found in a patient
with the PWS phenotype.'? Similarly, our patient with
mosaic upd(14)mat demonstrated typical clinical features
of upd(14)mat. This could be explained by the small propor-
tion of normal cell lines (less than 20%), or it could be that
the level of mosaicism is different in each tissue. It is possible
that the proportion of normal cells may be lower in the

brain, which is most responsible for the phenotype of
upd(14)mat.

As is clear in our series of patients, upd(14)mat phenotype
can be caused by an epimutation of 14g32.2. Recently,
Kagami et al® reported a microdeletion in 14q32.2 associated
with a similar phenotype (Figure 1). Buiting et al* also
reported a patient with a 1Mb deletion at 14932.2 (Figure 1).
Therefore upd(14)mat phenotype is associated with not only
upd(14)mat but an epimutation or small deletion. This
genetic complexity is similar to that of PWS. PWS is caused
by paternal deletion of 15q11-q13, maternal uniparental dis-
omy of chromosome 15, and epimutation (imprinting
defect). A new name such as upd(14)mat syndrome would
be appropriate to represent the entire upd(14)mat clinical
features represented by upd(14)mat, epimutation of
14932.2 and microdeletion in 14q32.2. Alternatively, Buiting
et al* suggested the term, “Temple syndrome,” because up-
d(14)mat was first described by Dr. L. K. Temple in 1991,
who subsequently described an epimutation in 2007,

Finally, it should be emphasized that the MEG3 methyla-
tion test could detect not only upd(14)mat but an epimuta-
tion and small deletions involving MEG3.This is because the
MEG3 DMR that is used for the diagnostic DNA methylation
test is involved in the shortest region of overlap of the micro-
deletions (Figure 1). It is therefore a powerful method for
screening patients with upd(14)mat syndrome.

Present study Previous studies
Case 1 Case2 Case3 Cased4 Case5 Upd(14)mat(n=35) Epimutation (n=4)  Microdeletion (n = 4)

Premature delivery - -~ - - - 10/25 0/4 0/3
Prenatal growth failure - + + + + 24/27 4/4 3/3
Postnatal growth faifure + + + + + 26/32 3/4 373
Somatic features + + + + + 23/35 4/4 3/3

Frontal bossing + + + + - 9/9

High arched palate - + + + 7/9

Micrognathia + + - + + 5/5

Small hands + + + + + 24/27 4/4 3/3

Scoliosis - - - - - 5/19
Others

Hypotonia + + + + + 25/28 4/4 n

Obesity - - - - - 14/34 3/4 1/4

Early onset of puberty  NA NA NA NA NA 14/16 3/4 2/3

Mental retardation - - - - + 10/27 2/4 1/4 )

NA, Not applicable.
Previous studies are based on references 2, 3 and 4.
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Upd(14)mat syndrome demonstrates PWS-like phenotype

during infancy, and it should be considered when seeing
a patient with hypotonia. The MEG3 methylation test should
be performed to identify this syndrome.
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TO THE EDITOR:

Campomelic dysplasia (CD; OMIM 114290) is a rare skeletal
disorder characterized by hypoplastic scapulae, 11 pairs of ribs,
pelvic abnormalities, and bowing of the lower limb bones
[Maroteaux et al., 1971]. Affected patients often die shortly after
birth due to respiratory distress, and roughly two-thirds of affected
genetic males have disorders of sex development (DSD) due to
dysgenetic testes [Mansour etal., 1995]. Acampomelic campomelic
dysplasia (ACD) is associated with similar but milder skeletal
features and lacks long bone curvature [MacPherson et al., 1989].

SOX9 on chromosome 17q24 is a member of SRY-related gene
family [Harley et al., 2003 ). It encodes a 509-amino acid protein that
harbors a high mobility group (HMG) domain with a DNA-
binding capacity and a proline/glutamine/serine-rich domain with
a transactivation function [Harley et al., 2003]. Furthermore,
putative cis-control elements have been mapped within the 1 Mb
region upstream of SOX9 [Hill-Harfe et al., 2005].

To date, it has been shown that both CD and ACD can be caused
by heterozygous intragenic SOX9 mutations or chromosomal
aberrations (translocations, inversions, or deletions) affecting
SOX9 or the putative enhancer region [Pfeifer et al., 1999; Thong
et al., 2000; Moog et al., 2001; Harley et al,, 2003; Pop et al.,, 2004;
Leipoldt et al, 2007]. However, the frequency and the type
of mutations and chromosomal aberrations are quite different
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between CD and ACD. CD is predominantly caused by nonsense or
frameshift mutations or by chromosomal aberrations disrupting
SOX9, although missense mutations and chromosomal aberrations
impairing the enhancer region are also occasionally identified. By
contrast, ACD is almost exclusively caused by missense mutations
or by chromosomal aberrations affecting the enhancer region. Thus,
while missense mutations are exclusively identified within the HMG
box in both CD and ACD [Kwok et al., 1995; Cameron and Sinclair,
1997; Meyer et al., 1997; Hageman et al., 1998; Moog et al., 2001;
Thong et al., 2000], these findings imply that severe mutations
usually result in CD whereas mild mutations usually lead to ACD.

However, the underlying causes remain to be determined in
several patients, especially those with ACD, and such patients may
have hidden perturbation in the putative enhancer region. Thus, we
performed mutation analysis of SOX9in eight patients with CD or
ACD and single copy number variant (CNV) analysis [Redon et al.,
2006] of the upstream region in SOX9 mutation negative patients.

Clinical features of the eight patients are summarized in Table I,
and representative roentgenograms are shown in Figure 1. Patients
1-4 showed CD-compatible severe clinical features, whereas
patients 5-8 exhibited relatively mild ACD-compatible clinical
features. In addition, patient 1 ended in a stillbirth, and patients
3 and 4 died of respiratory insufficiency during infancy, although
patient 2 aged 11 months was alive. By contrast, patients 5-8 have
survived a relatively long period. Among genetic males, patient 1
exhibited DSD with nearly complete female external genitalia, while
patients 5 and 6 showed male external genitalia.

We first performed mutation analysis of SOX9. This study was
approved by the Institutional Review Board Committees at Na-
tional Center for Child Health and Development, and performed
after obtaining written informed consent. Genomic DNA samples
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extracted from cord blood cells (patient 1) or peripheral blood cells
(patients 2—8) were amplified by PCR for all the three coding exons
and were subjected to direct sequencing on a CEQ 8000 autose-
quencer (Beckman Coulter, Fullerton, CA) (the primer sequences
are available on request). To confirm frameshift mutations, the
corresponding PCR products were subcloned with TOPO TA
Cloning Kit (Invitrogen, Carlsbad, CA) and normal and mutant
alleles were sequenced separately.

Consequently, we identified a novel heterozygous 5-bp insertion
mutation at exon 3 that is predicted to cause a frameshift at the
257th glycine codon and resultant termination at the 296th codon
(G257fsX296) in patient 1, a novel heterozygous 4-bp deletion
mutation at exon 3 that is predicted to cause a frameshift at the
443rd threonine codon and resultant termination at the 468th
codon (T443£sX468) in patient 2, a novel heterozygous missense
mutation at exon 1 (M113T) in patient 3, a recurrent heterozygous
nonsense mutation at exon 2 (E148X) in patient 4, and a novel
heterozygous missense mutation at exon 2 (P170L) in patient 5
(Fig. 2). The two missense mutations resided within the HMG. The
mutations of patients 1—4 were absent in their parents. In addition,
while mutation analysis was refused by the parents of patient 5, the
P170L missense mutation was absent in 200 control subjects. No
mutations were identified in patients 6-8.

Then, to examine for a small deletion, we carried out the
whole genome CNV analysis in patients 6~8 and their parents,
using custom high density oligonucleotide microarray based
on Affymetrix platform [Redon et al., 2006]. In brief, 25bp oligo-
nucleotide probes are designed on 1,330,354 Nsp I restriction
fragments with average and median spacing of 2,271 and
776 bp. The experimental protocol is the same as the Affymetrix
500K arrays. Ninety microgram of target was hybridized
overnight to the arrays [Fujii et al,, 2007]. The signal intensity ratio
of the sample to reference was calculated by Genome Imbalance
Map Algorithm [Ishikawa et al., 2005], using NA10851 HapMap
DNA samples from Coriell Cell Repositories (Camden, NJ)
as the reference samples. Consequently, no deletion was indicated
in the whole genome including the 5' region of SOX9 in
patients 6—8.

The results are primarily consistent with the previous data. Three
of four patients with CD died during fetal life or infancy, whereas
patients 5-8 with ACD survived into childhood or puberty. 46,XY
with DSD was observed in patient 1 with CD but not in patients 5
and 6 with ACD. Similarly, truncating mutations of SOX9 were
identified in patients 1-3 with CD, together with a missense
mutation in patient 4 with CD, whereas only one missense mutation
was found in patients with ACD.
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We could not detect a microdeletion in patients 6—8 with ACD in
whom no intragenic mutations were identified. Although the
underlying causes remain to be clarified in patients 6—8, there are
several possible explanations for the development of ACD in
patients 6—8. First, a mutation(s) may exist in the unexamined
intronic or the downstream region. Second, a tiny deletion may
remain undetected. Third, there may be a mutation in some gene(s)
other than SOX9. Further studies will identify underlying mech-
anisms involved in the development of ACD in SOX9 mutation
negative patients.
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Abstract

Contex: Although GH values measured by an immunoassay usually reflect GH bioactivities, discrepancy
exists between immunoactivity and bioactivity in a rare condition known as ‘bicinactive GH'.
Objective: To report an immunologically anomalous but considerably bioactive GH.

Methods: We performed mutational and functional analyses of GH1 in a 7-year-old Japanese boy with
short stature (— 3.0 s.0.) in whom serum GH values measured with a Tosoh immunoassay kit were
all undetectable in three provocation tests, whereas urine GH value measured with a Hitachi
immunoassay kit was within the normal range. Serum IGF-1 was at a low-normal range, and
IGF-binding protein-3 was below the normal range.

Results: Mutation analysis showed a missense GH produced by a novel GHI mutation (p.D116E) of
paternal origin and a frameshift mutation (p.Q68{sX106) of maternal origin. Genotype-phenotype
correlations in this family and in vitro functional studies indicated that the p.D116E-GH was
immeasurable with the Tosoh kit but was measurable, though maybe not precise, with a Daiichi kit, and
had a reduced in vivo bioactivity. The p.Q68fsX106 yielded no GH protein,

Conclusions; The results suggest that the p.D116E affects the GH epitope primarily recognized by the
Tosoh kit but not by the Hitachi or the Daiichi kits, thereby producing an immunologically anomalous
but considerably bioactive GH. The presence of such a hormone discordant for immunoactivity and

bioactivity should be kept in mind, to allow for an appropriate assessment of endocrine data.

European Journal of Endocrinology 161 301-306

Introduction

GH measurement by an immunoassay is indispensable
for the diagnosis of GH deficiency. Indeed, GH provoca-
tion tests are almost invariably performed in children
with short stature (1), and measured serum GH values
usually reflect GH bioactivities. However, in a rare
condition known as ‘bioinactive GH', discrepancy exists
between measured GH values and GH bioactivities (2—4).
Thus, this condition is associated with low insulin-like
growth factor-1 (IGF-1) values, short stature, and good
responses to GH therapy, in the presence of apparently
normal to mildly elevated serum GH values.

Here, we report an immunologically anomalous but
considerably bioactive GH identified in a patient with
short stature.

Patient and methods

Case report

This Japanese boy was born to non-consanguineous
parents at 39 weeks of gestation after an uncomplicated

© 2009 European Society of Endocrinology

pregnancy and delivery. At birth, his length was
50.0cm (+0.6 sp.) and his weight was 2.97 kg
(+0.2 s.p).

At 7 years and 1 month of age, he was referred to us
because of proportionate short stature (Fig. 1). Endo-
crine and auxological data are summarized in Tables 1
and 2. Notably, serum GH values measured with a
Tosoh immunoenzymometric assay kit (Tosoh, Tokyo,
Japan) were all undetectable during insulin, clonidine,
and GH-releasing hormone provocation tests, whereas
urine GH value measured with a Hitachi chemi-
luminescence enzyme immunoassay kit (Hitachi
Chemical) was within the normal range. Serum IGF-1
value was at a low-normal range, and IGF-binding
protein-3 (IGFBP-3) was below the normal range.
Other pituitary hormones and thyroid hormones were
pormal. Since these endocrine and auxological data
satisied the criteria for GH therapy in Japan (the
criteria in children aged >5 years: height, below
—2.5 s.0.; peak GH value, below 6.0 ng/ml at least in
two provocation tests; and serum IGF-1 value, below
200 ng/ml) (5), recombinant human GH therapy
(0.175 mg/kg per week) was started at 7 years and

DO!: 10.1530/EJE-08-0178
Online version via www.eje-online.org
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tests at 7 years and 1 month of age were not preserved.

! 1l 1
1017 - /’f,-/*”fw { Notably, the basal GH values of the patient and the
i dripan sister were obviously different between the two kits, and
160 - . A A the GH values in the sister did not show a simple 1.2
; - i L ratio between the two kits. The sister and the father had
140 ERRRERRRE P A ANNN] low but normal heights, and the sister had normal
et A endocrine data. The mother had normal clinical findings.
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L aa NAT AT AN Board Comrnittee at National Center for Child Health
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80 |- % . ALl L 40 consent, leukocyte genomic DNA samples of this
: 7 patient, the sister, and the parents were amplified by
PCR for the coding exons 1-5 and their flanking splice
% 20 sites of GH1, and the PCR products were subjected to

10 15 20
Age (years) )

Figure 1 Growth charts of this patient (black circles) plotted on the
Japanese sex-matched standard growth curves (+2 s.0., +1 s.0,,
the mean, —1 s.0., and —2 s.0). The period of GH therapy is
indicated.

3 months after consultation with the parents, but the
responsiveness to this therapy was not so remarkable
(Fig. 1 and Table 2).

Clinical data of the family members are summarized
in Table 2. Since endocrine data of the sister and the
mother were examined after the investigations of the
patient, basal GH values were measured with the Tosoh
kit and a Daiichi IRMA kit (Radio Isotope, Tokyo, Japan;
endocrine data were not available in the father). In
addition, the Daiichi kit was also applied to measure the
basal GH in stocked serum samples of the patient,
although the serum samples during the provocation

Table 1 Endocrine studies at 7 years of age.

direct sequencing on a CEQ 8000 autoseguencer
(Beckman Coulter, Fullerton, CA, USA). To confirm a
heterozygous mutation, the corresponding PCR
products were subcloned with a TOPO TA cloning kit
(Invitrogen), and wildtype (WT) and mutant (MT)
alleles were sequenced separately. The primers used
are shown in Table 3, and the primer positions are
depicted in Fig. 2A.

Expression analysis

WT-GH1 from a normal subject and MT-GH1 from this
patient were PCR-amplified with primers GH-1F and
GH-5R (Fig. 2A; Table 3) using genomic DNA samples,
and the PCR products were subcloned into pCR2.1
plasmid using the TOPO TA cloning kit. Then, GH1 gene
fragments were cleaved from the plasmid DNA with
EcoR1 and ligated to the EcoR1 site of an expression
vector pRKS5. The expression vectors (8 ug) were
transiently transfected to SDR-P-1D5 cells obtained
from the GH-deficient spontaneous dwarf rat (6),

Patient Reference values
Stimulus (dosage) Baseline Peak Baseline Peak
Serum
GH (ng/mi)® Insulin (0.1 U/kg) <0.1 <0.1 0.1-20.5 >6.0
Clonidine (0.1 mg/m?) <0.1 <0.1 0.1-20.5 >6.0
GHRH (1 ng/kg) <0.1 <0.1 0.1-20.5 >6.0
LH (miU/ml} GnRH (100 pg/m?) <0.2 5.0 0.0-1.4 0.4-6.0
FSH (miU/ml) GnRH (100 pg/m?) 1.5 19.2 0.6-4.0 6.3-15.6
ACTH (pg/ml) Insulin (0.1 U/kg) 26.1 179 7.2-22.1 >50
TSH (u/ml) 1.8 0.44-4.1
Free T4 (ng/dl) 1.2 1.03-2.0
Free T, (po/ml) 3.5 2.40-4.68
Urine
GH (pg/mg.cr)® 17 >7.0

Reference values indicate the normal ranges in age-matched Japanese boys (26, 27). Blood sampling during the provocation tests: 0, 15, 30, 60, 90, and
120 mins. IGF-1, insulin-fike growth factor-1; Tg, thyroxine; Ts, tri-iodothyronine; and GHRH, growth hormone releasing hormone.

2Measured with a Tosoh immunoassay kit.

PMeasured with a Hitachi immuncassay kit.

www.eje-online.org
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Table 2 Summary of clinical data of the family members.

303

Immunologically anomalous GH mutant

Patient Sister Father Mother
Age (years) 7 1128 9 6/12° 6 2/12 39 36
Height (cm) 104.5 120.3 105.2 163.0 155.0
Height SDS*® -30 —24 -1.8 -15 —-06
Bone age (years)® 33/12 58/12 NE NE NE
GH (ng/ml; Tosoh kit)® <0.1 <0.1! 5.23 NE 0.1
GH (ng/mi; Daiichi kit)® 1.5 2.86" 8.35 NE 0.1
(0.1-20.5) (0.1-19.5) (0.1-21.0) - (0.1-3.7)
IGF-1 (ng/ml) 93 140 234 NE 236
(63-339) (87—405) (61-372) - (109-265)
IGFBP-3 (ng/ml) 1.36 2.29 2.36 NE 2.79
(1.76-3.38) (1.99-3.41) (1.66-2.91) - (1.89-3.19)

IGF-1, insulin-like growth factor-1; IGFBP-3, insulin-like growth tactor-binding protein-3; and NE, not examined. The basal hormone values are shown; the
values in parentheses represent age- and sex-maiched Japanese reference data (26, 27). ’

®Before GH therapy.

®On GH therapy.

CAssessed by the age- and sex-matched Japanese reference data (28).
“Evaluated by the TW-2 method standardized for Japanese (29).

®Recombinant GH standard (WHO International Reference Preparation 98/574) has been utilized for the calibration of both kits.
'Since blood sample was obtained at 15 h after the GH injection, these values would primarily, if not totally, represent endogenous GH values.

using Gene Pulser Electroporation System (Bio-Rad
Laboratories). The transfected cells were incubated for
48 hin a plate with a diameter of 10 cm, and GH in the
culture media was measured with the Tosoh and the
Daiichi kits. This analysis was performed for three
independent experiments. Furthermore, western blot-
ting was performed for the culture media using Rabbit
polyclonal GH antibodies (Abs) and anti-Rabbit IgG
conjugated with alkaline phosphatase (Promega).

Bioassay

A cell proliferation bioassay was performed for WT-GH
and MT-GH, using mouse pro-B cell lymphoma cells
that express GH receptor (Ba/F3-hGHR cells) (7). The
detailed protocol has been reported previously (8). In
brief, WT-GH and MT-GH were prepared in solutions at
concentrations of 5, 10, and 20 ng/ml that were
determined with the Daiichi kit. Each GH solution of
25 ul was added to 200 ul of Ba/F3-hGHR cell
suspension (1X10° cells/ml), and the mixture was

Table 3 Primers utilized in this study.

Forward AT (C)
Primer Reverse PS (bp)
< Mutation analysis>
GH-1F ACAGGTGGGGTCAACAGTGG 60
GH-1R CCAGGGACCAGGAGCTTTCT 303
GH-2F CAATCTCAGAAAGCTCCTGG 60
GH-2R AGCTCCTTAGTCTCCTCCTC 374
GH-3/4F AGATGAGCACACGCTGAGTG 62
GH-3/4R AAGGTGAGTTCTCTTGGGTC 584
GH-5F AGGCCTTTCTCTACACCCTG 60
GH-5R AGAAGGACACCTAGTCAGAC 435
< Expression analysis >
GH-1F ACAGGTGGGGTCAACAGTGG 60
GH-5R AGAAGGACACCTAGTCAGAC 1727

AT, annealing temperature; and PS, product size.

incubated for 48 h at 37°C. At the end of the
incubation, a colorimetric end point was obtained by
an eluted stain bioassay (9), and a bioactive response
was determined with a kinetic microplate reader
(Molecular Devices, Menlo Park, CA, USA) using optical
densities at the test wavelength of 550 nm and a
reference wavelength of 650 nm to correct for differ-
ential scattering. The experiments were performed in
quadruplicate. Statistical significance was examined by
Student's t-test.

Protein modeling analysis

The protein conformation was analyzed by Esy-
Pred3D (10).

Results
Mutation analysis

Two novel mutations were identified in the patient, a
2bp deletion at exon 3 (c.280-281delCA) that is
predicted to cause a frameshift at the 68th codon for
glutamine and resultant termination at the 106th
codon (p.Q68fsX106) and a missense mutation at
exon 4 (c.426C>G) that is predicted to result in a
substitution of aspartic acid with glutamic acid at the
116th codon of GH produced by a novel GH1 mutation
(p.D116E; Fig. 2B). The father and the sister were
heterozygous for the p.D116E, and the mother was
heterozygous for the p.Q68{sX106 mutation (Fig. 2C).

Functional studies

Expression analysis showed that the p.D116E-GH in the
three different culture media was immeasurable with
the Tosoh kit but was clearly measurable with the
Daiichi kit, and that the p.Q68fsX106-GH was

www.eje-online.org
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Figure 2 (A) Schematic representation of GH1. The black and white
boxes on genomic DNA (gDNA) denote the coding regions on exons
1-5 and the UTRs respectively. The arrows indicate the position of
the primers utilized in this study. (B) Mutation analysis of GH1 in this
patient. The electrochromatograms delineate the ¢.280-281delCA
(p.Q68fsX106) mutation in exon 3 (left) and the ¢.426C> G
(p.D116E) mutation in exon 4 (right). The mutations have been
indicated by the direct sequencing, and confirmed by the

subsequently performed sequencing of the subcloned normal and

mutant alleles. (C) Pedigree of the family. The height SDS is shown
for each family member; for the patient the s.o. before GH therapy is
indicated. Of the two mutations identified in this patient, p.D116E is
of paternal origin and p.Q68fsX 106 is of maternal origin. The sister
is heterozygous for the p.D116E mutation.

undetectable by both of the kits (Table 4). Western blot
analysis delineated a 22 kDa band for the p.D116E-GH
as well as for the WT-GH (Fig. 3A), and a similar band
intensity was identified when 3 ng of the p.D116E-GH
measured with the Daiichi kit (13 pl of culture media of
experiment 3 in Table 4) and S ng of WT-GH were
utilized. For the p.Q68fsX106-GH, no band was
identified for the same amount of culture media
(13 pl). Bioassay revealed that the bioactivity was
similar between the WT-GH and the p.D116E-GH
(P=0.069, 0.066, and 0.127 at GH concentrations of
5, 10, and 20 ng/ml based on the Daiichi kit res-
pectively; Fig. 3B). Protein-modeling analysis indicated
a normal conformation of the p.D116E-GH (Fig. 3C).

Discussion

This patient had apparently complete GH deficiency and
two novel compound GHI mutations (p.D116E and
p.Q68{sX106). However, his growth pattern including
normal birth length, the relatively mild postnatal
growth failure, and the poor response to GH therapy is
not typical for congenital GH deficiency (11, 12), and the
urine GH and serum IGF-1 and IGFBP-3 values indicate
a hidden GH activity. Consistent with this, the p.D116E-
GH was immeasurable with the Tosoh kit but was
measurable with the Daiichi kit, and had an apparently
normal in vitro biological function. In this regard, the
three kits employed in this study utilize two monoclonal
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Table 4 GH values in the culture media (ng/ml).

p.D116E p.Q68fsX106
Experiment  Tosoh kit  Daiichi kit ~ Tosoh kit Daiichi kit
1 <0.1 90 <0.1 <0.1
2 <0.1 107 <0.1 <0.1
3 <04 232 <0.1 <0.1

Abs for GH, one against an epitope within the 22 kDa
GH-specific residues (32—46 amino acids) and the other
against an epitope specific to each kit. The Hitachi kit
detects an epitope at the N-terminal region, while the
epitope specifically recognized by the Tosoh and Daiichi
kits is unknown. Thus, while the p.Q68fsX106 appears
to be an amorphic mutation that is incapable of
producing GH probably because of nonsense-mediated
mRNA decay (13), it is likely that the p.D116E affects the
GH epitope primarily recognized by the Tosoh kit but not
by the Hitachi or the Daiichi kit, thereby producing a
possible immunologically anomalous but biologically
active GH. This notion would also explain why the basal
serum GH values measured with the Tosoh kit were
obviously lower than those measured with the Daiichi
kit in the patient and the sister with p.D116E.

It remains to be determined, however, whether the
p.D116E-GH has a normal biological function in vivo.
Although the in vitro bioassay indicated an apparently
normal function for the p.D116E-GH, it is known that
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Figure 3 (A) Western blot analysis, showing the presence of 22 kDa
WT-GH and p.D116E-GH. The standard 22 kDa human GH is used
as an internal control (8). Note that a similar band intensity is
delineated for 3 ng of the p.D116E-GH and 5 ng of WT-GH
measured with the Daiichi kit. (B) Bioassay of the WT-GH and the
p.D116E-GH, using Ba/F3-hGH receptor cells. The results are
expressed using the mean and the s.o. (C) Ribbon diagrams of the
GH proteins. The white arrows indicate the 116 residue for WT-GH
and the p.D116E-GH.
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the results obtained with artificially constructed cell
lines do not necessarily reflect the in vivo biological
effects of hGH MTs (8, 14). Indeed, the difference in the
GH value between the two kits in the sister and the
relationship between the GH value and the band
intensity in the western blotting may imply that the
p.D116E-GH was not measured precisely even with
the Daiichi kit, so that a relatively large amount of the
p.D116E-GH was probably utilized in the in vitro
bioassay, compensating for a possible hypofunction of
the pD116E-GH. Furthermore, since the previously
described p.D116A-GH harboring a missense mutation
within the GH receptor-binding site 2 has a 5.7-fold
lower affinity to the GH receptor than the WI-GH (15),
this would argue for a functional importance of the
D116 residue and implicate a similar functional
alteration of the p.D116E-GH. In addition, although
GH1 missense mutations reported to date are relatively
rare (16), GH missense MTs, including those within or
near the GH receptor binding site 2, frequently have a
reduced or altered biological activity (2, 4, 17-21).

In this regard, comparison of clinical data between
the patient with functional hemizygosity for the
p.D116E and the mother with functional hemizygosity
for the WT GH1 would suggest that the p.D116E-GH
has a reduced, though not abolished, in vivo bioactivity
(Table 2). In support of this, most individuals with
heterozygous GH1 deletions have normal stature (22) as
observed in the mother, while this patient had short
stature. It may also be possible that the p.D116E-GH is
less secreted from the pituitary into the circulation
when compared with an intact GH protein, although
the clinical findings of the father and the sister
heterozygous for the p.D116E would argue against the
possibility that the p.D116E-GH exerts an obvious
dominant negative effect (Table 2). However, since
short stature is a highly heterogeneous phenotype
subject to multiple genetic and environmental factors
(23, 24), some factors other than the GHI mutations
may be involved in the development of short stature in
this patient. In addition, there may be an ascertainment
bias, because GH-related studies are almost exclusively
performed in individuals with short stature. Further
studies will permit to clarify the in vivo biclogical
function of the p.D116E-GH and its relevance to the
development of short stature.

Such an immunologically anomalous and biologi-
cally active hormone has been reported previously. It is
known that the common LH variant (V-LH) with two
completely linked Trp8Arg and Ile15Thr substitutions
in the LHB-subunit is immunologically undetectable
when a MAB recognizing an epitope present in the
intact LH o/B dimer is utilized, but is measurable when
two monoclonal Abs recognizing specific sites in the
LHB subunit are utilized (25). Notably, the V-LH appears
to have somewhat weaker bioactivity than the WT-LH,
and is often associated with the primary ovarian
dysfunction in the Japanese population (25).
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Nevertheless, elevated LH values characteristic of
primary ovarian dysfunction cannot be identified with-
out applying the method using two monoclonal Abs,
although FSH values are definitely increased. Thus,
when a discrepancy is present between values of a
specific hormone and other biochemical data or clinical
findings, it is recommended to measure the specific
hormone with a different kit, to avoid the misdiagnosis
of hormone deficiency.

In summary, we identified an immunologically
anomalous but considerably bioactive GH produced
by p.D116E mutation. Indeed, such abnormalities
along the GH/IGF-1 axis may also be identified by
performing GH-related endocrine studies in children
with short stature. The presence of such an apparently
immeasurable but bioactive hormone, as well as a
measurable but bioinactive hormone, should be kept
in mind, to allow for an appropriate assessment of
endocrine data.
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