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The photopic negative response (PhNR) is a slow, negative-going wave of the photopic electroretinogram
(ERG) that appears after the b-wave, Recent studies have shown that the PhNR originates from the
spiking activities of inner retinal neurons including the ganglion cells and their axons. The aim of this
study was to determine whether there is any asymmetry in the amplitude of the PhNR elicited from the
upper and lower macular areas, and between the nasal and temporal macular areas in rhesus monkeys.
To accomplish this, we recorded focal macular PhNRs that were elicited by red hemi-circular stimuli
presented on a blue background. We show that the PhNR from the upper macular area was significantly
asymimetry larger than that of the lower macular area, and the PhNR of the nasal macula was significantly larger than
macula that of the temporal macula. These asymimetries were present in the focal PRNR elicited by both brief and
focal long duration stimuli, and the asymmetries were completely eliminated by an intravitreal injection of

Keywords:
electroretinogram
photopic negative response (PFhNR)

monkey tetrodotoxin (TTX). These results suggest that the upper~lower and nasal-temporal asynumetries of PANR
in the primate retina are mainly caused by TTX-sensitive spiking activities of inner retinal neurons.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction addition, a red stimulus spot was used on a blue background illu-

The photopic negative response (PhNR) is a slow, negative-going
wave of the photopic electroretinogram (ERG) that appears after
the b-wave. Studies by Frishman and colleagues have demonstrated
that the PhNR originates from the spiking activity of inner retinal
neurons including the retinal ganglion cells and their axons (Ran-
gaswamy et al., 2007; Viswanathan et al., 1999, 2000).The PhNR has
been used in clinical studies to evaluate the inner retinal function
objectively in several diseases, including glaucoma (Colotto et al,
2000; Drasdo et al., 2001; Machida et al., 2008; Viswanathan et al,,
2001), optic nerve diseases (Gotoh et al., 2004; Miyata et al., 2007;
Rangaswamy et al., 2004), and retinal vascular diseases (Chen et al,,
2006: Kizawa et al., 2006; Machida et al., 2004). In these studies,
the PhNRs were elicited mainly by full-field stimuli, and there have
been only a few studies where the PhNR were elicited from locai-
ized retinal areas (Clotto et al., 2000; Fortune et al., 2003; Viswa-
nathan et al., 2000). In addition, there have been only two studies of
the focal PhNR with simultaneous fundus monitoring (Kondo et al.,
2008; Machida et al., 2008).

We have recently developed a new recording system of focal
PhNR (Kondo et al., 2008), which was modified from Miyake et al.,
1988, In this system, the examiner can monitor the position of the
stimulus spot on the fundus precisely during the recordings. In

* Corresponding author, Tel.: +81 52 744 2271; fax: +81 52 744 2278,
E-mail address: kondomi@ned.nagoya-u.ac.jp (M. Kondo).

0014-4835/$ - see front matter © 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.exer.2008.10.012

mination, because a recent study showed that this color combina-
tion was most effective in eliciting large PhNRs especially for weak
to moderate stimulus intensities (Rangaswamy et al., 2007). With
this system, we found that the amplitude of the PhNR of the focal
ERG was relatively large in the macular area (Kondo et al, 2008).
However, we did not examine whether there were any regional
variations or asymumetry in the amplitude of the PhNR in the
macular area of monkeys. We believe that when the focal macular
PhNRs are recorded from normal and diseased retinas, it is
important to know whether there are any regional variations or
asymmetries in the focal macular PiNR.

Thus, the purpose of this study was to determine whether the
focal PhNRs recorded from the upper and lower macular areas, and
nasal and temporal macular areas using a hemi-circular stimulus
were symmetrical. We show that there were distinct asymmetries
of the PhNR amplitude in both the vertical and horizontal direc-
tions in monkeys, We examined how these asymmetries of the
focal PhNR change after the spiking activities of the inner retinal
neurons are blocked by an intravitreal injection of tetrodotoxin
(TTX) in monkeys.

2. Methods
2.1. Animals

Five eyes of five rhesus monkeys (Macaca mulata) were studied.
The animals were sedated with an intramuscular injection of
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ketamine hydrochloride (7 mg/kg initial dose; 5-10 mg/kg per h
maintenance dose) and xylazine (0.6 mg/kg). The respiration and
heart rate were monitored, and hydration was maintained with
slow infusion of lactated Ringer solution. The cornea was anes-
thetized with topical 1% tetracaine, and the pupils dilated with
topical 0.5% tropicamide, 0.5% phenylephrine HCl, and 1% atropine.
All experimental and animal care procedures adhered to the ARVO
Statement for the Use of Animals in Ophthalmic and Vision
Research, and were approved by the Institutional Animal Care
Committee of the Nagoya University.

2.2. Stimulus and observation system

Our system for recording focal PhNRs has been described in detail
(Kondo et al., 2008), Briefly, an infrared fundus camera was modified
to observe the fundus and stimulate the retina. Light emitting diodes
(LEDs)were incorporated into the camera to be used for the stimulus
and background illuminations. The infrared television fundus
camera (Kowa VX-10, Tokyo, Japan) was modified to obtain a Max-
wellian stimulating system. The irnage fromn this fundus camera was
fed to a television monitor with a 45° view of the posterior pole of
the eye. The position of the stimulus spot on the fundus could be
moved by the examiner with a joystick, and the position was
monitored on the television monitor (Fig. 1, upper trace).

A red LED (Anax = 627 nm; LXK2-PD12-S00, Philips Lumileds,
San Jose, CA, USA) was used as the stimulus source, and a blue LED
(Amax = 450 nm; 1450, Epitex, Kyoto, Japan) was used for the
background illumination that covered a retinal area of 45°. A hemi-
circular red stimulus (15° in diameter) was used (Fig. 1, lower trace).

Upper

The luminance of blue background was fixed at 100 scot cd/m?,
which is known to be high enough to suppress the rod photore-
ceptors, The luminance of the red stimulus spot was 55 phot cd/m?,
and the stimulus durations were 10 and 150 ms. We have already
shown that the responses recorded with this system were focal
when the luminance of the red stimulus spot was <55 phot cd/m?
and presented on a steady blue background of 100 scot cd/m?
{Kondo et al., 2008). The strength of the brief flashes of 10 ms was
0.55 phot cd-s/m? in energy units. The stimulus repetition rate was
fixed at 2 Hz.

The luminances of the stimulus and background were measured
at the position of corneal sutrface, and then converted to the value at
the retinal surface. These luminances were measured with
a photometer (Model IL 1700; International Light, Newburyport,
MA, USA).

2.3. Recording and analyses

ERGs were picked-up with a Burian-Allen bipolar contact lens
electrode {Hansen Ophthalmic Development Labs, lowa City, USA),
and the ground electrode was attached to the ipsilateral ear. The
responses were amplified, and the band pass filters were set at 0.5
and 1000 Hz. The ERGs were digitized at 5 kHz, and 100- 300
responses were averaged for each response (MEB-9100, Neuropack,
Nihon Kohden, Tokyo, Japan).

The amplitude of the PhNR was measured from the baseline to
the bottom of the negative trough after the b-wave for the brief
flashes of 10 ms, or was measured from the positive peak of the b-
wave to the negative trough after the b-wave for the long duration

Nasal

Fig. 1. Stimulus configuration for stimulating localized areas of the macula, Upper trace: Infrared fundus image of the monkey retina. The 15° hemi-circular stimulus is positioned
on the upper {left) and nasal macula (right) of a rhesus monkey. Lower trace: image of the red stimulus spot on the blue background. This image was photographed by a digital

camera at the position of monkey’s eye,
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flashes of 150 ms as done in previous studies (Rangaswamy et al,,
2007; Viswanathan et al,, 1999). The amplitudes of the a- and b-
waves were measured from the baseline to the first negative trough
and from the negative trough to the next positive peak, respectively.

2.4. Injection of tetrodotoxin (TTX)

The intravitreal injection technigues have been described in
detail (Hood et al., 1999; Kondo et al., 2008; Ueno et al., 2004, 2006;
Viswanathan et al,, 1999). The TTX was injected into the vitreous
with a 30-gauge needle inserted through the pars plana approxi-
mately 3 mm posterior to the limbus. The TTX (Kanto Chemical,
Tokyo Japan) was dissolved in sterile saline, and 0.05- 0.07 ml was
injected. The intravitreal concentrations of TTX was 4 4M assuming
that the monkey’s vitreous volume is 2.1 mi.

Because the effect of TTX is maximal at about 60 min after the
drug injection, recordings were begun about 60 min after the
injections, and studies were completed within 3 h. The results that
are shown were recorded from eyes not previously treated.

2.5, Statistical analyses

The data were analyzed with the Stat View ver.5 computer
software. The amplitude of each ERG component (a-wave, b-wave,
and PhNR) from the upper and lower macular areas, or from the
nasal and temporal macular areas were compared using paired
t -tests. A difference was considered statistically significant when
P < 0.05.

3. Results
3.1. Asymmetry between upper and lower macular areas

Representative focal macular ERGs recorded from upper and
lower macula areas in a rhesus monkey {monkey #4) are shown in
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Fig. 2A. The focal ERGs for brief-flashes (10 ms) and long-flashes
(150 ms) are presented in the upper and lower traces, respectively.
At first glance, the focal ERGs from the upper and lower macula
areas appear nearly the same. But when the two waveforms were
superimposed, the amplitude of the PhNR was slightly larger in the
upper macular than in the lower macular areas for both brief and
long duration stimuli (right most column of Fig. 2A).

The amplitudes of the PhNRs recorded from upper and lower
macular areas for five different animals are plotted in Fig. 2B. The
amplitudes from the upper macular area were larger than that
recorded from the lower macular area in all five animals, although
there was a large variation in the PhNR amplitude among the five
animals, The mean (+SEM) PhNR amplitude of the upper macular
area was 3.3+ 0.4 uV which was 27% larger than that of lower
macula at 2.6 + 0.4 uV for brief-flashes (P < 0.05). Similarly, the
mean (=SEM) PhNR amplitude of the upper retinawas 5.4 4 0.7 uV
which was 20% larger than that of lower retina at 4.5 = 0.5 pV for
long duration stimuli (P < 0,01).

The mean (+£SEM) of the amplitudes for the a-wave, b-wave, and
PhNR are plotted in Fig. 2C. We noted that not only the PhNR
amplitude, but also the a-wave amplitude was significantly larger
in the upper macula than in the lower macula for brief-flashes
(P < 0.05).

3.2. Asymmetry of PhNR recorded from nasal and
temporal macular areas

Representative focal macular ERGs recorded from nasal and
temporal retinas in the same monkey shown in Fig. 2A (monkey #4)
are shown in Fig. 3A. We found that the amplitude of the PhNR
recorded from the nasal macular area was slightly larger than the
PhNR of temporal macular area for both brief and long duration
stimuli in al! five animals (Fig. 3B). For short duration stimuli, the
mean (£SEM) PhNR amplitude of the nasal macular area was
3.3 + 0.4 pV, which was 27% larger than that of temporal macular
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2 ] < 3+ 5
§ J [] ] 2z PhNR . : PhNR
'-g ] ] \ g 2 . ]
. | | H bwave =
% 1 7 ‘\‘ E 17 2] }“\i
£ . ; P<0.05 ] bwave
2 3- \‘ 1 S awave ! ] B—> awave
Upper  Lower Upper Lower 0 Upper Lower 0 Upper  Lower

Fig. 2. Focal macular ERGs. (A) Representative focal macular ERGs recorded from the upper and lower macular areas in a rhesus monkey. ERGs for short duration (10 ms) and long

duration (150 ms) stimuli are presented in the upper and lower traces, respectively. (B) Plot of the PhNR amplitude from five different monkeys. (C) Mean (SEM) of the amplitudes
for the a-wave, b-wave, and PhNR recorded from upper and lower macular areas for five monkeys, Note that the PhNR of upper macula is significantly larger than that of the lower
macula.
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Fig. 3. Focal macular ERGs recorded from the nasal and temporal macular areas. (A) Representative focal macular ERGs recorded from nasal and temporal macular areas in a rhesus
monkey, ERGs for short duration (10 ms) and long duration (150 ms) stimuli are presented in the upper and lower traces, respectively. (B) Plot of the PhNR amplitudes from five
different monkeys. (C) Mean (+SEM) of the amplitudes for the a-wave, b-wave, and PhNR recorded from nasal and temporal maculae for five monkeys. Note that the PhiNR of nasal

macula is significantly larger than that of temporal macula,

area at 2.6 + 0.2 uV. For long duration stimuli, the mean (+SEM)
PhiNR amplitude of the nasal macular area was 5.5 + 0.6 yV which
was 25% larger than that of temporal macular area at 4.4 + 04 pV.
All of these differences were statistically significant (P < 0.05).
The mean (+SEM) of the amplitudes for a-wave, b-wave, and
PhNR are plotted in Fig. 3C. Not only the PhNR, but the b-wave was
also significantly larger in the nasal macula than in the temporal
macula for both short and long duration stimuli (P < 0.05).

3.3. Effect of TIX on upper-lower asymmetry

We next wanted to determine how TTX-sensitive neural activ-
ities contributed to the asymmetry of PhNR in monkeys. For this,
we recorded the focal macular ERGs from different retinal locations
before and after an intravitreal injection of TTX in two monkeys.
Focal macular ERGs recorded from the upper and lower macular
area before and after an intravitreous injection of TTX from
a monkey (#4) are shown in Fig. 4A. As shown in Fig. 2, the PhNR
amplitude was slightly larger in the upper macula than in the lower
macula before the TTX injection (black waveforms). After the
injection of TTX, the amplitudes of PhNR were greatly reduced for
both short and long duration stimuli (blue and red waveforms).

The component removed by the TTX was isolated by subtracting
the post-TTX response from the pre-TTX response (green and
orange waveform). We found that the amplitude of TTX-sensitive
negative component was 55 and 33% larger in the upper macula
than in the lower macula for both short and long duration stimuli,
respectively (third column from the left). In another monkey
(monkey #5), the amplitude of this TTX-sensitive negative
component was 35 and 23% larger in the upper macular area than
in the lower macular area for both brief and long-flashes, respec-
tively (Fig. 4B).

Interestingly, waveforms of the remaining ERGs after TTX from
upper and lower areas became identical (second column from the

Yeft of Fig. 4A). This was also true for another animal (monkey #5,
blue and red waveforms of Fig. 4B).

34. Effect of TIX on nasal-temporal asymmetry

We also studied the effect of TTX on the nasal-temporal asym-
metry of the PhNR in two monkeys. Focal macular ERGs recorded
from the nasal and temporal macular areas before and after intra-
vitreal TTX injection (monkey #4) are shown in Fig. 5A. As in Fig. 4,
the amplitudes of PhNR were greatly reduced after the TTX injec-
tion for both short and long duration stimuli.

The component removed by TTX was isolated by subtracting the
post-TTX response from the pre-TTX response. We found that the
amplitude of the TTX-sensitive negative component was 42 and
31% larger in the nasal macula than in the temporal macula for both
short and long duration stimuli, respectively (third column from
the left). In another monkey (monkey #5), the amplitude of TTX-
sensitive negative component was 23 and 22% larger in the nasal
macula than in the temporal macula for both sort and long duration
stimuli, respectively (Fig. 5B).

Again, waveforms of the remaining ERGs after TTX from nasal
and temporal areas became identical (second column from the left
of Fig. 5A), and overlapped for two monkeys (second column from
the left of Fig. 5A, and blue and red waveforms of Fig. 5B).

4. Discussion

Our results demonstrated that there were significant asymme-
tries in the amplitude of PhNR in the macular area of monkeys. The
PhNR of upper macula was larger than that of lower macula, and
the PhNR of nasal macula was larger than that of temporal macula.
These asymmetries of the PhNR were present for both short and
long duration stimuli. The degree of the differences in the PhNR
amplitude was dependent on the stimulus duration and locations,
and ranged from 20 to 27% for the stimuli used in this study. To the
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Fig. 4. Effect of tetrodotoxin (TTX) on the PhNR. (A) Representative focal ERGs recorded from the upper and lower macular areas before and after an intravitreal injection of TTX in
a monkey (#4), ERGs elicited by short duration stimuli are shown in the upper trace, and ERGs elicited by long duration stimuli are shown in the lower traces. Subtracted TTX-
sensitive components are also shown in the third and fourth rows from the left. (B) Results from another monkey (#5). Waveforms after TTX and subtracted TTX-sensitive
components from upper and lower maculae are superimposed.
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Fig. 5. Effect of tetrodotoxin (TTX) on the PhNR. (A) Representative focal ERGs recorded from the nasal and temporal macular areas before and after intravitreal injection of TTX in
monkey #4. The ERGs to short duration stimuli are shown in the upper traces, and ERGs to long duration stimuli are shown in the lower traces. The subtracted TTX-sensitive
components are shown in the third and fourth rows from the left. (B) Results from another monkey (#5). Waveforms after TTX and subtracted TTX-sensitive components from nasal
and temporal maculae are superimposed.
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best of our knowledge, this is the first demonstration that there is
upper-lower and nasal-temporal asymmetries of the PhNR
amplitudes in primates,

The asymmetries in the amplitudes were observed not only in
the PhNR but also in the a- and b-waves of the focal macular ERGs
(Figs. 2 and 3). One question then arises as to whether the larger
PhNRs in the superior and nasal macular areas may be due to the
larger signal inputs transmitted to the inner retina. To exclude this
possibility, we blocked the spiking activities of inner retinal neurons
by intravitreal injection of TTX. The results showed that after TTX,
there was no apparent asymmetry in the waveforms of focal
macular ERGs between the superior and inferior macular areas, and
between nasal and temporal macular areas (Figs. 4 and 5). In
contrast, subtracted TTX-sensitive components showed distinct
upper-lower and nasal-temporal asymmetries. These findings
were consistent for the two different monkeys tested. These
results suggested that the larger PhNRs at the upper and nasal
macular areas were not due to the larger signal inputs trans-
mitted to the inner retinal neurons, but were mainly caused by
TTX-sensitive spiking activity of inner retinal neurons,

Our results of asymmetry in the PhNR amplitude are in agree-
ment with previous histological studies in humans (Curcio and
Allen, 1990) and monkeys (Perry and Cowey, 1985; Silveira et al,,
1989, 1993). They reported that the ganglion cell density of the
upper retina is higher than that of lower retina, and ganglion cell
density of nasal retina was higher than that of the temporal retina,
including macular area. Curcio and Allen (1990) reported that the
ganglion cell density is about 15% higher in the nasal retina than at
equivalent eccentricities in temporal retina from 0.4 to 2.0 mm
eccentricity in human retinas. They also found that the ganglion cell
density is approximately equal between upper and lower retinas at
the eccentricities of 0.4 -2 mm, but the upper retina has 65% higher
ganglion cell density than inferior retina at eccentricities of 2
-4 mm. When we consider the size of a stimulus spot of 15°, which
corresponds fo a retinal area of 2.8~ 3.0 mm from the fovea, it is
reasonable to interpret that the asymmetry of PhiNR amplitude
found in this study was mainly caused by the asymmetry of
ganglion cell density.

Our results are also in agreement with other electrophysiological
studies. The amplitude of pattern ERG, which is also thought to
reflect the activity of ganglion cells and axons (Baker et al,, 1988;
Maffei and Fiorentini, 1981; Maffei et al., 1985), was larger in the
upper retina than in the lower retina (Graham et al., 1994; Yoshii
and Piirmann, 1989). In addition, the amplitude of the pattern ERG
was greater in the nasal retina than in the temporal retina (Bopp,
1982; Porrello and Falsini, 1999; Yoshii and Pddrmann, 1989). These
findings combined with a recent study comparing the PhNR and
pattern ERG in monkeys (Viswanathan et al., 2000) supported the
idea that the PhNR and pattern ERG may be of similar celiular origin.

It is known that another inner retinal ERG component, the
oscillatory potentials (OPs), shows a distinct nasal-temporal
asymmetry in the retina of humans (Bearse et al., 2000; Miyake
et al., 1989; Wu and Sutter, 1995) and monkeys (Rangaswamy et al.,
2003, 2006). In contrast to PhNR, the OPs are larger in the temporal
retina than in the nasal retina. Recent studies found that this nasal-
temporal asymmetry of OPs was greatly reduced in monkeys after
an intravitreal injection of TTX (Rangaswamy et al., 2003), monkeys
with experimental glaucoma (Rangaswamy et al, 2006), and
patients with glaucoma (Fortune et al., 2002). This nasal-temporal
asymmetry in OPs is thought to be related to summation or
subtraction of an optic nerve head component (ONHC) with local
retinal component, depending upon the distance of the local region
stimulated from the optic nerve head (Bearse et al, 2000; Zhou
et al,, 2007).

Hood et al. (1999) also studied the variation in the waveforms of
fast multifocal ERG in rhesus monkeys. They found that intravitreal

injection of TTX eliminated the variation and asymmetry in the
waveforms of fast multifocal ERG across the retina. From these
results, they suggested that the waveform variation and asymmetry
in the fast muitifocal ERG are mainly caused by TTX-sensitive inner
retinal neurons.

What is the clinical relevance of this study? The focal PhNR has
been used to assess inner retinal function of local areas in clinical
situations (Drasdo et al., 2001; Machida et al., 2008). In the clinic,
the focal PhiNR may be separately recorded from upper and lower
retinas, or from nasal and temporal retinas in patients with optic
nerve diseases or glaucoma. In such occasions, it is important to
remember that there are asymmetries in the PhNR amplitude in
normal subjects. Furthermore, investigations are needed to study
how local PhNRs are affected and how the asymmetry of PhNR
changes in clinical diseases.
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