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Cytochrome P450 Oxidoreductase Deficiency:
identification and Characterization of Biallelic
Mutations and Genotype-Phenotype Correlations in
35 Japanese Patients

Maki Fukami, Gen Nishimura, Keiko Homma, Toshiro Nagai, Keiichi Hanaki,

Ayumi Uematsu, Tomohiro Ishii, Chikahiko Numakura, Hirotake Sawada, Mariko Nakacho,
Takanori Kowase, Katsuaki Motomura, Hidenori Haruna, Mihoko Nakamura, Akira Ohishi,
Masanori Adachi, Toshihiro Tajima, Yukihiro Hasegawa, Tomonobu Hasegawa,

Reiko Horikawa, Kenji Fujieda, and Tsutomu Ogata*

Context: Cytochrome P450 oxidoreductase (POR) deficiency is a rare autosomal recessive disorder
characterized by skeletal dysplasia, adrenal dysfunction, disorders of sex development (DSD), and
maternal virilization during pregnancy. Although multiple studies have been performed for this
condition, several matters remain to be clarified, including the presence of manifesting heterozy-
gosity and the underlying factors for clinical variability.

Objective: The objective of the study was to examine such unresolved matters by detailed molec-
ular studies and genotype-phenotype correlations.

Patients: Thirty-five Japanese patients with POR deficiency participated in the study.

Results: Mutation analysis revealed homozygosity for R457H in cases 1-14 (group A), compound
heterozygosity for R457H and one apparently null mutation in cases 15-28 (group B), and other
combinations of mutations in cases 29-35 (group Q). In particular, FISH and RT-PCR sequencing
analyses revealed an intragenic microdeletion in one apparent R457H homozygote, transcription
failure of apparently normal alleles in three R457H heterozygotes, and nonsense mediated mRNA
decay in two frameshift mutation-positive cases examined. Genotype-phenotype correlations in-
dicated that skeletal features were definitely more severe, and adrenal dysfunction, 46,XY DSD,
and pubertal failure were somewhat more severe in group B than group A, whereas 46,XX DSD and
maternal virilization during pregnancy were similar between two groups. Notable findings also
included the contrast between infrequent occurrence of 46,XY DSD and invariable occurrence of
46,XX DSD and pubertal growth pattern in group A mimicking that of aromatase deficiency.

Conclusions: The results argue against the heterozygote manifestation and suggest that the re-
sidual POR activity reflected by the R457H dosage constitutes the underlying factor for clinical
variability in some features but not other features, probably due to the simplicity and complexity
of POR-dependent metabolic pathways relevant to each phenotype. (J Clin Endocrinol Metab 94:
1723-1731, 2009)

ytochrome P450 oxidoreductase (POR} deficiency (PORD)
C is a rare autosomal recessive disorder caused by muta-
tions in the gene encoding an electron donor for all microso-
mal P450 enzymes and several non-P450 enzymes (1-4). Sa-
lient clinical features of PORD include skeletal dysplasia
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referred to as Antley-Bixler syndrome (ABS), adrenal dysfunc-
tion, 46,XY and 46,XX disorders of sex development (DSD),
and maternal virilization during pregnancy (3, 4). Such fea-
tures are primarily ascribed to impaired activities of POR-
dependent CYPS1A1 (lanosterol 14a-demethylase) and SQLE

Abbreviations: ABS, Antley-Bixler syndrome; CHX, cycloheximide; DSD, disorders of sex
development; E,, estradiol; FISH, fluorescent in situ hybridization; hCG, human cho-
rionic gonadotropin; M, metabolite; NMD, nonsense-mediated mRNA decay; PCO,
polycystic ovary; POR, cytochrome P450 oxidoreductase; PORD, POR deficiency; 17-
OHP, 17a-hydroxyprogesterone; T, testosterone.
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(squalene monooxigenase) involved in cholesterologenesis
and CYP17A1 (17a-hydroxylase and 17,20 lyase), CYP21A2
(21-hydroxylase}, and CYP19A1 (aromatase) involved in ste-
roidogenesis (3, 4).

PORD has been identified in multiple patients (4). Mutations
are diverse, including missense, nonsense, frameshift, and splice
site mutations (4). Notably, however, A287P is the most com-
mon mutation in Caucasian patients, and R457H is the most
prevalent founder muration in Japanese patients (1-8). In addi-
tion, there is no patient with two apparently null murtations,
suggesting that absence of a residual POR activity is incompat-
ible with life (4-6). Clinical features are also variable, with a
wide range of expressivity and penetrance. Indeed, ABS-com-
patible skeletal features and DSD are severely manifested by
some patients and apparently absent in other patients (4-6). In
addition, adrenal crisis remains relatively rare (4, 6), and ma-
ternal virilization is not a consistent feature (5, 6, 9).

To date, however, several critical matters remain to be clar-
ified. First, although about 12% of patients have one apparently
normal POR allele (4), it is uncertain whether such patients rep-
resent manifesting heterozygotes or have hidden aberrations in
nonexamined region(s) (4, 10). Second, the underlying factors
for the clinical diversity remain to be determined, although vari-
able supporting activities of different POR mutants for target
enzymes would have a certain role (5, 11, 12). Third, pubertal
development and longitudinal growth have poorly been
investigated.

To examine these matters, we analyzed the POR gene in af-
fected patients and performed genotype-phenotype correlations
in terms of the dosage effect of the R457H mutant.

Patients and Methods

Patients

This study consisted of 335 Japanese patients aged 0.1-23.8 yr (16
patients with 46,XY and 19 patients with 46,XX), including previously
reported 23 cases (6, 8, 9) (Table 1). Of the 35 patients, 25 were sporadic
cases and the remaining 10 were familial cases from families A-D. Twenty-
three sporadic cases and four probands (cases 10, 15, 30, and 35) were
ascertained by skeletal features and/or DSD, two sporadic cases (cases 1
and §) by newborn mass screening for 21-hydroxylase deficiency, and the
remaining six cases by familial studies.

Molecular analysis

This study was approved by the Institutional Review Board Com-
mittee at National Center for Child Health and Development. The
primers used in this study are shown in supplementary Table 1, pub-
lished as supplemental data on The Endocrine Society’s Journals On-

J Clin Endocrinol Metab, May 2009, 94(5):1723-1731

line Web site at htep://jcem.endojournals.org. After taking written
informed consent, peripheral blood samples were obtained from all
the patients and the parents of 19 sporadic cases and two familial cases
(families A and C). Subsequently, genomic DNA samples were sub-
jected to direct sequencing for the POR exons 1-16, together with
their flanking splice sites. To confirm a heterozygous mutation, the
corresponding PCR products were subcloned with a TOPO TA clon-
ing kit {Invitrogen, Carlsbad, CA), and the two alleles were sequenced
separately.

When lymphoblastoid cell lines were available, fluorescent in situ
hybridization (FISH) analysis was performed with two long PCR prod-
ucts spanning exous 4 -7 {probe 1) and exons 8~12 (probe 2). The two
probes were labeled with digoxigenin and detected by rhodamine anti-
digoxigenin. A spectrum green-labeled probe for D7Z1 (CEP7) (Abbott,
Abbott Park, IL.) was used as an internal control. For a case with a
probable microdeletion, RT-PCR was performed with a variety of prim-
ers, to determine the deletion size, Furthermore, to examine the occur-
rence of transcription failure in cases with apparent heterozygosity and
that of the nonsense-mediated mRNA decay (NMD) in cases with pre-
mature truncation mutations, the lymphoblastoid cell lines available
were incubated for 8 h with and without an NMD inhibitor cyclohexi-
mide (CHX; 100 pg/ml; Sigma, St. Louis, MO), and direct sequencing
was performed for RT-PCR products (13, 14).

In addition to disease-causing mutations, we also examined the pres-
ence or absence of acommon ASO3V variant that has been shown to have
a mildly decreased supporting activity at least for CYP17A1 (~60%)
(15), to investigate whether the AS03V variant can function as a modifier
of the clinical phenotype. To examine whether the ASO3V variant resides
on the same allele carrying R4571H, PCR products encompassing both
the 457th and 503rd codons were subcloned and subjected to direct
sequencing.

Clinical assessment

Skeletal features were assessed by bone survey. Adrenal function
was evaluated by basal and ACTH-stimulated blood hormone values
[250 pg/m? (maximum 250 pg) bolus iv; blood sampling at 0 and 60
min] and by urine steroid profiles determined by the gas chromatog-
raphy/mass spectrometry using first morning urine samples in cases
aged older than 6 months (16) (several urine steroid metabolites can-
not be measured precisely during the first 6 months of age due to
interference of unknown steroids derived from the fetal adrenocor-
tex). DSD was clinically evaluated, as was pubertal development in
boys aged older than 14.3 yr (mean +2 sb age for pubic stage 2} and
in girls aged older than 12.8 yr (mean +2 sb age for breast stage 2)
(17}, When possible, basal blood pituitary-gonadal hormone values
were also obtained as well as human chorionic gonadotropin (hCG)-
stimulated testosterone {T) values (3000 [U/m? per dose im for 3
consecutive days; blood sampling on d 1 and 4). In addition, clinical
records were surveyed for the data of 17-hydroxyprogesterone (17-
OHP) values at the newborn mass screening, adrenal crisis, maternal
virilization during pregnancy, polycystic ovary (PCO) in female cases,
and body measurement.

Penile length, clitoral size, Tanner stage, testis size, age of menarche,
and statural growth were assessed by age- and sex-matched Japanese
reference data (17-20), as were hormone values (21-23). Because urine
steroid metabolites (Ms) expressed in a logarithm scale grossly followed
the normal distribution and showed marked change with age in control

Research Institute (IMF., T.0.) and Hospital (R.H.), National Center for Child Health and Development, Tokyo 157-8535, Japan; Division of Radiology (G.N.) and Endocrinology and
Metabolism Unit (Y.H ), Tokyo Metropolitan Kiyose Children’s Hospital, Kiyose 204-8567, Japan; Departments of Laboratory Medicine (K Ho.) and Pediatrics (T}, T.H.), Keio University
Hospital, Tokyo 160-8582, Japan; Department of Pediatrics (T.N.), Dokkyo Medical University Koshigaya Hospital, Koshigaya 343-8555, Japan; Department of Pediatrics and Perinatology
(K Ha.), Tottori University Hospital, Yonago 683-8503, Japan; Division of Endocrinology and Metabolism (A.U.), Shizuoka Children's Hospital, Shizuoka 420-8660, Japan; Department
of Pediatrics (C.N.), Yamagata University Hospital, Yamagata 990-9585, Japan; Department of Pediatrics (H.S.), University of Miyazaki Hospital, Miyazaki 889-1692, Japan; Department
of Pediatrics (M.Nakac.), Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka 594-1101, Japan; Department of Pediatrics (T K.), Gunma University Hospital,
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TABLE 1. Summary of molecular analyses

Patients POR mutations
Case Karyotype Age (yr) inheritance Nucleotide changes?® Aminoacid changes
Group A- homozygotes for R457H
1 46,XY 5.0 Sporadic 1370G>A/1370G>A RA57H/RASTH
2 46, XY 238 Familial-A 1370G>A/1370G>A R457H/RASTH
3 46,XY 226 Familial-A 1370G>A/1370G>A R457H/RASTH
4 46 XY 6.7 Sporadic 1370G>A/1370G>A RA57H/RASTH
5 46,XY 0.4 Sporadic 1370G>A/1370G>A R4A57H/RA57H
6 46,XX 0.4 Sporadic 1370G>A/1370G>A RA57H/RASTH
7 46,XX 0.4 Sporadic 1370G>A/1370G>A RAS7H/RASTH
8 46,XX 20 Sporadic 1370G>A1370G>A RAS7H/RASTH
9 46,XX 141 Sporadic 1370G>A/1370G>A R4S57H/RASTH
10 46,XX 15.0 Familial-A (P) 1370G>A/1370G>A RA57TH/RAS7H
11 46,XX 30 Sporadic 1370G>A/1370G>A RAS57H/RA57H
12 46,XX 0.2 Sporadic 1370G>A/1370G>A RASTH/RA5TH
13 46,XX 0.1 Sporadic 1370G>A/1370G>A RAS7H/RAS7H
14 46,XX 18.0 Sporadic 1370G>A/1370G>A R457H/RA57H
Group B: compound heterozygotes for R457H and an apparently null mutation
15 46,XY 16.8 Familial-B (P) 1370G>A/601C>T R457H/Q201X
16 46,XY 15.7 Familial-8 1370G>A/601C>T R4S7H/Q201X
17 46,XY 14.8 Sporadic 1370G>>A/1329-1330insC RA57H/I4441sX449
18 46,XY 17.5 Sporadic 1370G>A/(15A>G) R457H/Non-transcribed (G5G)”
19 46,XY 2.1 Sporadic 1370G>A/143delG R4S7H/RA8{SXE3
20 46, XY 0.2 Sporadic 1370G>A/1665delG R457H/Q555fsX612
21 46, XY 13.1 Sporadic 1370G>AN~) R457H/DeltaFxons 213
22 46,XX 9.0 Sporadic 1370G>AMVST +1G>A RASTHAVST +1G>A
23 46,XX 14.8 Sporadic 1370G>A/1698-1699insC RA5THIYS67{sX574
24 46,XX 13.2 Sporadic 1370G>A/1329-1330insC RA57HNA4415X449
25 46,XX 12.9 Familial-B 1370G>A/601C>T R457H/Q201X
26 46,XX 6.6 Sporadic 1370G>A/-)" R457H/Non-transcribed”
27 46,XX 4.2 Sporadic 1370G>A/—) R457H/Non-transcribed®
28 46,XX 17.0 Sporadic 1370G>A/1329-1330insC RA57H/A4441sX449
Group C: other compound heterozygotes
29 46,XY 0.4 Sporadic 1370G>>A/1386-1387insATCGCC RASTH/AL62-5463insIA
30 46, XY 235 Familial-C (P) 1370G>A/1835-1858del® R457H/L612-W620delinsR
31 46,XY 18.0 Familial-C 1370G:>A/1835-1858del* RA57H/LE12-W620delinsR
32 46,XY 17.9 Familial-D 1733A>G/1329-1330insC Y578C/1444fsX449
33 46,XX 0.8 Sporadic 1370G>A/1738G>C R457H/ES80Q
34 46,XX 0.7 Sporadic 1370G>A/1042-1044delGTC R457H/348delV
35 46,XX 0.5 Familial-D (P) 1733A>G/1329-1330insC Y578C/1444fsX449

The genomic position corresponding to each mutation based on NC_000007.12 sequence at the National Center for Biotechnology Information database (Bethesda,

MDj is as follows: RA57H, 75452433G>A; Q201X, 75448386 > T, 1444fsX449, 75452391-2insC; GSG, 75421261A>G; R4BfsX63, 75421389delG; Q555fsX612,
75453099delG; IVS7 + 1G>A, 75448861G>A, Y567sX574, 75453205-6insC; A462-5463insiA, 75452349-50insATCGCC; L612-W620delinsR, 75453432-
55delTAAAGCAAGACCGAGAGCACCTGT; Y578C, 75453237A>G; £580Q, 75453245G>C; and 348delV, 75451086-88delGTC. Cases 1-3, 6-10, 15-18, 22-26,
29-33, and 35 have been reported previously (6, 8, 9), and the remaining 12 cases were first examined in this study. P, Proband.

 The A of the ATG encoding the initiator methionine residue of the predicted translation product is denoted position +1.

® The allele with G5G and the apparently normal alleles are not trasncribed into mRNA.

¢ The {—) symbol indicates the absence of a recognizable mutation on the exonic sequences.

9 An intragenic microdeletion involving exons 2-13.
¢ 1835-1858delTAAAGCAAGACCGAGAGCACCTGT.

subjects of both sexes (854 males and 909 females), the M data of the
patients were expressed as the SD score to allow for the comparison
among patients of different sexes and ages.

Statistical analysis

Statistical significance of the frequency of clinical features was ana-
lyzed by the Fisher’s exact probability test, and that of the median of
nonpaired and paired variables was examined by the Mann-Whitney’s U
test and the Wilcoxon signed-rank test, respectively. P < 0.05 was con-
sidered significant.

Results

POR mutations

The results are summarized in Table 1. Direct sequencing
revealed 12 types of mutations and one silent substitution (G5G)
(Fig. 1A}, with R457H being identified in 40 of the 58 alleles
(~70%) in 25 sporadic cases and four probands of families A-D.
Of the 12 mutations, R48fsX63, Q555fsX612, and 348delV
were first identified in this study. These mutations were absent in
100 control subjects.
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FIG. 1. Mutation analysis of POR. A, Schematic representation of the POR gene and the
positions of identified mutations. The Japanese founder.mutation R457H is shown in red, other
disease-causing mutations in black, and the common A503V variant in blue. Upper diagram, The
genomic structure comprising 16 exons. The black and white boxes denote the coding and the
untranslated regions, respectively. Lower diagram, The protein structure consisting of the
cofactor binding domains (FMN: flavin mononucleotide; FAD: flavin-adenine dinucleotide; and
NADPH: nicotinamide-adenine dinucleotide phosphate, reduced) and the connecting domain
(stippled area). B, FISH and RT-PCR sequencing analyses in case 21. Left diagram, The positions
of the two FISH probes and those of the primers for RT-PCR. Middle diagram, FISH findings
showing two signals for D721 (arrowheads) and a single signal for POR (arrow) delineated by the
FISH probe 2. Right diagram, RT-PCR sequencing indicating the fusion between exons 1 and 14
(the deletion of exons 2—13). C, Transcription failure in cases 18, 26, and 27. Although
heterozygosity for R457H is delineated for the genomic DNA, RT-PCR sequencing indicates
absent expression of the wild-type (WT) alleles in the three cases. Similarly, although
heterozygosity for G5G is shown for the genomic DNA of case 18, RT-PCR sequencing reveals no
expression of the G5G allele. Such lack of transcripts is not recovered by CHX. D, Nonsense-
mediated mRNA decay in cases 20 and 24 but not case 29. Although heterozygosity for the
mutations is shown for the genomic DNA, RT-PCR sequencing delineates the WT alleles only
before CHX treatment and the heterozygosity after CHX treatment in cases 20 and 24. The NMD
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ES80Q, 348delV, A462-5463insIA, and L612-
W620delinsR) were unknown for residual activities.
Indeed, RT-PCR sequencing analysis performed be-
fore and after CHX treatment in three cases with avail-
able lymphoblastoid cell lines demonstrated that the
alleles carrying QS55fsX612 and [444fsX449 under-
went NMD, whereas the allele harboring A462-
S463inslA escaped NMD (Fig. 1D).

The common AS03V variant was absent from
cases of group A and was identified in four cases of
group B (cases 22,23, 26, and 27) and four cases of
group C (cases 29-31,and 34). The eight cases with
AS03V were all compound heterozygotes with
R457H and another mutation, and direct sequenc-
ing for subcloned PCR products encompassing both
457th and 503rd codons revealed lack of coexist-
ence of R457H and A503V. Thus, it was indicated
thatthe ASO3V variant was absent from all of the 47
alleles carrying R457H and was present on alleles
carrying IVS7+1G>A, YS567fsX574, A462-
S463inslA, L612-W620delinsR, and 348delV and
on the two nontranscribed alleles.

Classification of the patients

On the basis of the above results, the 35 cases
were classified into three groups: group A, homozy-
gotes for R457H (cases 1-14); group B, compound
heterozygotes for R457H and one apparently null
mutation (cases 15-28); and group C, other types of
compound heterozygotes (cases 29-35) (Table 1).
The residual POR activity was predicted to be higher
in group A than group B, although it was unknown
for group C. In addition, group B was subclassified

is not observed in case 29.

Fifteen cases were apparently homozygous for R457H, and
hemizygosity was excluded in 14 of the 15 cases by parental
analysis indicating heterozygosity for R457H in both parents
(cases 1-3, 6-11, and 13) and by FISH analysis with two FISH
probes (cases 4, 5, 12, and 14). Notably, however, FISH analysis
delineated a heterozygous microdeletion incase 21,and RT-PCR
sequencing analysis revealed loss of exons 2—13 in this case (Fig.
1B). The mother was heterozygous for R457H, and the father
was heterozygous for the intragenic microdeletion.

Three cases were apparently heterozygous for R457H (cases
18,26, and 27), although case 18 also had GSG. However, RT-
PCR sequencing analysis using lymphoblastoid cell lines showed
nearly complete absence of mRNA derived from the apparently
normal alleles in the three cases (Fig. 1C). The mRNA remained
undetected after CHX treatment, indicating transcription
failure.

Of the 11 other types of mutations, the nonsense and four frame-
shift mutations (Q201X, R48fsX63, [444fsX449, Q555fsX612,
and Y567fsX574) leading to premature termination and the con-
served splice donor site mutation (IVS7+1G>A) appeared to be
null mutations, whereas the remaining five mutations (Y578C,

into AS03V-positive cases (cases 22,23,26,and 27)
and negative cases (cases 15-21, 24, 25, and 28).

Clinical features

The prevalence of each clinical feature in groups A-C is sum-
marized in Table 2, together with its comparison between groups
A and B. The sex ratio was similar between groups A and B, as
was the median age.

ABS-compatible skeletal features were definitely more prev-
alent in group B than group A (Table 2 and supplementary Fig.
1, published as supplemental data on The Endocrine Society’s
Journals Online Web site at http://jcem.endojournals.org). In
particular, severe brachycephaly, elbow joint synostosis, and
choanal stenosis were exclusively identified in group B.

Adrenal steroidogenic dysfunction was biochemically iden-
tified in all cases, with some difference between groups A and B.
Blood ACTH was normal or elevated at the baseline, 17-OHP
was normal or elevated at the baseline and above the normal
range after ACTH stimulation, and cortisol was normal at the
baseline but barely responded to ACTH stimulation (Fig. 2A).
Significant difference between groups A and B was identified for
basal 17-OHP value (P = 0.044) and basal and ACTH-stimu-
lated cortisol values (P = 0.018 and P = 0.022). Urine Ms of
progesterone and 17-OHP were elevated, whereas those of an-
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TABLE 2. The prevalence of each clinical feature in groups A-C and its comparison between groups A and B

Group A Group B Group C Groups A vs. B
(n = 14) (n = 14) (n=17) (P value)
Sex (male:female) 5.9 7:7 4:3 0.35
Age (median, range, yr) 4.0(0.1-23.8) 13.1(0.2-17.5) 0.8 (0.4-23.5) 0.19
Skeletal features
Any skeletal feature mma 14714 17 0.0029
Brachycephaly (overt) 0/14 14114 6/7° 0.000000025
Elbow joint synostosis® 0/14 7/14 477 0.0029
Arachnodactyly (overt) 5/14 14114 717 0.048
Choanal stenosis 0/14 54 177 0.020
Joint contracture M4 1414 17 0.0029
Adrenal dysfunction
Adrenal crisis 0/14 4/14 17 0.049
Detection by mass screening? 5/8 3/8 2/4 0.31
46,XY DSD
Any genital feature at birth 1/57 3/7' 3/4 0.42
Hypospadias 0/5 217 174 0.32
Cryptorchidism 0/5 3/7 2/4 0.16
Micropenis 1/5 217 3/4 0.64
46 XX DSD
Any genital feature at birth 9/9¢ 777’ 33 10
Clitoromegaly 8/9 5/7 3/3 0.40
Labial fusion 8/9 517 2/3 0.40
Common urogenital sinus 219 217 0/3 0.61
Maternal virilization 8/14 514 4/7 0.22
Pubertal failure, 46,XY
Delayed (=2 sp) or no pubertal sign 0/29 3/4h 2/3 0.20
Small testis (<2 so) 0/2 2/4 173 0.40
Primary hypogonadism’ 072 2/2 3/3 0.17
Pubertal failure, 46,XX
Delayed (>>2 sp) or no pubertal sign 3/39 4/4" 1.0
Delayed (>2 sp) or no menses 072/ 2/2 0.17
Primary hypogonadism’ 3/3 3/3 1.0
Polycystic ovary 4/9 3/6 1/3 0.62

The denominators indicate the number of patients examined for the presence or absence of each feature, and the numerators represent the number of patients
assessed 1o be positive for that feature; thus, the differences between the denominators and numerators denote the numbes of patients evaluated to be negative for

that feature.

7 Severe Craniosynostosis is absent in case 33 with two missense mutations,
® Humeroradial, humeroulnar, or radioulnar synostosis.

< Adrenal crisis has been manifested by case 35 with Y578C and 1444fsX449

9 The measurement of 17-OHP in the mass screening for 2 t-hydroxylase deficiency has been performed since 1988 in Japan.
& DSD is more frequent in 46,XX cases than 46,XY cases in groups A (P = 0.0050) and B (P = 0.035).
2P The P values between 46,XY and 46,XX cases are 0.19 for group A and 0.50 for group B.

' Elevated gonadotropins (LH and/or FSH) and/or decreased T or £,, as compared with age- and sex-matched reference data.

/ Only a few vaginal spottings.

drostenedione, 11-deoxycortisol, cortisol, and aldosterone
grossly remained within the normal range {Fig. 2B). The M ratio
indicating 17a-hydroxylase activity remained almost normal, con-
sistent with the elevation of both substrates and products, whereas
the M ratios indicating 17,20 lyase and 21-hydroxylase activities
were grossly decreased. Significant difference between groups A and
B was identified for MS of progesterone (P = 0.044), those of 17-OHP
(P = 0.022), those of aldosterone (P = 0.0084), and M ratio indi-
cating 17,20 lyase activity (P = 0.011). Adrenal crisis was observed
only in group B with a significant difference between groups A and
B, whereas the detection frequency of elevated 17-OHP in mass
screening was similar between groups A and B (Table 2).

DSD was more prevalent in 46,XX cases than 46,XY cases in
both groups A and B (Table 2, footnote, and supplementary Fig.

2).46,XY DSD in group A was micropenis in one case, and that
in group B included more severe phenotypes. By contrast, 46,XX
DSD was invariably identified in both groups A and B. Maternal
virilization during pregnancy was often found in groups A and B
with a similar prevalence. Serum T of case 20, aged 0.2 yr in
group B, was 6.5 and 7.6 nmol/liter {1.9 and 2.2 ng/ml) before
and after hCG stimulation, respectively.

Pubertal development was apparently normal in two 46,XY
cases of group A and one of four 46,XY cases in group B and was
invariably affected in 46,XX cases in both groups A and B (Table
2). In family A of group A, cases 2 and 3 exhibited full pubertal
development with testis volume of 20 ml, whereas case 10 had
obvious pubertal failure with Tanner B2 stage. T value of case 18,
aged 17.5 yr in group B, was low at the baseline (0.7 nmol/liter,
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FIG. 2. Adrenal steroidogenic dysfunctions in groups A-C. Light blue areas
represent the normal ranges. Red asterisks indicate the presence of significant
differences between groups A and B. A, Basal and ACTH-stimulated blood
hormone values. B, Basal urine steroid M values. Prog, Progesterone; AdA,
androstenedione; 11DOF, 11-deoxycortisol; Aldo, aldosterone.

0.2 ng/ml) and poorly responded to hCG stimulation (1.0 nmol/
liter, 0.3 ng/ml). PCO was observed in infantile or pubertal cases
with a similar frequency between groups A and B, and cases 22
and 24 had ovarian torsion. Notably, bilateral ovarian cysts of
case 10 markedly reduced in size after treatment with estradiol
(E,) (supplementary Fig. 3).

Long-term growth patterns were obtained in eight cases (Fig.
3). Whereas childhood heights tended to be high in both groups
A and B, pubertal growth was different between the two groups.
Cases in group A lacked obvious pubertal growth spurt but con-
tinued to grow for a long term, attaining tall adult heights,
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whereas those in group B showed rather compromised pubertal
growth with worsening of scoliosis (supplementary Fig. 1).

There was no phenotypic difference between AS03V-positive
and -negative cases of group B (supplementary Table 2). In ad-
dition, the phenotypes in group C were grossly similar to those
in group B (Table 2). In particular, craniosynostosis was iden-
tified in all cases except for case 33 with R457H and ES80Q, and
adrenal crisis was manifested by case 35 with Y578C and
1444fsX449.

Discussion

Molecular studies

Detailed molecular studies were performed in this study, pro-
viding two notable findings. First, all 35 cases were found to be
homozygotes or compound heterozygotes for POR mutations
including intragenic microdeletion and transcription failure. Be-
cause the microdeletion was found in case 21 with apparent
R457H homozygosity, such a microdeletion might be hidden in
the previously reported patients with apparent homozygosity (1,
5). Similarly, because transcription failure was invariably iden-
tified in cases 18,26, and 27 with apparent heterozygosity, it may
also underlie in the previously reported patients with apparent
heterozygosity (4, S, 10). In this regard, it is likely that the three
cases carry a mutation in a hitherto unidentified cis-regulatory
sequence(s) for the transcription of POR, as has been reported
for several genes (24).

Second, RT-PCR sequence analysis indicated the occurrence
of NMD in the two frameshift mutations (1444fsX449 and
Q555fsX612). In this context, all the premature termination
codons caused by the nonsense and the four frameshift mutations
satisfy the positional conditions for the occurrence of NMD that
functions as an mRNA surveillance mechanism to prevent the

formation of aberrant proteins (13, 14). Thus,
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FIG. 3. Growth charts of eight cases plotted on the sex-matched longitudinal growth curves for the
normal Japanese children (+2 <o, +1 so, the mean, —1 sp, and —2 sp). The triangles in cases 2, 3, and 10
represent the target heights. Cases 10 and 24 are placed on E, replacement therapy. Hv, Height velocity.

Case

though it was somewhat milder in group A
than group B. Such a relatively minor role of
R457H dosage in adrenal steroidogenesis
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the two examined cases of group B, this im-
plies the compromised maximum T produc-
tion capacity. By contrast, the backdoor- and
placenta-derived androgen productions com-
mon to both 46,XY and 46,XX cases may be
similar between groups A and B: 1) whereas
17-OHP as the source metabolite for the
backdoor pathway is higher in group B than
group A, the supporting activity for fetal ad-
renal CYP17A1 involved in the backdoor
pathway would be lower in group B than
group Ajand 2) whereas fetal adrenal derived
dehydroepiandrosterone as the source me-
tabolite for placental androgens would be
lower in group B than group A (4, 9, 25), the
residual supporting activity for placental
CYP19A1 would be lower in group B than
group A. Thus, the total amount of androgens
would be relatively well preserved in 46,XY
cases with a mild difference in the fetal testis-
derived T between groups A and B and in-
variably and similarly increased in 46,XX
cases of both groups A and B. Furthermore,
this notion explains why maternal virilization

the total amount of estrone and £, (~10 times) (34).

may primarily be due to the complexity of steroidogenesis in
PORD (Fig. 4). For example, both production and degradation
of 17-OHPare carried out by POR-dependent enzymes, and such
enzymatic reactions would depend on the R457H dosage and the
differential supporting activity of the R457H protein for target
enzymes as well as the amount of substrates and products. Fur-
thermore, the basal cortisol values imply that the baseline ste-
roidogenic capacity can grossly be sustained, even in group B.
Indeed, whereas basal blood 17-OHP values were significantly
higher in group B than group A, some of them remained within
the normal range, and several cases of both groups were not
detected in neonatal mass screening. Nevertheless, the R457H
dosage would have important clinical relevance, because the
ACTH-stimulated blood cortisol was drastically reduced espe-
cially in group B, and adrenal crisis was observed only in group B.
Furthermore, because 17,20 lyase activity alone was significantly
different between groups A and B (Fig. 2B), this would provide
further support for the previous finding that 17,20 lyase activity is
the most sensitive index of defective POR activity (5, 15).

46,XY DSD was notso remarkable, whereas 46,XX DSD was
invariably identified. This suggests a mildly reduced androgen
production in genetic males and a definitely excessive androgen
production in genetic females. In this context, there are three
androgen sources during the fetal life in PORD, i.e. the fetal
testis, backdoor pathway, and placenta (3, 4, 9, 25, 26) (Fig. 4).
For fetal testicular T production specific to 46,XY cases, pla-
cental hCG-stimulated T production around the critical period
for sex development would be more compromised in group B
than group A because testicular T production is performed in a
simple one-way manner, as in cholesterologenesis. Furthermore,
because T responses to hCG stimulation were reduced, at least in

during pregnancy was similar between

groups A and B because it is primarily due to
androgens of the placental origin rather than the fetal gonadal or
the backdoor origin (3, 4, 25).

Assessment of pubertal development was possible in a limited
number of patients. However, pubertal development appeared
to differ between groups A and Band between 46,XY and 46,XX
cases. In this regard, T and E, biosynthesis during puberty is also
performed in a simple one-way manner, and T production is
mediated by CYP17A1 and E, production is mediated by both
CYP17A1 and CYP19A1 (Fig. 4). Thus, gonadal steroid pro-
duction would depend on the R457H dosage, with T production
being less compromised than E, production. In addition, our
observation suggests the frequent occurrence of PCO in infancy
and puberty when gonadotropins are physiologically elevated
(27) and the beneficial effect of estrogen replacement therapy in
the amelioration of PCO.

Evaluation of growth pattern also remained fragmentary.
However, two implications are possible. First, the intrinsic skel-
etal abnormalities may be relevant to the growth pattern. Indeed,
relative tall stature in childhood may be compatible with the
elongation of long bones as indicated by arachnodactyly and
dolichostenomelia, and worsening of scoliosis during puberty in
group B would also be consistent with the low POR activity
(supplementary Fig. 1). Second, the spontaneous pubertal growth
pattern of cases 2 and 3 without scoliosis is considered to rep-
resent a mild form of that of male patients with aromatase de-
ficiency (28, 29). Such a qualitatively similar but quantitatively
different pubertal growth pattern would be explained by assum-
ing a drastically attenuated but not abolished in vivo supporting
function of the R457H protein for aromatase.

Lastly, clinical features were similar between A503V-positive
and -negative cases in group B. However, this would not argue
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against a possible phenotypic effect of mildly hypomorphic
A3S03V, because ASO3V of the four cases in group B was present
on the alleles carrying apparently null mutations. Thus, it re-
mains unknown whether AS03V can modify phenotypic features
in PORD, although the previous study argues against a modify-
ing effect of ASO3V on clinical phenotypes in 21-hydroxylase
deficiency (30). Furthermore, because AS03V was absent from
all of 47 alleles carrying R457H, this would provide further
support for the previous notion that R457H is a founder muta-
tion accompanied by a specific haplotype (6, 7). Thus, whereas
AS503V was identified in only eight of the 70 alleles (11.4%) in
this study, this frequency is obviously biased by the high prev-
alence of R457H in Japanese patients. Rather, the frequency of
AS03V in R457H-negative alleles suggests that the prevalence of
ASO3V is considerably high in the Japanese population, as re-
ported in other populations (from 19.1% in African American to
36.7% in Chinese American) (15).

Remarks and conclusion

It should be pointed out that the results are totally based on
the studies of Japanese patients. In this regard, A287P is common
in Caucasian patients (4, §), and clinical studies in 10 A287P-
positive patients including three homozygotes (five with 46,XY
and five with 46,XX) have suggested phenotypic similaritics and
differences between R457H-positive patients and A287P-posi-
tive patients: 1) skeletal phenotype is usually obvious and ap-
pears to he grossly dependent on the A287P dosage; 2) 46,XY
DSD is variable and is apparently independent of the A287P
dosage; 3) 46,XX DSD is also variable and absent in one A287P
homozygote and one of four compound heterozygotes with
A287DP; and 4) maternal virilization during pregnancy is not de-
scribed (1, 2, 5, 31, 32). Thus, skeletal phenotype would be
explained by assuming that both R457H and A287P have dras-
tically lost supporting activities for CYPS1A1 and/or SQLE in-
volved in cholesterologenesis, although functional studies have
not been performed. Furthermore, clinical features relevant to
steroidogenic dysfunction would be grossly consistent with the
previous in vitro functional data. It has been reported that
R457H yields only 1-3% supporting activities for 17«-hydrox-
ylase and aromatase, and virtually no activity for 17,20 lyase,
whereas A287D provides supporting activities of about 40% for
17a-hydroxylase, about 20% for 17,20 lyase, about 70% for
21-hydroxylase, and about 100% for aromatase (1, 5, 11, 33).
Thus, the relative activities of frontdoor and backdoor pathways
would be different largely between R457H-positive and A287P-
positive patients, and placental T production would remain mi-
nor, if any, in A287P-positive patients. Collectively, the Japanese
data would not apply simply to other populations.

In conclusion, the present study in Japanese patients argues
against the heterozygote manifestation and suggests that the re-
sidual POR activity reflected by the R457H dosage constitutes
the underlying factor for the clinical variability in some features
but not other features, probably because of the simplicity and the
complexity of the POR-dependent metabolic pathways relevant
to each phenotype. Further studies including genotype-pheno-
type analyses in various ethnic groups will permit a better clar-
ification of the molecular and clinical characteristics of PORD.
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Campomelic dysplasia (CD; OMIM 114290) is a rare skeletal

disorder characterized by hypoplastic scapulae, 11 pairs of ribs, Wada Y, Nishimura G, Nagai T, Sawai H,
pelvic abnormalities, and bowing of the lower lmb bones Yoshikata M, Miyagawa S, Hanita T, Sato S,
[Maroteaux et al., 1971]. Affected patients often die shortly after Hasegawa T, Ishikawa S, Ogata T. 2009.
birth due to respiratory distress, and roughly two-thirds of afected Mutation analysis of SOX9 and single copy
genetic males have disorders of sex development (DSD) due to number variant analysis of the upstream
dysgenetic testes [Mansouretal., 1995]. Acampomelic campomelic region in eight patients with campomelic
dysplasia (ACD) is associated with similar but milder skeletal dysplasia and acampomelic campomelic
features and lacks long bone curvature [MacPherson et al., 1989]. dysplasia.

SOX9 on chromosome 1724 is a member of SRY -related gene
family [Harley et al., 2003}, It encodes a 509-amino acid protein that
harbors a high mobility group (HMG) domain with a DNA-
binding capacity and a proline/glutamine/serine-rich domain with
a transactivation function [Harley et al., 2003]. Furthermore,
putative cis-control elements have been mapped within the 1 Mb
region upstream of SOX9 [Hill-Harfe et al., 2005].

To date, it has been shown that both CD and ACD can be caused
by heterozygous intragenic SOX9 mutations or chromosomal
aberrations (translocations, inversions, or deletions) affecting
SOX9 or the putative enhancer region [Pfeifer et al,, 1999; Thong  piyra, Setagaya, Tokyo 157-8535, Japan. E-mail: ywada@nch.go.jp
etal., 2000; Moog et al., 2001; Harley et al., 2003; Pop et al., 2004, published online 00 Month 2009 in Wiley InterScience
Leipoldt et al,, 2007}. However, the frequency and the type (www.interscience.wiley.com)
of mutations and chromosomal aberrations are quite different  DOI 10.1002/ajmg.a.33107

Am ] Med Genet Part A 9999:1—4.
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Acampomelic campomelic dysplasia

Patient 1 Patient 2
Patient
Gastational age {weeks) 25 42
Birth weight (g) 625 2480
Present age {y:m}) Stilthirth 0:11
Karyotype 46, XY 46,XX
Phenotype
Cleft palate
Micrognathia +
Scapular hypoplasia + 4
Tibial bowing + +
Femoral bowing 1 t
11 pairs of ribs - f
Small thoracic cage + b
NM thoracic pedicles + +
Scoliosis - -
Narrow iliac wings + ;
Clubfeet + +
46,XY DSD +
Mutation
cDNA 771 722insGGCGC 1330 1333delGACC

Amino acids G257fsX296 T443fsX468

N#: non-mineralized; USD: disorders of sex development
"Neceased at 5 months and 1 year and § months, respectively

between CD and ACD. C is predominantly caused by nonsense or
frameshift mutations or by chromosomal aberrations disrupting
SOX9, although missense mutations and chromosomal aberrations
impairing the enhancer region are also occasionally identified. By
contrast, ACD is almost exclusively caused by missense mutations
or by chromosomal aberrations affecting the enhancer region. Thus,
while missense mutations are exclusively identified within the HMG
box in both CD and ACD [Kwok et al., 1995; Cameron and Sinclair,
1997; Meyer et al., 1997; Hageman et al., 1998; Moog et al,, 2001,
Thong et al., 2000}, these findings tmply that severe mutations
usually result in CD whereas mild mutations usually lead to ACD,

However, the underlying causes remain to be determined in
several patients, especially those with ACD, and such patients may
have hidden perturbation in the putative enhancer region. Thus, we
performed mutation analysis of SOX9 in eight patients with CD or
ACD and single copy number variant (CNV) analysis {Redon et al.,
2006] of the upstream region in SOX9 mutation negative patients,

Clinical features of the cight patients are summarized in Table I,
and representative roentgenograms are shown in Figure 1. Patients
1-4 showed CD-compatible severe clinical features, whereas
patients 5~8 exhibited relatively mild ACD-compatible clinical
features. In addition, patient 1 ended in a stillbirth, and patients
3 and 4 died of respiratory insufficiency during infancy, although
patient 2 aged 11 months was alive. By contrast, patients 5-8 have
survived a relatively long period. Among genetic males, patient 1
exhibited DSD with nearly complete female external genitalia, while
patients 5 and 6 showed male external genitalia.

Patient 3 Patient 4 Patient 5 Patient 6 Patient 7 Patient 8

38 38 39 40 42 38
2670 2060 3400 2700 2680 2306
(0:5)" (1.5)° 11:6 19:8 3:2 3:9
46,XX 46,XX 46,XY 46,XY 46,XX 46,XX

+ + -+ + +

t + + - +

-+ + + + + +

t - - -

-+ # + + t

+ + 4 Ea i -

+ + - -~ + +

- - + + + -~

f + + * + +
i i - 4
1338C 64427 €500T - - :
M113T  E148X  P170L - . -

We first performed mutation analysis of SOX9. This study was
approved by the Institutional Review Board Committees at Na-
tional Center for Child Health and Development, and performed
after obtaining written informed consent. Genomic DNA samples

Patient 1 Patient 7

FI6. 1. Representative roentgenograms indicating CD in patient 1 at
birth and ACD in patient 7 at 3 months of age.
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Patient 1 Patient 2
Subcloned Subcloned
5 mutant allele
mutant allele GaooT o =
W Saaa G '
Patient 3 Patient4 Patient 5
Direct Direct ) Oirect *
sequence - sequence — sequence -
9 GGG ] G CGNG G uence e eccaa
.
* ,
WT WT : WT -
GGG ‘GGG LG e COCQQG
P170L
M113T E148X 257Fs  443Fs

Exon 1

Exon 2

Exon 3

FIG. 2. Molecular findings in patients 1—5 with SOX9 mutations. Upper part: Electrochromatograms showing the mutations in patients 1-5. In patients
1 and 2, the subcloned mutant alleles and the corresponding wildtype (WT) alleles are shown. In patients 3-S5, the direct sequences are shown,
together with the corresponding wildtype sequences; the asterisks indicate the mutant and the corresponding wildtype nucleotides. Lower part: The
position of the mutations on the genomic sequences. Exons 1—3 are depicted with boxes; the black, the striped, the stippled, and the white areas
indicate the HMG domain, the transactivation domain, other translated regions, and the untranslated regions, respectively.

extracted from cord blood cells (patient 1) or peripheral blood cells
(patients 2—8) were amplified by PCR for all the three coding exons
and were subjected to direct sequencing on a CEQ 8000 autose-
quencer (Beckman Coulter, Fullerton, CA) (the primer sequences
are available on request). To confirm frameshift mutations, the
corresponding PCR products were subcloned with TOPO TA
Cloning Kit (Invitrogen, Carlsbad, CA) and normal and mutant
alleles were sequenced separately.

Consequently, we identified a novel heterozygous 5-bp insertion
mutation at exon 3 that is predicted to cause a frameshift at the
257th glycine codon and resultant termination at the 296th codon
(G257fsX296) in patient 1, a novel heterozygous 4-bp deletion
mutation at exon 3 that is predicted to cause a frameshift at the
443rd threonine codon and resultant termination at the 468th
codon (T443fsX468) in patient 2, a novel heterozygous missense
mutation at exon 1 (M113T) in patient 3, a recurrent heterozygous
nonsense mutation at exon 2 (E148X) in patient 4, and a novel
heterozygous missense mutation at exon 2 (P170L) in patient 5
(Fig. 2). The two missense mutations resided within the HMG. The
mutations of patients 1—4 were absent in their parents. In addition,
while mutation analysis was refused by the parents of patient 5, the
P170L missense mutation was absent in 200 control subjects. No
mutations were identified in patients 6-8.

Then, to examine for a small deletion, we carried out the
whole genome CNV analysis in patients 6—8 and their parents,
using custom high density oligonucleotide microarray based
on Affymetrix platform [Redon et al., 2006]. In brief, 25 bp oligo-
nucleotide probes are designed on 1,330,354 Nsp 1 restriction
fragments with average and median spacing of 2,271 and
776 bp. The experimental protocol is the same as the Affymetrix
500K arrays. Ninety microgram of target was hybridized
overnight to the arrays [Fujii et al., 2007]. The signal intensity ratio
of the sample to reference was calculated by Genome Imbalance
Map Algorithm [Ishikawa et al., 2005], using NA10851 HapMap
DNA samples from Coriell Cell Repositories (Camden, NJ)
as the reference samples. Consequently, no deletion was indicated
in the whole genome including the 5 region of SOX9 in
patients 6—8.

The results are primarily consistent with the previous data. Three
of four patients with CD died during fetal life or infancy, whereas
patients 5—8 with ACD survived into childhood or puberty. 46,XY
with DSD was observed in patient 1 with CD but not in patients 5
and 6 with ACD. Similarly, truncating mutations of SOX9 were
identified in patients 1-3 with CD, together with a missense
mutation in patient 4 with CD, whereas only one missense mutation
was found in patients with ACD.
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We could not detect a microdeletion in patients 6-8 with ACD in
whom no intragenic mutations were identified. Although the
underlying causes remain to be clarified in patients 68, there are
several possible explanations for the development of ACD in
patients 6—8. First, a mutation(s) may exist in the unexamined
intronic or the downstream region. Second, a tiny deletion may
remain undetected. Third, there may be a mutation in some gene(s)
other than SOX9. Further studies will identify underlying mech-
anisms involved in the development of ACD in SOX9 mutation
negative patients,
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Abnormal Basiocciput Development in CHARGE
Syndrome

BACKGROUND AND PURPOSE: The causative gene of the common congenital malformation referred to
as CHARGE syndrome 1s CHD7. Atfected individuals often undergo head and neck imaging to assess
abnormalities of the olffactory structures, hypothalamus-pituttary axis, and inner ear. We encountered
a few children with severe hypoplasia of the basiocciput during a radiologic assessment of patients
with CHARGE syndrome. To our knowledge. this anomaly has not been reported. Qur purpose was to
evaluate the inctdence and seventy of this anomaly in this syndrome

MATERIALS AND METHODS: Sagittal MR images of 8 patients with CHARGE syndrome were retro-
spectively reviewed by 2 radiologists who consensually evaluated the status of the basiocciput of the
patients with CHARGE syndrome, as erther normal or hypoplastic, and associated anomalies, which
include basiar invagination, Chiart type | malformation, and syningomyelia, as either present or absent
The length between the basion (Ba) and the endo-sphenobasion (Es} and between the basion and the
exo-sphenobasion (Xs} was measured on midsagittal MR images of the 8 patients and 70 age-matched
controls. We searched for trends related to age in the length of Ba-Es and Ba-Xs of the control children
by using @ matched { test.

RESULTS: Basioccipital hypoplasia was identified in 7 of the 8 patients with CHARGE syndrome and
was severe in 6. Of those, 5 had associated basilar invagination and 1 had Chiari type | malformation
with syringomyelia.

CONCLUSIONS: Basioccipital hypoplasia and basilar invagination are prevalent in patients with

CHARGE syndrome.

C HARGE syndrome 1s a widespread malformation that was
originally described independently by Hall ' and Hittner et
al.” The mnemonic acronym CHARGE represents the major
anomalies associated with the disorder: coloboma of the eye,
heart defects, choanal atresia, retarded growth and develop-
ment, genital hypoplasia, and car anomalies.” Other cardinal
features include facial palsy or facial asymmetry, anomalies of
the inner ear and laryngotracheoesophagus, anosmia, hy-
pogonadotropic hypogonadism, and orofacial clefts.”® The
phenotypic diversity of affected individuals has raised the no-
tion that CHARGE is not a genuine syndrome but an associa-
tion of various anomalies occurring in a nonrandom but in-
consistent  fashion. However, this hypothesis has been
disputed by the recent discovery of a CHARGE syndrome
gene, CHD7, which encodes the chromodomain helicase de-
oxyribonucleic acid (DNA)-binding protein 7.7 Nevertheless,
locus heterogeneity of CHARGE syndrome might exist be-
cause only 60%-70% of patients with CHARGE syndrome
have CHDY mutations.™ Therefore, a more discriminating
syndrornie delineation and further studies of the genotype-
phenotype correlation are required to understand this syn-
drome thoroughly.

Malformations of the inner ear, olfactory structures, and
hypothalarnus/pituitary axis in patients with CHARGE syn-
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drome have usually been evaluated by using imaging tech-
niques.'” "’ We encountered a few children with severe hyp-
oplasia of the basiocciput during a radiologic assessment of
patients with CHARGE syndrome. Basiocciput hypoplasia re-
sults in shortening of the clivus and s always associated with
basilar invagination.'” There is an increased prevalence of
neural dysgenesis, such as the Chiari malformation or syrin-
gohydromyelia, reported to occur in 25%-~35% of patients
with basilar invagination.” Here, we evaluated the incidence
and severity of basioccipital hypoplasia in CHARGE
syndrome.

Materials and Methods

Patients with CHARGE Syndrome

We retrospectively reviewed 8 patients who were diagnosed with
CHARGE syndrome according to the clinical criteria of Blake et al
{Table 1),'? in which patients with all 4 major criteria or with 3 major
and 3 minor criteria are considered to have definitive CHARGE syn-
drome, whereas those with 1 or 2 major criteria and several minor
criteria possibly have the syndrome. Five of our patients had definitive
and 3 had possible CHARGE syndrome. Patients 3 and 5 fulfilled 2
major and 5 minor criteria, and patient 8 fulfilled 2 major and 3 minor
criteria. Qur institutional review board did not require its approval or
informed consent for the retrospective evaluation of patients’ records
and images. High-performance liquid chromatography DNA screen-
ing'® and direct sequencing proved that 7 of the 8 patients harbored
heterozygous mutations in CHD7 (Table 2).

Controls

Seventy age-matched controls comprising 10 individuals per group,
3,6,7,8,9, 11, and 21 years of age, were randomly selected from
patients with normal findings on MR imaging at our hospital between
2006 and 2008. Patients with known or suggested abnormalities in-

2’
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Table 1: Diagnostic criteria of CHARGE syndrome according to Blake et al*

Critena
Major
Coloboma
Choanal atresia
Charactenstic ear abnormalities
cochlear defects

Cramal nerve dysfunction

Coloboma of s, retina, choroid, disk, microphthalmia
Unilateral/bilateral, membranous/bony. stenosis/atresia
External ear {loop or cup-shaped), middle ear {ossicular malformations, chronic serous otitis), mixed deafness.

I, Anosmia; VIl facial palsy funiateral or bilateral) VI sensorinevral deafness and vestibular problems: {X

and/or X, swallowing problems

Minor
Genitat hypoplasia
Females: hypoplastic labia;

Males: ricropenis, cryptorchidism;

Both' delayed incomplete pubertal development

Developmental delay
Cardiovascular malformations
Growth deficiency

Orofacial cleft
Tracheoesophageal fistula
Distinctive face

Shost stalure
Cieft lip and/or palate

Delayed motor milestones. hypotoria, mental retardation
All types conotruncal defects (eq, tetralogy of Fallot). arnteriovenous canal defects, and aortie areh anomalies

Tracheoesophageal defects of all types
Charactenistic facial features

Reprinted with pesmissian from Chmeal Pedigtoes 11998.37-159-73) Copyright 1998, Sage Publications

volving the skull base or bone marrow were excluded. Patients with
systeric disease or who had undergone previous radiation or chemo-

therapy were also excluded.

Image Analysis of the Basiocciput

Sagittal MR images were obtained from all patients and all control
children by using a 1.5T scanner. The images were reviewed on a
PACS workstation. The length between the basion (Ba) and the endo-
sphenobasion (Ba-Es) and between the Ba and the exo-sphenobasion
(Ba-Xs) was measured in accordance with the definitions of Ba, Es,
and Xs on midsagittal images (Fig 1). The definitions of Ba, Es, and Xs
are the midpoint on the anterior margin of the foramen magnum, the
anteriormost midpoint on the dorsal aspect of the basiocciput, and
the antertormost midpoint on the ventral aspect of the basiocciput,
respectively. The midsagittal image is defined as that on which the
clivus, pituitary infundibulum, and aqueduct of the cerebrum are
delineated in a single plane. Measurements were obtained from 2- or
3-mm-thick sections of T1-weighted midsagittal spin-echo (SE) im-
ages {TR/TE/NEX, 400-500 ms/10-15 ms/2) from patients with
CHARGE syndrome. Control measurements were obtained from
4-mm-thick sections of T2-weighted midsagittal half-Fourier ac-
quired single-shot turbo spin-echo images (TR/TE/flip angle, 1500
ms/101 ms /170°). Each measurement was obtained 5 times by 1 ra-
diologist (K.F.).

Evaluation of the presence or absence of basioccipital hypoplasia,
basilar invagination, Chiari type I malformation, and syringomyelia
among the patients with CHARGE syndrome was performed by using
2- or 3-mm-thick sections of T1-weighted SE sagittal images (TR/TE/
NEX, 400--500 ms/10-15 ms/2) in all patients, T2-weighted fast SE
sagittal images (TR/TE/NEX, 2000-3000 ms/92--94 ms/1) in all the
patients except patient 1, and 4-mm-thick sections of T1-weighted
fast SE sagittal images (TR/TE/NEX, 337 ms/12 ms/1) and T2-
weighted fast SE images (TR/TE/NEX, 1600 ms/170 ms/1) of the
whole spine of patient 4. The MR images of the patients were consen-
sually reviewed by 2 board-certified radiologists (K.F.and N.AL).

Basioccipital hypoplasia was defined as follows: Mild hypoplasia
defined in patients in whom the length of either the Ba-Es or the
Ba-Xs was <2 SDs compared with the normal values for each age
group and with a maintained triangular shape. Moderate hypoplasia
was defined as patients in whom the length of either Ba-Es or Ba-Xs

630 Fupta | AINR 3G 1 Mar 2009 | www.ajnr.org

was <02 SDs and without maintenance of a triangular shape; and
severe hypoplasia was defined as patients in whom the lengths of both
Ba-Es and Ba-Xs were <2 SDs and without maintenance of a trian-
gular shape. The basitar invagination was when the tip of the odontoid
lay 5 mm above the Chamberlain line, which joins the posterior mar-
¢in of the foramen magnum to the posterior margin of the hard pal-
ate. Herniation of at least 1 cerebellar tonsil 25 mm below the fora-
men magnum was considered to be Chiari type [ malformation. A
cavity and/or a dilated central canal of the spinal cord was considered
to be the syringomyelia.

Statistical analysis was performed by using a matched ¢ test to
search for trends related to age in the length of Ba-Es and Ba- Xs of the
control children. A P value of < .05 was considered to represent a

statistically significant difference.

Results

Table 3 and Fig 2 show the lengths of the Ba-Es and Ba-Xs in
the controls. The lengths of Ba-Es and Ba-Xs in the control
individuals of the 3-year-old group were significantly shorter
than those at other ages (P = .023, P = .0015). The Ba-Es was
significantly elongated in the 8- and 9-year-olds (P = .0479),
but none of the other values significantly differed among the
age groups.

Table 2 and Fig 2 summarize the Ba-Es and Ba-Xs lengths
and bfaging findings from patients with CHARGE syndrome.
The basiocciput was hypoplastic in 7 of the 8 patients (6/7
patients with CHD7 mutations and patient § who did not un-
dergo molecular analysis) and was accompanied by a shorter
Ba-Es and Ba-Xs. Basioccipital hypoplasia was severe in 6 and
mild in 1 patient (Fig 3A). Basilar invagination was identified
in 5 of 6 patients with severe basioccipital hypoplasia (Fig 3B).
One of the 5 patients had a Chiari type I malformation with
syringomyelia that involved the lower cervical and whole tho-
racic spinal cord. This patient also had atrophy of the hands.

Four of the 8 patients had orofacial clefts, and 3 of these 4
had severe basioccipital hypoplasia.

Discussion

The anatomy of the clival region has been described from var-
ious morphologic or clinical viewpoints. Lang and Issing'’
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Fig 1. Measurement of the lengths of Ba-Es (arrow} and Ba-Xs {arrowhead) on 3
Ti-weighted sagitial image (patient 3).

(cited by Krompoti¢-Nemani¢ et al'®) reported that the width
and length of the adult clivus is about 28 mm and from 52 to 54
mm, respectively, and Krompoti¢-Nemani¢ et al reported
postnatal changes in the dimensions of the clivus.'® However,
postnatal changes in the length of the basiocciput, a compo-
nent of the clivus, have not been reported as far as we can
determine. Our study of control individuals ranging from 3 to
21 years of age showed that the occiput became significantly
elongated between 3 and 6 years of age and again between 8
and 9 years of age, but not after 10 years of age. Our findings
are compatible with anatomic findings showing that the
length of the clivus is maximal before puberty and the second
growth spurt.'®

The present study showed thatbasioccipital hypoplasia and
basilar invagination are prevalent in CHARGE syndrome.
However, our series was biased, and we analyzed only a small
number of patients with this syndrome because patients with
CHARGE syndrome and CHD7 mutations were more likely to
undergo imaging.'® Thus, additional studies of the incidence
and severity of CHARGE syndrome without CHD7 mutations
are mandatory; however, we tentatively concluded that rou-
tine assessment of the basiocciput in patients with CHARGE
syndrome is helpful to exclude potentially life-threatening
basilar invagination regardless of the presence or absence of
CHD7 mutations.

CHARGE syndrome accompanied by basilar invagination

is classified as the primary type as a result of a hypoplastic
basiocciput, in contrast to the secondary type that is associated
with soft bone conditions, such as hyperparathyroidism, os-
teomalacia, and Paget disease. Primary basilar invagination
results from a congenital anomaly of the chondrocrani-
um.?®?! The malformed clivus and/or translocated odontoid
peg impinges on the anterior craniospinal neuroaxis and
causes neurologic symptoms, including upper motor neuron
deficits, cranial nerve abnormalities, hydrocephalus, cerebel-
lar dysfunction, syringomyelia, and even sudden death.?*"**
One of the patients with basilar invagination had Chiari type |
malformation with syringomyelia and developed neurologic
symptoms. Symptomatic patients will require surgical proce-
dures for relief of symptoms because the ability to reduce basi-
lar invagination is age-related.”

The pathogenesis of the hypoplastic basiocciput in
CHARGE syndrome remains elusive. The sole known caus-
ative gene (CHD?) for the syndrome encodes chromodomain
helicase DNA-binding protein 7 (CHD?7 protein), which be-
longs to the chromodomain family. In general, chromodo-
main family proteins are involved in the maintenance of chro-
matin structures and are expressed in mesenchymal cells
derived from the neural crest. CHD? protein is mainly ex-
pressed in epithelial cells, olfactory epithelium, and eye, ear,
and kidney tissues as well as the vascular system.?® During the
early embryonic stage, CHD7 protein is preferentially ex-
pressed in the undifferentiated neuroepithelium and mesen-
chyme of neural crest origin.?” These facts closely correspond
with the clinical manifestations of CHARGE syndrome.

However, the basiocciput, unlike the facial bones, derives
from the mesodermal cells of the occipital somites and not
from the neural crest (Fig 4).">?® Thus far, the CHD?7 protein
has not been identified in the occipital somites. To understand
the association between CHD7 mutations and the hypoplastic
basiocciput, one must assume interaction between the neural
crest and somite cells during development. Cleft lip and palate,
which are thought to result from impaired neural crest cells,
are associated with shortening of the clivus.”® In addition, de-
viation of the cranial base in dimension and shape is described
in complete cleft lip and palate.?®">' These facts might support
the notion of a developmental link between the facial bones
and the basiocciput. However, orofacial clefts and hypoplastic
basiocciput did not closely correspond in our series; only 3 of
our 8 patients with severe basioccipital hypoplasia had orofa-
cial clefts, whereas 1 without basioccipital hypoplasia had the
anomaly. Thus, the relationship between basioccipital hypo-
plasia and maldevelopment of neural crest cells in CHARGE
syndrome remains elusive.

With increasing experience, an expert group of geneticists

Table 3: Lengths of Ba-Es and Ba-Xs in control individuals at various ages

Age Group (yr)

3 6 7 8 9 11 2

Mean {yr) 35 6.6 7.3 8.4 96 1n5 214
Range {yr) 32-39 6.2-6.9 7.0-19 8.0-8.9 9.3-99 11-18 11-018
Number 10 10 10 10 10 10 10
Length [mean = SO}

Ba-Es {mm} 202%23 244+ 32 240+29 254+ 726 27813 268+*268 269+ 41

Ba-Xs (mm) 184 =24 231 %27 23125 242+22 260 x 25 25923 25741
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