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Effect of camostat mesilate on blood pressure, urinary protein excretion, and renal injury in Dahl salt-sensitive rats. SBP was measured by tail-cuff
method at days 7, 14, and 21. Twenty-four-hour urinary collections were made in a metabolic cage, and urinary protein excretion was evaluated at
each indicated day. Total RNA was extracted from kidneys of high salt and camostat mesilate rats at day 21. Real-time PCR analysis was performed
for TGF-B1, collagen type |, collagen type lll and nephrin. (a) Systolic blood pressure, (b) urinary protein excretion, and (c) renal injury markers.

Results are expressed as mean£SD (n= 8). CM, high-salt diet and camostat (0.1%); HS, high-salt diet; TGF-81, transforming growth factor-g1.

*P < 0.05 vs. HS rats; **P < 0.01 vs. HS rats; ***P < 0.001 vs. HS rats.

Camostat mesilate and FOY-251 decreased R, as well as
I in M-1 cells. It has been demonstrated that aprotinin
but not soybean trypsin inhibitor (STT) altered R, of M-1
cells [23], indicating that protease activity affected the
resistance of cultured epithelial cells. Because prostasin
activity is sensitive to aprotinin but not to STI, the
involvement of prostasin in the development of R is
a strong possibility. Furthermore, Verghese e a/. [24]
revealed that overexpression of wild-type prostasin

Table 1 Physiological profiles of high salt and camostat mesilate
rats

HS CM
Food consumption (g/day) 21.04+1.4 20.6+1.8
Sodium consumption (mmol/day) 28.61+1.9 28.0:+2.5
Water consumption (ml/day) 145t 14 138+ 12
Body weight {(g) 237 +£17 23848
Kidney weight {mg/g BW) 13.04+0.6 10.8+0.4*
Serum albumin (g/l) 28+ 1 31+18
Serum creatinine (umol/l) 3246 171
Creatinine clearance {ml/min) 1.44+04 2.4+0.2%
Serum Na (mmol/t) 146 + 1 146+2
Serum K {mmol/l) 3.7+04 3.8+0.1
PRA (ng/l/s) 0.724+0.17 0.89+£0.22
PAC (nmol/l) 46.3+9.2 58.3+21.1
Urine volume (ml/day) 118+ 18 106+ 16
Urinary Na excretion (mmol/day) 23.6:+6.9 27.8+26
Urinary Na/K ratio 6.4+0.6 7.0£0.3*%
Urinary camostat mesilate {pmol/l) ND ND
Urinary FOY-251 (wmol/l) ND 1051 4+2.33

Data are expressed as mean + SD (n = 8). CM, high-salt diet and camostat (0.1%)
group; HS, high-salt diet group; ND, not detectable; PAC, plasma aldosterone
content; PRA, plasma renin activity. *£<0.001 vs. HS group; SP<0.01 vs. HS
group; and *P < 0.05 vs. HS group.

decreased R, of M-1 cell monolayers, whereas overex-
pression of a protease-dead mutant of prostasin increased
it. From these findings, it is considered that camostat
mesilate and FOY-251 could alter R, in epithelial cell
monolayers by inhibiting prostasin activity.

In the present studies, we also investigated the antihy-
pertensive and renoprotective effects of camostat mesilate
on Dahl salt-sensitive rats fed with a high-salt diet. Our in-
vitro data definitely demonstrated that both camostat
mesilate and FOY-251 reduced ENaC activity, probably
through the inhibition of prostasin activity. Therefore, we
expected that administration of camostat mesilate would
improve salt-sensitive hypertension, in which ENaC is
exceedingly activated, and indeed, camostat mesilate
substantially depressed SBP in Dahl salt-sensitive rats
after 2 weeks of treatment. At day 21, sodium and water
consumption, urine volume, and renal sodium excretion
were not significantly different between Dahl salt-
sensitive and camostat mesilate rats, but we observed a
tendency toward natriuresis in camostat mesilate rats. The
reason why renal sodium excretion was not increased with
statistical significance in camostat mesilate rats may pre-
sumably be because the loading dose of sodium to Dahl
salt-sensitive rats was too high to observe the effect of
camostat mesilate on sodium balance. In other words,
because an extremely large amount of sodium was filtered
through the glomeruli and excreted into urine without
tubular reabsorption because of the high-salt diet, small
changes in sodium reabsorption caused by camostat
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mesilate might not produce a statistically significant
change in overall sodium excretion. However, we observed
a statistically significant increase in the urinary Na/K ratio
in camostat mesilate rats, which is widely used to evaluate
aldosterone activity at the distal nephron and collecting
duct [25]. Therefore, we believe that the elevation of the
urinary Na/K ratio in camostat mesilate rats indicates the
decrease in activity of ENaC. We determined the urinary
concentrations of camostat mesilate and FOY-251 in camo-
stat mesilate rats. As shown in Table 1, camostat mesilate
was not detected in the urine of camostat mesilate rats, but
the concentration of FOY-251 in the urine of camostat
mesilate rats reached approximately 10 wmol/l. Consider-
ing that 10 wmol/l of FOY-251 sufficiently inhibited the
activities of prostasin and ENaC i vitro, we believe that
the dosage of camostat mesilate for our in-vivo exper-
iments should be enough to suppress prostasin and ENaC
in rat kidneys.

The Dahl salt-sensitive rat is a well known model of salt-
sensitive hypertension; however, the mechanism by
which the high-salt diet raises BP is not clearly defined.
Aoi ef al. [16] showed that high-salt diets increased the
mRNA expression of o« ENaC despite the presence
of lower PAC levels in Dahl salt-sensitive rats. If the
abnormal upregulation of ENaC actually contributes to
the development of salt-sensitive hypertension in Dahl
salt-sensitive rats, inhibitors of ENaC should ameliorate
the hypertension. The antihypertensive effect of camo-
stat mesilate demonstrated in our study would support
their hypothesis that aberrant activation of ENaC under
high-salt diet conditions is primarily responsible for
the pathogenesis of salt-sensitive hypertension in Dahl
salt-sensitive rats. In general, natriuresis should result in
elevated PAC levels. However, we did not observe any
change in PAC levels in camostat mesilate rats. A possible
explanation for these conflicting results is that camostat
mesilate may inhibit secretion of aldosterone by the
adrenal gland. Tetsuo e7 ¢/. [26] showed that intravenous
infusion of nafamostat mesilate, a synthetic serine pro-
tease inhibitor, decreased aldosterone secretion from the
adrenal gland in rats, although they did not determine the
precise mechanism. Because camostat mesilate is struc-
turally related to nafamostat mesilate, camostat mesilate
has the potential to suppress the secretion of aldosterone
in vive. Further studies are required to elucidate this
possibility.

Camostat mesilate rats displayed a decrease in both
serum creatinine levels and urinary protein excretion,
indicating a protective effect of camostat mesilate against
kidney injury. TGF-f1 expression in the glomerulus,
with the expansion of extracellular marurix, is elevated
in various experimental renal diseases, including hyper-
tension in Dahl salt-sensitive rats {27]. Treatment of
Dahl salt-sensitive rats with camostat mesilate dramatic-
ally suppressed the high-salt diet-induced increase in

TGF-B1, collagen type I, and collagen type I[II mRNA,
and also ameliorated a decrease in nephrin expression.
The alterations in mRNA expression of these genes have
been clearly demonstrated to be associated with the
severity of glomerular injury. These results strongly
suggest that camostat mesilate had a beneficial effect
on the kidney in Dahl salt-sensitive rats fed a high-salt
diet. Significant reductions in BP in hypertensive animals
and patients, of course, ameliorate injury to organs
including the kidney, heart, brain, and vasculature. Thus,
a simple explanation for the renoprotective effect of
camostat mesilate on Dahl salt-sensitive rats comes from
the marked decrease in BP. In addition, the association of
high sodium intake and tissue injury has been extensively
investigated in many experimental and clinical studies
[28,29]. Elimination of salt by diuretics has been demon-
strated to improve mortality and morbidity of hyperten-
sive patients in a number of clinical trials [30]. Whether
the renoprotective effects of camostat mesilate were
solely a result of the substantial reduction in BP or from
the natriuretic action or both remains to be determined.
Several reports showed the effect of camostat mesilate on
proteinuria in various nephropathies [31,32]. A hypercoa-
gulable state with elevated plasma fibrinogen and
impaired fibrinolysis has been reported to be involved
in the progression of diabetic nephropathy [33]. Matsu-
bara ez al. [34] demonstrated that proteinuria in diabetic
nephropathy was decreased through the inhibitory effect
of camostat mesilate on the coagulation system and
platelet function. They also showed that camostat mesi-
late decreased urinary protein excretion without chan-
ging BP in patients with advanced diabetic nephropathy
[34]. Their findings suggest that camostat mesilate may
have protective effects on the kidney apart from the
reduction in BP, although we have not addressed this
issue in the current investigation. According to the pro-
duct document regarding camostat mesilate, camostat
mesilate and FOY-251 have inhibitory effects on trypsin,
plasmin, and plasma kallikrein with low 50% inhibitory
concentration (approximately 1-100nmol/l). Because
the urinary concentration of FOY-251 is approximately
10 wmol/l as described above, these serine proteases
could be inhibited by camostat mesilate in Dahl salt-
sensitive rats. However, to our knowledge, there are no
reports demonstrating a possible involvement of trypsin
or plasmin in salt-sensitive hypertension. Although the
inhibition of plasma kallikrein by camostat mesilate may
affect BP through the kallikrein—kinin system, treatment
with camostat mesilate theoretically should increase the
BP. Therefore, we speculate that the contribution of
trypsin, plasmin, and plasma kallikrein to the antihyper-
tensive and natriuretic effects of camostat mesilate on
Dahl salt-sensitive rats is negligible. However, a possible
involvement of other unknown serine protease(s) that
isfare inhibited by camostat mesilate in the pathogenesis
of salt-sensitive hypertension in the Dahl salt-sensitive
rat cannot be excluded at this point.
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In summary, we demonstrated that camostat mesilate and
FOY-251 reduced sodium currents in M-1 cells probably
by the inhibition of prostasin activity, and that camostat
mesilate had both BP lowering and renoprotective effects
on Dahl salt-sensitive rats fed with a high-salt diet. Our
current findings strongly suggest the possibility that
camostat mesilate could represent a new class of anti-
hypertensive drugs with renoprotective effects. Because
camostat mesilate is orally active and already approved
for clinical use for the treatment of reflux esophagitis and
chronic pancreatitis in Japan, clinical trials targeting
hypertensive patients, especially salt-sensitive hyperten-
sive patients with suppressed renin activity, are definitely
required to prove the clinical benefit of camostat mesilate
in humans.
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PKDI haploinsufficiency is associated with altered vascular
reactivity and abnormal calcium signaling in the mouse aorta

Nicole Morel - Greet Vandenberg + Ali K. Ahrabi.
Nathalie Caron + Fanny Desjardins «
Jean-Luc Balligand - Shigeo Horie « Olivier Devuyst

Received: 7 May 2008 /Revised: 11 July 2008 / Accepted: 15 July 2008 / Published online: 5 August 2008

@© Springer-Verlag 2008

Abstract Mutations in PKD/ are associated with autoso-
mal dominant polycystic kidney disease (ADPKD), which
leads to major cardiovascular complications. We used mice
with a heterozygous deletion of Pkdl (Pkdl™”") and wild-
type (Pkdl™*") littermates to test whether Pkdl haploinsuf-
ficiency is associated with a vascular phenotype in different
age groups. Systolic blood pressure measured by the tail-
cuff method was similar up to 20 weeks of age, but
significantly higher in 30-week-old Pkd1™" compared to
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PkdI™*. By contrast, similar telemetric recordings were
obtained in unrestrained Pkdl™ and PkdI™™ mice. The
contractile responses evoked by KCl or phenylephrine were
similar in young animals but increased in abdominal aortas
of 30-week-old Pkdl™ mice, and acetylcholine-evoked
relaxation was depressed. Basal cytosolic calcium, KCI,
and phenylephrine-evoked calcium signals were signifi-
cantly lower in the Pkd] *"~ aortas, whereas calcium release
evoked by caffeine or thapsigargin was significantly larger.
These changes were paralleled with a significant change in
the mRNA expression of Pkd2, Trpcl, Orail, and Sercala
in the aortas from PkdI™" vs. Pkdi™"". These results are the
first to indicate that haploinsufficiency in Pkd/ is associated
with altered intracellular calcium homeostasis and increased
vascular reactivity in the aorta with compensatory changes
in transport proteins involved in the calcium signaling
network.

Keywords Polycystin-1 - Polycyctin-2 - ADPKD - Aorta -
Contraction - Calcium signaling

Introduction

Autosomal dominant polycystic kidney disease (ADPKD)
is the most frequently inherited nephropathy and an
important cause of end-stage renal disease. Mutations in
two genes, PKD/ and PKD2, have been associated with
ADPKD. Mutations in PKDI account for approximately
85% of the affected families, and they are associated with a
renal disease that progresses more rapidly than in PKD2
families [30]. PKD! and PKD?2 encode integral membrane
proteins, polycystin-1 (PC1) and polycystin-2 (PC2), which
are located in the primary cilium and interact in vivo to
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regulate various signaling pathways involved in the
proliferation and differentiation of renal tubular cells [37].
Since PC2 shares significant sequence homology with
voltage-dependent Ca®* channels and transient receptor
potential channels (TRP) and forms a nonselective cation
channel highly permeable to Ca*', it has been suggested
that the association of PC1 with PC2 constitutes a
functional complex that is involved in regulating intracel-
lular Ca®" homeostasis [10, 24].

Cardiovascular complications are the main cause of
death in patients with ADPKD. Hypertension is frequently
an inaugural manifestation of ADPKD, present in approx-
imately 50% of ADPKD patients with normal renal
function [38]. Its development is accompanied by a
reduction in renal blood flow, a more rapid progression of
renal disease, and a high incidence of left ventricular
hypertrophy [30, 38]. An impaired endothelium-dependent
relaxation may contribute to vasoconstriction, and thereby,
to the progressive loss of renal function in the disease [28,
421, Both PC1 and PC2 are expressed in the endothelium
and vascular smooth muscle cells (VSMC) lining large
arteries in man and mouse [9, 15]. Mouse embryos
homozygous for Pkdl or Pkd2 null mutations show
hydrops fetalis, localized hemorrhages, and increased
microvascular permeability [3, 15, 23, 43]. Furthermore,
heterozygous Pkd2™™ arteries develop increased contractil-
ity [32], have altered VSMC intracellular Ca** homeostasis,
and increased cAMP levels [16, 33]. Taken together, these
studies suggest that a loss of function or altered dosage of
PC1-PC2 in the vasculature could play a part in the early
development of hypertension in ADPKD. However, it is
unknown whether haploinsufficiency in PKDI—the most
frequent situation in ADPKD patients—is associated with
alterations in Ca®* signaling or changes in vascular tone
and reactivity which could lead to impaired blood pressure
control.

In the present study, we used a well-established Pkd!
mouse model {23] to test whether Pkdl haploinsufficiency
is associated with vascular dysfunction, in relation with
intracellular Ca®" homeostasis. Like other Pkdl null
mutants, the homozygous Pkd] “* mice die in utero with
massive cystic kidneys, hydrops fetalis, and cardiovascular
defects {23]. By contrast, there is no consistent phenotype
in heterozygous Pkdl™" mice which do not develop renal
cysts and renal failure until a very old age {21, 23]. Our
investigations reveal for the first time that reduced PKDI
dosage is associated with an age-dependent increase in
vascular reactivity, with altered intracellular Ca®" homeo-
stasis in the aorta and compensatory changes in transport
proteins involved in the Ca®* signaling network. These data
give insights into the biology of PCI and vascular damage
in ADPKD.

‘2]_ Springer

Materials and methods
Pkdl mice and sampling

Experiments were conducted on three groups of age-
matched, male mice (aged 12, 20, and 30 weeks, respectively)
with a targeted deletion of exons 2--5 and part of exon 6 of
Pkdl, resulting in a null allele [23]. The experiments were
conducted in accordance with the National Research
Council Guide for the Care and Use of Laboratory Animals
and were approved by the local Ethics Committee.

Blood pressure and continuous telemetry recording

Systolic blood pressure (SBP) was measured by the tail-cuff
method in conscious, restrained animals (Physiograph
Narco, Houston, TX, USA), on two different days. Four
to six successive measurements were averaged. Continuous
recording of blood pressure signals (and heart rate, derived
from pressure waves) from the aortic arch was performed in
conscious, unrestrained animals with surgically implanted,
miniaturized telemetry devices (Datascience, USA). Briefly,
under anesthesia with a mixture of ketamine and xylazine,
the left common carotid artery was isolated and the tip
of the catheter was retrogradely inserted into the artery until
the aortic arch, The catheter was connected to the body of
the implant, placed in a subcutaneous pouch in the right
flank. After 1 week of recovery, long-term (24 h) online
recordings were digitized (range, 20 to 2,000 Hz) and
stored for further analysis [12, 27].

Measurement of aorta morphology and contractile tension

A 2-mm segment of abdominal aorta was mounted in a
myograph containing physiological solution (composition
in mmol/L: NaCl 122, KCI 5.9, NaHCO; 15, glucose 10,
MgCl, 1.25, and CaCl; 1.25, gassed with a mixture of 95%
0,-5% COy). Passive tension—diameter relationship was
established to estimate diameter at 100 mmHg (L100) and
vessel diameter was set at 0.9xL100. After 30 min
recuperation time, the aorta was contracted by changing
the physiological solution in the bath to a high-KCl,
depolarizing solution (composition in mmol/L: NaCl 27,
KCl1 100, NaHCO; 15, glucose 10, MgCl, 1.25, CaCl,
1.25). Acetylcholine (1 pmol/L) was used to verify the
integrity of the endothelium. Contraction to phenylephrine
was measured by cumulatively increasing the concentration
of phenylephrine in the bath solution. When required,
arteries were incubated with N-nitro-L-arginine (NNA,
0.1 mmol/L) for 30 min before stimulation. For the
relaxation studies, the arteries were contracted with phenyl-
ephrine (1 umol/L). At the end of the experiment, myo-
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graph was put on the stage of an inverted microscope to
measure wall thickness. Contraction was normalized for
the length of the aortic segment and expressed as
millinewton per millimeter.

Measurement of aorta contractile tension and cytosolic
calcium concentration

Aortic rings isolated from 18- to 22-week-old mice were
endothelium-denuded by gentle rubbing and were incubat-
ed for 3 h at room temperature in physiological solution
containing 5 umol/L fura-PE3 acetoxymethyl ester and
0.05% Cremophor EL. The rings were mounted between
two hooks under a tension of 8 mN in a 3-ml cuvette filled
with physiological solution (composition as above) at 37°C
gassed with a 95-5% mixture of O, and CO,. All solutions
contained NNA (0.1 munol/L). The cuvette was part of a
fluorimeter (CAF, JASCO, Tokyo) that allowed simulta-
neous estimation of the calcium signal while the muscle
tone was measured by an isometric force transducer. The
Ca®" signal was measured as previously reported [8]. To
measure Ca”" release from the sarcoplasmic reticulum (SR),
aorta was perfused for 2.5 min with Ca**-free solution
(same composition as the physiological solution without
CaCl, and with 0.1 mmoV/L ethylene glycol bis(2-amino-
ethyl ether)-N,N,N',N'-tetraacetic acid [EGTA]) before Ca®"
release was evoked by phenylephrine (1 pmol/L), caffeine
(10 mmol/L), or thapsigargin (1 umol/L) added in the Ca™'-
free solution. At the end of the experiment, the fura-2-Ca®"
signal was calibrated and cytosolic calcium concentration
was calculated as described previously [7]. Ca®* release
was estimated from the area under the curve, corrected for
the baseline value estimated by interpolation of the data
points recorded during 1 min before the application of the
stimulation and after completion of the release phase.

Aorta permeabilization

Aortas were permeabilized by using the Ca*" ijonophore
ionomycin (10 umol/L—2 min), which allowed to equili-
brate the intracellular and extracellular Ca** concentration.
Aortas were thereafter incubated in Ca®*-free solution
containing 1 mmol/I. EGTA. Contraction was evoked by
adding Ca”" in the solution. The added Ca®" was calculated
in order to obtain the desired pCa (—log Ca®" concentra-
tion). Mg?* was adjusted to 1.25 mmoV/L [25].

Real-time g-PCR
Total RNA from 20-week-old mouse aorta and kidney was

extracted with Trizol (Invitrogen, Merelbeke, Belgium),
treated with DNase I, and reverse-transcribed into ¢cDNA
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with SuperScript III Rnase H Reverse Transcriptase
{Invitrogen). The quality and quantity of RNA were
evaluated using the 2100 BioAnalyzer (Agilent Technolo-
gies, Palo Alto, CA, USA). The primers (Table 1) were
designed using Beacon Designer 2.0 (Premier Biosoft
International, Palo Alto, CA, USA). The PCR products
were sequenced by Genome Express. The efficiency of
each set of primers was determined by dilution curves and
the Ct differences between the reference (Gapdh) and target
genes calculated for each sample of each genotype. The
formula used to quantify the relative changes in target over
Gapdh mRNAs between the two groups is derived from the
27888 formula as described by Pfaffl [29]. The threshold
Ct values were obtained from nine different mice in each
group for aorta and four mice for kidney. Analysis of
housekeeping gene expression stability between genotypes
was done using the geNorm software [40].

Drugs

Fura-PE3 acetoxymethyl ester was from Calbiochem (Euro-
Biochem, Bierges, Belgium). All other compounds were
from Sigma (Sigma-Aldrich, Bornem, Belgium).

Statistical analysis

Data are presented as the means+SEM. LogBCsy (pD5)
values were calculated by nonlinear curve fitting of the
individual concentration—effect curves (GraphPad Prism)
and were used for the statistical analysis. Comparisons were
made by Student’s ¢ test or ANOVA. Concentration-effect
curves were compared by two-way ANOVA (GraphPad
Prism). P values <0.05 were considered significant.

Results

Biometric parameters and blood pressure control
in Pkdl mice

The biometric parameters of the three age groups of Pkd]
mice are given in Table 2. The PkdI*"™ and Pkdl™" mice
had a similar body weight in each age group. Tail-cuff
plethysmography revealed similar SBP in both groups up to
20 weeks, while SBP of PkdI™™ was significantly higher
than that of PkdI*" at age 30 weeks. However, no
difference in diastolic and systolic blood pressure was
observed between Pkdl™™ and Pkdl*"* aged 20 to 30 weeks
when using a telemetry system in unrestrained animals. No
significant cardiac or aortic wall hypertrophy and no
difference in aortic internal diameter at a transmural pressure
of 100 mmHg were observed between Pkdl™™ and PkdI*™"*,
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Table 1 Sequences of primers and efficiency of g-PCR reactions

Gene Sequence of primers Amplicons (bp) Efficiency

Gapdh Sense TGCACCACCAACTGCTTAGC 176 1.04+0.03
Antisense GGATGCAGGGATGATGTTCT

18s Rna Sense GTAACCCGTTGAACCCCATT 151 0.98+0.02
Antisense CCATCCAATCGGTAGTAGCG

beta-Actin Sense TGCCCATCTATGAGGGCTAC 102 1.03£0.04
Antisense CCCGTTCAGTCAGGATCTTC

Hprtl Sense ACATTGTGGCCCTCTGTGTG 162 0.99:£0.01
Antisense TTATGTCCCCCGTTGACTGA

Cyclophilin a Sense CGTCTCCTTCGAGCTGTTTG 139 1.024+0.02
Antisense CCACCCTGGCACATGAATC

36b4 Sense CTTCATTGTGGGAGCAGACA 150 1.02+0.02
Antisense TTCTCCAGAGCTGGGTTGTT

Nos3 Sense CTCCCAGCTGTGTCCAACAT 149 1.04+0.04
Antisense CACACAGCCACATCCTCAAG

Pkdl Sense TAGGGCTCCTGGTGAACCTT 150 1.02+0.06
Antisense CCAGACCACAGTTGCACTCA

Pkd2 Sense GGAGGAACTTCTGGCTGGA 151 0.93+0.06
Antisense ACAGGCTGAAACTGCCAAGA

Trpel Sense AGAGCTGCAGTCCTTCGTTG 150 0.98+0.03
Antisense GCTCGAGCAAACTTCCATTC

Stiml Sense AGCTGGAATCACACAGCTCA 149 0.98+0.03
Antisense TATTTTCTCAGCCCCCTCCT

Orail Sense CAGACCATGACTACCCACCA 148 0.96+0.04
Antisense ACCGAGTTGAGGTTGTGGAC

Chopl0 Sense CCCAGGAAACGAAGAGGAAG 155 1.06+0.02
Antisense CCTCCTGGGCCATAGAACT

Ednl Sense CTGGGAGGTTCTTCCAGGT 148 1.04:+:0.06
Antisense TTTGGGCCCTGAGTTCTTTT

Sercab Sense GGTGGTCTGGGTCTACAGC 171 1.05+0.02
Antisense AACCTCCTTCACCAGCCAAT

Sercala Sense GAACCTTTGCCGCTCATTTT 146 0.99+0.06
Antisense TCCAGTATTGCGGGTTGTTC

Renl Sense ATCTTTGACACGGGTTCAGC 150 1.02+0.04

Antisense TGATCCGTAGTGGATGGTGA

Age-dependent endothelial dysfunction and increased
contractile responses in Pkdi*"™ aortas

The endothelium-dependent relaxation evoked by acetyl-
choline was similar in Pkdl™" and PkdI™ mice up to
20 weeks of age but it was significantly attenuated in 30-
week-old Pkdl™" aortas (Fig. 1a). Similarly, no difference
was observed in the contractile responses to phenylephrine
in aortic segments from 12- and 20-week-old Pkdl mice,
whereas, at age 30 weeks, the contractions were signifi-
cantly larger in PkdI™ aortas despite unchanged sensitivity
to phenylephrine (Fig. b, Table 3). The NOS inhibitor
NNA shifted the phenylephrine concentration—effect curves
to the left but did not affect the difference between Pkdl™"
and PkdI*"™ (Fig. Ib).

The contractile response to KCI was not different between
12-week-old samples, but at 20 and 30 weeks, aortas from
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PldI"™ developed significantly larger contractions than
PkdI** aortas (2.2+0.2 and 2.9+0.2 mN/mm at 20 weeks,
n=17, P<0.05, 1.7+0.2 and 2.5+0.3 mN/mm at 30 wecks,
n=12, P<0.05 in PkdI™” and PkdI'"", respectively).

Alteration of Ca** handling in vascular smooth muscle
from PkdI™" aortas

In endothelium-denuded aorta, basal cytosolic Ca** was
lower in PkdI*"™ compared to Pkdl™ (104+9 vs. 146+
3 nmoVL, n=19 pairs, P<0.05) (Fig. 2a). KCl-depolariza-
tion simultaneously increased global cytosolic Ca®* and
contractile tension (Fig. 2b): the increase in calcium was
significantly smaller in Pkdl™ samples, while simulta-
neous contraction was enhanced. Accordingly, a signifi-
cantly higher ratio of contraction to cytosolic Ca**
concentration was observed in Pkdl™ vs. Pkdl™™ aortas
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Table 2 Biometric and hemodynamic parameters of Pkd/ mice
Prd1*" Phd ™"
Weight (g)
12 weeks 25.5+£0.6 (8) 24.5+0.5 (7
20 weeks 27.7+£0.6 (18) 27.4+0.8 (18)
30 weeks 27.74£0.7 (8) 294£0.7 ()
Systolic blood pressure, tail-cufl’ (mmHg)
12 weeks 11745 (6) 12246 (6)
20 weeks 117£10 (5) 114+6 (5)
30 weeks 101 %6 (6) 14146 (6) *
Systolic blood pressure, radiotelemetry (mmHg)
20 weeks 114422 (4) 118+1.6 (4)
30 weeks 121+£2.4 (4) 115£1.9 ()
Diastolic blood pressure, radiotelemetry (mmHg)
20 weeks 88.8+1.8 (4) 90.7+1.5 (4)
30 weeks 97.6+2.3 (4) 91.4+1.4 (4)
Heart/body weight (mg/g)
12 weeks 5.42+40.30 (5) 5.84+0.29 (5)
20 weeks 4.1640.08 (4) 3.86+0.10 (4)
30 weeks 3.95+0.17 (5) 4.00+0.04 (3)
Aorta wall thickness (i)
12 weeks 39.943.8 (4) 35.8+2.4 (4)
20 weeks 54.1+1.0 (4) 55.9+2.0 (4)
30 weeks 55.3+2.3 (7) 53.7£23 (N
Aorta internal diameter (1)
12 weeks 1,059%13 (6) 1,038+£20 (6)
20 weeks 1,166£40 (12) 1,07623 (9)
30 weeks 1,185+39 (9) 1,018+29 (7)

Data are the means+SEM from (1) animals
#P<0.05 vs. Pkdl'™"*

(6.9£1.1 and 4.84#0.6 mN per 100 nmol/L increase in
cytosolic Ca", respectively, n=18, P<0.05).

The ol-adrenergic agonist phenylephrine is known to
increase cytosolic Ca** both by the release of intracellular
Ca** and the activation of Ca®* entry through plasmalem-
mal channels. In the absence of stimulation, removal of
Ca® from the perfusion solution produced a decrease in
cytosolic Ca®" that was reversed after the readdition of Ca*
into the perfusion solution (not shown). Phenylephrine
(1 umol/L) applied during perfusion of the artery with
Ca*'-free solution produced a transient increase in Ca’"
signal and contraction (Fig. 2¢). The intracellular Ca®*
release was significantly smaller in Pkd"™ aortas, contrast-
ing with a similar contraction. In the presence of phenyl-
ephrine, readdition of Ca** into the perfusion solution
produced a rapid increase in confractile tension and in
cytosolic Ca2+, which stabilized at a level higher than the
basal resting level (Fig. 2¢). Although the increase in
cytosolic Ca®* was similar in Pkdl""™ and Pkdl™* , the
amplitude of the simultaneous contraction was twice larger
in PkdI*"" aortas compared to WT (P<0.05).

To further investigate the Ca®" storage capacity of the
sarcoplasmic reticulum (SR), Ca®* release was evoked by
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caffeine or the SERCA inhibitor thapsigargin in arteries
bathed in Ca**-free solution (Fig. 3). Caffeine (10 mmol/L)
or thapsigargin (1 pumol/L) did not evoke a significant
change in cytosolic Ca> in PkdI™" mice, but produced a
transient increase in cytosolic Ca®" in PkdI™" aorta. The
addition of Ca®" into the bathing solution after store
depletion with caffeine evoked a rapid increase in Ca®"
signal, which was significantly smaller in Pkd/™" com-
pared to Pkdl™* (Fig. 3a, b), while Ca®" entry after store
depletion with thapsigargin produced a similar increase in
cytosolic Ca®* in Pkd!™™ and PkdI™ (Fig. 3c, d).

Permeabilized Pkdl™ aorta develops increased
contractile tension

In aorta permeabilized with the Ca®" ionophore ionomycin,
increasing the free Ca®* concentration in the bath solution
evoked a concentration-dependent contraction (Fig. 4). The
contractile response as a function of the pCa was larger in
PkdI*™"" aorta vs. PkdI™™. However, the pCa producing
half-maximum response was unchanged (6.87+0.18 vs.
7.03£0.17, respectively), suggesting that the sensitivity of
the contraction to Ca®* was not different.
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Fig. 1 Concentration—effect curves of acetylcholine-evoked relaxa-
tion and phenylephrine-evoked contraction in aortas isolated from 12-,
20-, and 30-week-old Pkd!™" and Pkdl™". a Aortas were precon-
tracted with phenylephrine (1 umol/L). Acetylcholine was added into
the physiological solution when contraction was stable. Data
expressed as percent of the contraction evoked by phenylephrine
before the addition of acetylcholine are the means=SEM from eight
determinations. *P<0.05, significant difference in the effect of

Differential transcriptional regulation in Pkd/ ™ aortas
and kidneys

Real-time g-PCR was used to test the differential expres-
sion of transcripts primarily involved in endothelial

Table 3 Phenylephrine pD, values (—logEDsg) with(out) NNA

acetylcholine between Pkdl™ and PkdI™* (Student’s 1 test). b
Contraction was evoked by cumulative increase in phenylephrine
concentration in the bathing solution. After washing, aortas were
incubated with NNA (100 umol/L) for 30 min before the concentration—
response curve to phenylephrine was resumed. Data are expressed as the
means+SEM from six to eight detenminations. *P<0.05, between
curves obtained in PkdI™™ and in Pkdl™ (ANOVA)

reactivity (eNOS, endothelin) and intracellular Ca®* regula-
tion (Serca2a and 2b, Pkd2, Tipcl, Stiml, and Orail)
(Fig. 5). As expected, the expression levels of Pkd] mRNA
in PkdI™" was approximately 50% of the wild-type level.
The levels of Pkd2 and Trpcl mRNA were significantly

Without NNA With NNA
Pkl Prdi*™ Phd it Pk
12 weeks (n=6) 6.60+0.09 6.55+0.09 6.73+0.16* 6.82::0.10%
20 weeks (n=8) 6.40%0.09 6.37+0.07 6.86+0.06% 7.01+0.10*
30 weeks (n=8) 6.40+0.06 6.46+0.05 6.71+£0.07% 6.97+0.08% *+

pD, values were calculated by nonlinear curve fitting of the individual concentration—effect curves. Data are the means+SEM from »

determinations
*P<0.05 vs. without NNA; **P<0.05 vs, Pkd!™" at the same age
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Fig. 2 Cytosolic Ca®" concentration and responses to KCI and
phenylephrine in endothelium-denuded aortas isolated from Pkdl*”
and PkdI*™. a Mean value of cytosolic Ca®™ concentration in
unstimulated aortic rings from Pkdl™™ and Pkdl™™ (n=19). b Change
in cytosolic Ca®* concentration and in contractile tension evoked by
100 mmoVl/L KCI solution. Leff panel experimental traces of cytosolic
Ca™ concentration (upper traces) and contraction (lower traces)
recorded in aortas from Pkd/™ and Pkdl™. The physiological
solution was changed to a 100-mmol/L. KC! solution as indicated by
the horizontal bar. Right panel bar graphs showing the mean value of
the change in cytosolic Ca™ concentration (upper graph) and the
contraction (lower graph) evoked by the 100-mmol/L, KCI solution.
Data are the meanstSEM from {8 mice. The asterisk indicates
significant difference between Pkdl™™ and Pkdl™* (Student’s 1 test).
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¢ Effect of phenylephrine on cytosolic Ca?" concentration and
contraction in aorta isolated from PkdI™ and PkdI'*. Left panel
experimental traces of cytosolic Ca® concentration (upper traces) and
contractile tension (lower traces) recorded in aorta from Pkdl™™ and
PkdI™. Perfusion with Ca®*-free physiological solution and addition
of phenylephrine (1 pmolL) were performed as indicated by the
horizontal bars. Right panel bar graphs showing the mean value of the
Ca** signal (upper graphs) and the contraction (lower graphs) evoked
by phenylephrine in Ca®*-free solution (left graphs) or after the
readdition of Ca®" into the perfusion solution (right graphs). Ca®*
release was estimated by the area under the cytosolic Ca*" trace, Data
are the means+SEM from eight mice. The asterisk indicates significant
difference between Pkdl™™ and Pkdl™ (Student’s ¢ test)
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Fig. 3 _Intracellular Ca>* release and capacitative Ca® entry in aorta
isolated from Pkd!™™ and PkdI™™. a Experimental traces of cytosolic
Ca™ concentration (upper traces) and contractile tension (fower
traces) recorded in aorta from Pkdl™™ and PkdI'. Perfusion with
Ca”"-free physiological solution and addition of caffeine (10 mmol/L)
were performed as indicated by the horizontal bars. b Mean values of
the release of intracellular. Ca®* evoked by 10 mmol/L caffeine in
Ca®"-fice solution (Jeff) and of the Ca®" entry measured afler the
readdition of Ca®" into the perfusion solution (right). ¢ Experimental
traces of cytosolic Ca®" concentration (upper traces) and contractile

increased in Pkdl™" compared to PkdI™", The expression
of Orail mRNA was significantly lower in PkdI™" while
Stim! mRNA level was unchanged. In wild-type aorta,
Serca2a was fivefold less expressed than SercalZb, in
agreement with previous report [6]. The level of SercaZa
expression was significantly enhanced in Pkdl™™ aorta vs.
PldI*"*, whereas the expression of Serca2b was similar.
The levels of eNOS and endothelin mRNA were un-
changed. Of note, the remin mRNA expression was
significantly increased in PkdI™" kidneys, while Pkd2
was not different.
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tension (lower fraces) recorded in aorta from Pkdi*™ and Pkdl™™.
Perfusion with Ca’’-free physiological solution and addition of
thapsigargin (1 umol/L) were performed as indicated by the horizontal
bars. d Mean values of the release of intracellular Ca® evoked by
I mol/l thapsigargin in Ca?*-free solution (/eff) and of the Ca®* entry
measured after the readdition of Ca®" into the perfusion solution
(right). Data are the means+SEM from five mice (caffeine) or three
mice (thapsigargin). *P<0.05, significant difference between Pkdl™™
and Pkd ™" (Student’s ¢ test)

Discuassion

In this study, we show that reduced Pkd! gene dosage in
mouse leads to a vascular phenotype characterized by
impaired VSM Ca®" homeostasis and age-dependent in-
creased vascular contractility in aorta, which is associated
with increased SBP measured in restrained mice and alteration
of endothelium-dependent relaxation at age 30 weeks.
Increased vascular contractility was observed in aorta
from 20- to 30-week-old Pkdl™" mice, stimulated either
with phenylephrine or with the depolarizing KCl solution,
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Fig. 4 Ca’*-dependent contraction in ionomycin-permeabilized aorta
from Pkdl™ and Pkdi™". a Typical experimental traces of the
contractile tension developed by ionomycin-permeabilized aortic rings
from Pkdi™ and Pkdi**. lonomycin-permeabilized aortas were
incubated in Ca**-free solution (pCa<8). Contraction was evoked by

and was not associated with an increase in the sensitivity to
the agonist. This observation is consistent with the increase
in contractile response to noradrenaline reported in resis-
tance mesenteric arteries from the Han/SPRD rat model of
ADPKD [41] and, recently, in Pkd2"" mouse arteries [32].
Similarly, the impaired endothelium-dependent relaxation
in aorta from 30-week-old PkdI'~ substantiated the
endothelial dysfunction reported in subcutaneous resistance
vessels from ADPKD patients [42] and in mesenteric
resistance atteries from Han/SPRD rats [41]. These find-
ings, which confirm the previous observation of Muto et al.
[23], cannot explain the increased contraction since NOS
inhibition did not abolish the difference in contractility
observed between Pkdl™™ and PkdI*"* aortas. Further-
more, q-PCR data indicated that the expression of eNOS
was unchanged in Pkdl™" aortas, Moreover, ex vivo
analyses confirmed that angiotensin II produced a larger
increase in renal vascular resistance in Pkdl™™ vs. Pkdl*"*
mice, whereas the contractile response evoked by NOS
inhibition was similar (unpublished data). These observa-
tions indicate that increased contractility is neither restricted
to a-adrenergic stimulation nor to the aorta.

Two elements suggest that the increased contractility of
PkdI™"" arteries might be caused by an alteration in Ca®*
handling. First, the contractile tension is mainly regulated
by cytosolic Ca®* concentration; and second, PC1 has been
proposed to be involved in Ca®* signaling through its
structural interaction with PC2, in such a way that only a
normal PC1-PC2 complex is able to function as a Ca*"
channel [10]. Our measurements indicated that Pkd™"™
VSMC have a lower resting cytosolic Ca** than Pkdl™"*
cells. Of interest, lower basal cytosolic Ca®" concentration
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cumulatively increasing Ca®* concentration in the bathing solution
(pCa 8 to 5, by steps of 0.5 log unit). Ring length: pkd/™"=1.87 mm,
pkdI*"=1.78 mm. b Mean valuestSEM of Ca’"-evoked contraction
in ionomycin-permeabilized aortic rings from Pkd/ ™™ and PkdI™™ (n=
5). *P<0.05 between Pkd/"™* and Pkdi*"™

was also detected in the epithelial cells lining the renal
collecting ducts from Pkdl™" mice [1] and in Pkd2""
VSMC [33]. Taken together, these observations are consis-
tent with the involvement of PCI and PC2 in Ca®"
homeostasis, in both renal epithelial cells and VSMC,

Tn addition to a low cytosolic calcium level, Pkdi*"~
aorta VSMC exhibited several alterations of the Ca™"
signal, which could be related to the change in basal
calcium or associated with VSMC adaptation to Pkd!
deficit. Figure 6 summarizes some of the changes that could
be involved. Intracellular Ca®" release in response to
phenylephrine was significantly decreased in Pkdl™"
aortas. The larger Ca®" release evoked by caffeine or by
thapsigargin in Pkdl™" aortas compared to WT ruled out
the possibility of a lower Ca>* content in the SR of Pkd1™"
aortas. Another explanation for the altered phenylephrine
response in Pkdl™ aorta could be the inhibition of the
Ca*" release activity of the IP5 receptor by the lower cyto-
solic Ca** [36]. Alternatively, reduced PC1 dosage might
impair the process of Ca”* release. PC1 is mainly expressed
in the plasma membrane [34] and its interaction with
intracellular Ca®* channels has not been reported. However,
PC1 associates with PC2 [10, 31], and the latter has been

-located in the endoplasmic reticulum (ER) [22] where it

functions as a Ca**-activated Ca®" channel [17]. A deficien-
cy in PC1 can cause mislocalization of PC2 from the plasma
membrane to the membrane of the ER/SR [10].

The enhanced Ca®* release evoked by caffeine or
thapsigargin in Pkdl*™™ aorta could reflect an increased
uptake of Ca®" into the SR. The q-PCR analyses revealed
an increased expression of Sercala mRNA in Pkdl*"
aorta. Of interest, increased VSMC expression of SER-
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