predicts all-cause mortality, it is most predictive of death
from progressive HF, which suggests that it is a manifesta-
tion of or exacerbating factor for LV dysfunction.**

Study Limitations

One of the limitations is the small sample size of the
present study. First, there were only 3 deaths from progres-
sive HF and 2 sudden deaths during the follow-up periods.
Therefore, our observations need to be examined in a larger
population and cutoff points for major clinical outcomes
should be evaluated. Second, the use of B-blockers was
less frequent in serum TN-C =78.4 ng/mL group than
<784 ng/mL group. More patients in serum TN-C
=78.4 ng/mL were unable to tolerate P-blockers because
of hypotension, bradycardia, or other limiting symptoms.
We cannot rule out the effects of chronic medications on
the worse outcomes in serum TN-C levels =78.4 ng/mL
group. Third, the results reported in the present study
cannot be extrapolated to chronic HF and to ischemic
cardiomyopathy. Further studies are needed in these
specific settings.

Conclusions

The combined index of serum levels for TN-C and BNP
at discharge predicts cardiac events of rehospitalization and
cardiac death due to decompensated HF. Additionally,
elevated serum TN-C levels reflect left ventricular and
pulmonary vascular remodeling in patients with DCM.
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Ohjectives The purpose of this study was to explore a novel disease gene for hypertrophic cardiomyopathy (HCM) and to

evaluate functional alterations caused by mutations.

Background Mutations in genes encoding myofilaments or Z-disc proteins of the cardiac sarcomere cause HCM, but the
disease-causing mutations can be found in one-half of the patients, indicating that novel HCM-susceptibility
genes await discovery. We studied a candidate gene, ankyrin repeat domain 1 (ANKRD1}, encoding for the car-
diac ankyrin repeat protein (CARP) that is a Z-disc component interacting with N2A domain of titin/connectin

and N-terminal domain of myopalladin.

Methods We analyzed 384 HCM patients for mutations in ANKRD1 and in the N2A domain of titin/connectin gene (TTN).
Interaction of CARP with titin/connectin or myopalladin was investigated using coimmunoprecipitation assay to

demonstrate the functional alteration caused by ANKRD1 or TTN mutations. Functional abnormalities caused by

the ANKRD1 mutations were also examined at the celiular tevel in neonatal rat cardiomyocytes.

Results

Three ANKRD1 missense mutations, Pro52Ala, Thri23Met, and lie280Val, were found in 3 patients. All mutations

increased binding of CARP to both titin/connectin and myopalladin. In addition, TTN mutations, Arg8500His, and
Arg8604GIn in the N2A domain were found in 2 patients, and these mutations increased binding of titin/connectin to
CARP. Myc-tagged CARP showed that the mutations resulted in abnormal localization of CARP in cardiomyocytes.

Conclusions

CARP abnormalities may be involved in the pathogenesis of HCM.

(} Am Coll Cardiol 2009;54:334-42)
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Cardiomyopathy is a primary heart muscle disorder caused
by functional abnormalities of cardiomyocytes. There are
several clinical subtypes of cardiomyopathy, and the most
prevaleat subtype is hypertrophic cardiomyopathy (HCM)
(1,2). HCM is characterized by hypertrophy and diastolic
dysfunction of cardiac ventricles accompanied by cardio-
myocyte hypertrophy, fibrosis, and myofibrillar disarray

(1). Although the etiologies of HCM have not been fully”

elucidated, 50% to 70% of the patients with HCM have
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apparent family histories consistent with autosomal dom-
inant genetic trait (3), and recent genetic analyses have
revealed that a significant percentage of HCM is caused
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by mutations in the genes encoding for myofilaments and
Z-disc proteins of the cardiac sarcomere, with the ma-
jority of mutations identified in MYH7-encoded beta
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myosin heavy chain and MYBPC3-encoded myosin-
binding protein C (3).

Ankyrin repeat domain 1 (ANKRDI)-encoded cardiac
adriamycin responsive protein (4), or cardiac ankyrin repeat
protein (CARP) (5), is a transcription cofactor and an early
differentiation marker of cardiac myogenesis, expressed in
the heart during embryonic and fetal development. CARP
expression is up-regulated in the adult heart at end-stage
heart failure (6). In addition, increased CARP expression
was found in hypertrophied hearts from experimental mu-
rine models (7,8). These observations suggest a pivotal role
for CARP in cardiac muscle function in both physiological
and pathological conditions. Although CARP is known to
be involved in the regulation of gene expression in the heart,
Bang et al. (9) demonstrated that CARP located to both the
sarcoplasm and nucleus, suggesting a shuttling of CARP in
cellular components. Within the I-band region of sarco-
mere, CARP bound to both the N2A domain of titin/
connectin encoded by titin/connectin gene (77N) and the
N-terminal domain of myopalladin encoded by MYPN.
Hence, titin/connectin and myopalladin function in part as
anchoring proteins of “sarcomeric CARP” (9,10).

Titin/connectin is the most giant protein expressed in the
striated muscles, which is involved in sarcomere assembly,
force transmission at the Z-disc, and maintenance of resting
tension in the I-band region (11,12). In cardiac muscle,
there are 2 titin isoforms, N2B and N2BA. The N2B
isoform contains a cardiac specific N2B domain, and the
N2BA isoform contains both N2B and N2A domains. Both
N2A and N2B domains, within the extensible I-band
region, function as a molecular spring that develops passive
tension; the expression of N2B isoform results in a higher
passive stiffness than that of N2AB isoform. We previously
reported an HCM-associated mutation localizing to the
N2B domain (13), and Gerull et al. (14) reported other
TTN mutations in the Z/I transition domain. These obser~
vations suggest that the I-band region of titin/connectin
contains elastic components extending with stretch to gen-
erate passive force, which plays an important role in the
maintenance of cardiac function.

Another protein that anchors CARP at the Z/I band is
myopalladin, a cytoskeletal protein containing 3 proline-
rich motifs and 5 Ig domains. The proline-rich motifs in the
central part is required for binding to nebulin/nebulette, and
the Ig domains at the N-terminus and C-terminus are
involved in the binding to CARP and sarcomeric a-actinin,
respectively (9). It has been suggested that myopalladin
played key roles in sarcomere/Z-disc assembly, myofibrillo-
genesis, recruitment of the other Z/I-band elements, and
signaling in the Z/I-band (9).

In this study, we analyzed unrelated patients with here-
tofore genotype-negative HCM for mutations in ANKRD?
and found 3 mutations that showed abnormal binding to
myopalladin and titin/connectin. In addition, we searched
for mutations in the reciprocal CARP-binding N2A do-
main of titin/connectin and identified 2 HCM-associated
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mutations in T7N causing ab-
normal binding to CARP. We
report here that abnormal CARP
assembly in the cardiac muscles
may be involved in the pathogen-

Bh = antibody

ANKRDI = ankyrin repeat

. domain 1
esis of HCM.
CARP = cardiac ankyrin
repeat protein
Msthods

cDNA = complementary
deoxyribonucleic acid

Subjects. A toral of 384 unre-
lated paticnts with HCM were
included in this study. The pa-

tients were diagnosed based on

Cotp =
coimmunogrecipitation
DAPE = 4'6-diamidino-2-
medical history, physical exami- phenylindole
nation, 12-lead electrocardiogram,
echocardiography, and other spe-
cial tests if necessary. The diagnos-
tic crteria for HCM included lefe
ventricular wall thickness >13
mm on echocardiography, in the
absence of coronary artery disease,
myocarditis, and hypertension.

DCM = dilated
cardiomyopathy
HCGM = hypertrophic
cardiomyopathy

PCR = polymerase chain
reaction

WY = wild type

The patients had been analyzed previously for mutations in
previously published myofilament- and Z-disc associated
genes, and no mutation was found in any of the known
HCM-susceptibility genes (15-18). Ethnically-matched
healthy persons (400 from Japan, and 300 from the U.S.) were
used as controls. Blood samples were obtained from the
subjects after given informed consent. The protocol for re-
search was approved by the Ethics Reviewing Committee of
Medical Research Institute, Tokyo Medical and Dental Uni-
versity (Japan) and by the Mayo Foundation Institutional
Review Board (U.S.).

Mutational analysis. Using intronic primers, cach trans-
lated ANKRDI exon was amplified by polymerase chain
reaction (PCR) from genomic DNA samples. 77N exons
99 to 104 corresponding to the N2A domain including
binding domains to CARP and p94/calpain were amplified
by PCR in exon-by-exon manner. Sequence of primers and
PCR conditions used in this study are available upon
request. PCR products were analyzed by direct sequencing
or by denaturing high-performance liquid chromatography
followed by sequencing analysis. Sequencing was performed
using Big Dye Terminator chemistry (version 3.1, Applied
Biosystems, Foster City, California) and ABI3100 DNA
Analyzer (Applied Biosystems).

Coimmunoprecipitation (co-1P) assay. We obtained
complementary deoxyribonucleic acid (cDNA) fragments of
human ANKRDI and TTN by reverse-transcriptase PCR
from adult heart messenger ribonucleic acid. A wild-type
(WT) full-length CARP ¢cDNA fragment spanned from
bp249 to bp1208 of GenBank Accession No. NM_014391
(corresponding to aal-aa319). Three equivalent mutant
cDNA fragments containing C to G (Pro52Ala mutation),
C to T (Thr123Met mutation), or A to G (1le280Val

mutation) substitutions were obtained by the primer-
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directed mutagenesis method. A WT 7TTN ¢cDNA frag-
ment encoding N2A domains (from bp25535 to bp26465
of NM_133378 corresponding to 2a8437-aaB8747) was
obtained, and 3 7TV mutants carrying T to C {non—
disease-associated [1e8474Thr polymorphism), G w A
(HCM-associated Arg8500His mutation), or G to A
(HCM-associated Arg8604Gln mutation) substitutions
were created by the primer-mediated mutagenesis method.
The ¢DNA fragments of ANKRDI were doned into
myc-tagged pCMV-Tag3 (Stratagene, La Jolla, California),
and 77N and MYPN ¢DNA fragments were cloned into
pEGFP-C1 (Clontech, Mountain View, California). These
constructs were sequenced to ensure that no errors were
introduced.

Cellular transfection and protein extractions were per-
formed as described previously (19), and co-IP assays were
performed using the Catch and Release version 2.0 Revers-
ible Immunoprecipitation System according to the manu-
facturer’s instructions (Millipore, Billerica, Massachusetts).
Immunoprecipitates were separated on sodium dodecyl
sulfate—polyacrylamide gel electrophoresis gels and trans-
ferred to a nitrocellulose membrane. After a pre-incubation
with 3% skim milk in phosphate-buffered saline, the mem-
brane was incubated with primary rabbit anti-myc poly-
clonal antibody (Ab) or mouse anti-GFP monoclonal
antibody Ab (1:100, Santa Cruz Biotechnology, Santa
Cruz, California), and with secondary goat anti-rabbit
(for polyclonal Ab) or rabbit anti-mouse (for monoclonal
Ab) IgG HRP-conjugated Ab (1:2,000, Dako A/S,
Grostrup, Denmark). Signals were visualized by Immo-
bilon Western Chemiluminescent HRP Substrate (Mil-
lipore) and Luminescent Image Analyzer LAS-3000 mini
(Fujifilm, Tokyo, Japan), and their densities were quan-
tified by using Multi Gauge version 3.0 (Fujifilm, Tokyo,
Japan). Numerical data were expressed as mean = SEM.
Statistical differences were analyzed using 1-way analysis
of variance and the Student 7 test for paired values.
Means were compared by independent sample ¢ tests
without correction for multiple comparisons. A p value
<0.05 was considered to be statistically significant.
Indirect immunofluorescence microscopy. All care and
treatment of animals were in accordance with “Guidelines for

the Care and Use of Laboratory Animals” published by the .

National Institutes of Health (NIH Publication 85-23, revised
1985) and subjected to prior approval by the local animal
protection authority. Neonatal rat cardiomyocytes were pre-
pared as described previously (19). Eighteen hours and 48 h
after the transfection, cardiomyocytes were washed with
phosphate-buffered saline, fixed for 15 min in 100% ethanol at
—20°C. Transfected cells were incubated in blocking solution,
and stained by primary rabbit anti-myc polyclonal Ab (1:100,
Santa Cruz Biotechnology) and mouse anti~a-actinin mono-
clonal Ab (1:800, Sigma-Aldrich, St. Louis, Missouri), fol-
lowed by secondary sheep anti-rabbit IgG FITC-conjugated
Ab (1:500, Chemicon, Boronia, Victoria, Australia) and Alexa
fluor 568 goat anti-mouse IgG (1:500, Molecular Probes,
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Fugeue, Oregon). All cells were mounted on cover-glass using
Mowiol 4-88 Reagent (Calbiochem, Darmstadt, Germany)
with 4'6-diamidino-2-phenylindole (DAPI, Sigma-Aldrich),
and images from at least 200 transfected cells were analyzed
with an LSMS510 laser-scanning microscope (Carl Zeiss Mi-
croscopy, Jena, Germany).

Resulls

Identification of ANKRDI (CARP) and T7TN mutations
in HCM. Eleven distinct sequence variations in ANKRD1
were identificd among the 384 patients with HCM (Fig. 1A).
Four intronic variants, 2 nonsynonymous substitutions, and
1 synonymous variation were polymorphisms, because they
were also found in the controls. A nonsense mutation
{(c.423C>T in exon 2 yielding Gln59ter) was found in 2
patients with familial HCM and was absent in the controls,
but was not cosegregated with the disease in both families,
suggesting that they were not associated with HCM. In
contrast, 3 missense mutations, Pro52Ala (c.402C>G in
exon 2), Thr123Met (c.616C>T in exon 4), and 11e280Val
(c.1086A>G in exon 8), identified in 3 unrelated HCM
patients, were not found in the controls.

Sequence variations in 77V at the N2A domain contain-
ing binding region to CARP and p94/calpain were searched
for in the patients, and 8 variations were identified (Fig,
1B). An intronic variation and 3 synonymous variations
were polymorphisms observed in the controls. Two nonsyn-
onymous variations, 11e8474Thr (c.25645T>C in exon 99)
and Asp8672Val (c.26239A>T in exon 102), were not
associated with HCM, because 11e8474Thr was found in
the controls and Asp8672Val did not cosegregate with the
disease in a multiplex family. On the other hand, 2 missense
mutations, Arg8500His (c.25723G>A in exon 99) and
Arg8604Gln (c.26035G>A in exon 100), identified in
familial HCM patients, were not found in the controls.
Clinical phenotypes. Clinical findings of the patients car-
rying the ANKRDI or TTN mutations are summarized in
Table 1. All patients manifested with HCM except
CM1288 II-2, who had mild cardiac hypertrophy. Her
father had died suddenly of unknown etiology at the age of
30 years. Two unaffected brothers of the patient did not
harbor the mutation (Fig. 1C). The proband patient with
the TTN Arg8606Gln mutation (CM1480) (Table 1)
showed asymmetric septum hypertrophy. A family study
revealed that his father had unexplained sudden cardiac
death. His son (CM1481) (Table 1) was affected and carried
the same mutation (Fig. 1D).

Altered interaction between titin/connectin and CARP
caused by the TTN or CARP mutations. To investigate
the functional alterations caused by the CARP mutations in
the binding to titin/connectin N2A domain, WT-, Pro52Ala-,
Thr123Met-, or 11e280Val-CARP construct was cotransfected
with the WT TTN-N2A construct into COS-7 cells. Western
blot analyses of immunoprecipitates from the transfected cells
demonstrated that HCM-associated CARP mutations signif-
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icantly increased binding to TTN-N2A (2.22 £ 0.76 arbitrary
units [AU], p < 0.05; 1.98 + 0.52 AU, p < 0.01; 2.16 + 0.64
Al, p < 0.05, respectively) (Figs. 2A and 2B). Reciprocally, the
effect of titin/connectin mutations in binding to CARP was
assessed. The TTN-N2A constructs, WT-, HCM-associated
mutants (Arg8500His- and Arg8604GIn-TTN), or non-
disease-related variant (Ile8474Thr) TTN-N2A were cotrans-
fected with WT CARP. Western blot analyses showed that
Arg8500His and Arg8604Gln significantly increased the bind-

ing to CARP (2.78 + 0.40 AU or 3.16 = 040 AU,
respectively, p < 0.001 in each case) (Figs. 2A and 2B),
whereas the non—disease-related variant (I1e8474Thr) did not
alter the binding (1.18 = 0.11 AU), despite equal expression of
proteins.

Altered interaction between myopalladin and CARP
caused by the CARP mutations. Because CARP bound
also to myopalladin, we investigated the effects of CARP
mutations in binding to myopalladin. The WT or mutant
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CARP construct was cotransfected with a MYPN con-
struct. Western blot analysis revealed that binding of mu-
tant CARPs, Pro52Ala, Thri23Mer, or [1e280Val to myo-
palladin was significantly increased (3.60 = 0.67 AU, p <
0.001; 1.87 = 0.47 AU, p < 0.01; or 2.48 = 0.45 AU, p <
0.001, respectively) (Figs. 2C and 2D).

Altered localization of CARP caused by the muta-
tions. To further investigate the functional consequence of
the CARP mutations, we examined cellular distribution of the
mutant CARP proteins expressed in neonatal rat primary
cardiomyocytes. Cells were transfected with myc-tagged WT
or mutant CARP constructs, coimmunostained for myc (a
marker for CARP) and «-actinin (a marker for Z~disc). The
WT and mutant myc-CARP proteins were expressed at a
similar level in the transfected cells as assessed by Western-blot
analyses, suggesting that the mutations did not affect the
expression level and stability of CARP proteins (data not
shown). Control cells expressing myc-tag alone showed nega-
tive staining for myc-tag with striated staining pattern of
sarcomeric c-actinin at the Z-disc (data not shown). In
premature cardiomyocytes containing Z-bodies (Z-disc pre-
cursors), myc-tagged WT CARP was mainly targeted to
nucleus and colocalization of CARP with «-actinin, which
formed patchy dense bodies in the cytoplasm, was observed
(Figs. 3A to 3C). No apparent changes in localization of
mutant CARP proteins were observed in the nascent and
immature cardiomyocytes (Figs. 3D to 3L).

In the mature cardiomyocytes where Z-discs were well
organized, myc-tagged WT CARP was assembled in the
striated pattern at the Z-I bands and colocalized with c-actinin
(Figs. 4A to 4C). It was found that most (=90%) of mature
cardiomyocytes did not contain nuclear CARP (Figs. 4A to
4C). On the other hand, higher intensity of CARP-related
fluorescence at the Z-1 bands and diffused localization in
cytoplasm was observed in most (=80%) of the mature
cardiomyocytes expressing myc-tagged mutant CARPs, albeit
that the Z-disc assembly was not impaired (Figs. 4D to 4L).
Quite interestingly, myc-tagged mutant CARP proteins dis-
played localization within the nuclear and/or at nuclear mem-
brane in ~60% of mature cardiomyocytes (Figs. 4D to 4L).

Discussion

CARP encoded by ANKRDI is a nuclear transcription
cofactor expressing in the embryonic hearts. Its expression
progressively decreases in adult hearts (4,5) and reappears in
the hypertrophied or failing adult heart (6,22), suggesting
that CARP may be involved in the regulation of muscle
gene expression. CARP also localizes in cardiac sarcomere
although the roles of “sarcomeric CARP” are not fully
elucidated. Several reports have demonstrated that CARP
binds titin/connectin (10), myopalladin (9), and desmin
(21) at the Z/I-region of sarcomere. In this study, we found
that the HCM-associated ANKRDI mutations increased
the binding of CARP to titin/connectin and myopalladin,
and HCM-associated 77N mutations in its reciprocal
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Binding of cardiac ankyrin repeat protein (CARP} to titin/connectin (TTN) or myopalladin (MYPN) was analyzed by coimmunapresipitation {co-IP) assays. (A) Myctagged
CARPs coprecipitated with GFP-tagged TTN-N2A domain wers shewn {top panel). Expressions of GFP-tagged TTN- N2A {middle panel} and myc-iagged CARP {lower panel)
were confirmed by immunablotting of whole cell supernatants. Binding pairs were wild-type (WT) CARP in combination with WT, 18474T, R8500H, or RRG04Q mutant TIN-
N2A | or WT TTN-N2A with WT, P52A, T123M, or 1280V mutant CARP. Dashes indicate no GFP- or myc-tagged proteins (transfected only with pEGFP-C1 or pCMV-Tag3 vec-
{ors, respectively). {B) Densilometric data obtained in the colF assay. Data for WT CARP with WT TTN-N2A were arbitrarily defined as 1.00 arbitrary unit (AU). Data are
represented as means * SEM (n = & for each case). *p < 0.05 versus WT: **p < 0.01 versus WT: ***p < 0,001 versus WT. {C) Myctagged CARP copracipitated
with GFPtagged fulldlength MYPN was detected by immunablotting using anti-myc antibody {top panel). Expressed amounts of GFP-tagged MYPN {niddie panel) and myc
tagged CARP {lower panel) were confirmed as in (A). Binding pairs were fulllength WT-MYPN with WT, P52A, T123M, or 1280V mutant CARP. (D) Densitometric
analysis of mye-blotting data in (C). Data were arbitrarily represented as intensities, and that for WT CARF with fuli tength or N-terminal haif WT MYPN were defined as
1.00 AU. Deta are expressed as means * SEM (n = 9 for each case). **p < 0.01 versus WT; ~==p < 0.001 versus WT.

CARP N2A-binding domain increased the binding of
titin/connectin to CARP. These observations in associ-
ation with HCM suggested that the assembly or binding

of sarcomeric CARP with titin/connectin and/or myo-
palladin would be required for the maintenance of cardiac
function.
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Neonatal rat cardiorayocytes transfected with myc-tagged vild-ype (WT) {A to C) or mutant P52A {D to F), T123M (G to 1), or 1280V (J to L) cardiac ankyrin repeat pro-
tein (CARP) constructs were fixed 18 h after the transfection, and stained with 4'6-diamidino-2-phenylindole (DAP!) and anti-a-actinin antibody followed by secondary ant-
body (B, E, 4, K). Merged images (€, F, 1, L) are shown. In the immature cardiomyocytes showing nascent myofibrils with 7 bodies (Z-disc precursors), myc-tagged
CARPs were preferentially localized to the nucleus, and mutant CARP showed relatively low expression in the cytoplasm. Scale bar = 10 um.

In the nascent myofibrils, myc-tagged CARP proteins heart development, recruitment of CARP into nuclei may
were detected within the nucleus irrespective of routations. be important in the ernbryonic gene expression. Interest-
Because CARP is an carly differentiation marker during  ingly, abnormal intranuclear accumulation of myc-tagged
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Neonatal rat cardiomyocytes transfected with myc-tagged wvild-type (WT) (A to C) or mutant P52A (D to F}, T123M (G to 1), or 1280V {J to L) cardiac ankyrin repeat pro-
1ein (CARP) constructs were fixed 48 h after the transfection, and stained with 4'6-diamidino-2-phenylindole (DAP!) and anti-a-actinin antibody followed by secondary ant-
bady (B, E, H, K). Merged images (C, F, 1, L) are shown. In the mature cardiomyocytes showing myofivrils with Z-discs, normal locslization of myc-tagged WT CARP at the
Z-discs was observed {A to C). In contrast, myc-tagged mutant CARP protzins showed intense localization at the l-discs (colocalization with a-actinin) and diffused local-
izaticn in the cytoplasm (D to F, G to 1, J to L). In addition, myc-tagged mutant CARPs expressed at high levels around the nuciear membrane (white arrows) and/or in
the nucleus {white arrowheads). Scale bar = 10 um,
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mutant CARP proteins was observed in mature myofibrils.
1t is well known that the embryonic and fetal gene program
of cardiac cytoskeletal proteins is initiated duting the cardiac
remoedeling (22,23). Hence, one could hypothesize that
nuclear CARP may cause embryonic/fetal gene expression
in matare myofibrils, and this abnormal gene expression is a
possible mechanism leading to the pathogenesis of HCM. It
was reported that CARP negatively regulated expression of
cardiac genes including MYL2, TNNCI, and ANP (4,5).
Conversely, another report suggested that different expres-
sion level of CARP did not correlate with the altered
expression of cardiac genes such as MYL2, MYH7, ACTC,
CACTN, TPM1, ACTN2, and DES (24). Thus, the role of
CARP as a regulator of cardiac gene expression remains to
be resolved. During the preparation of this paper, Cinquetti
et al. (25) reported other CARP mutations, rearrangements,
or Thr116Met, in association with the cyanotic congenital
heart anomaly known as total anomalous pulmonary venous
return. These mutations were demonstrated to be associated
with increased expression or stability of CARP. It is not
clear whether the mutations associated with HCM altered
expression or stability of CARP, although our data sug-
gested that HCM-associated CARP mutations did not alter
the stability. The molecular mechanisms underlying the
CARP-related pathogenesis should be different between
total anomalous pulmonary venous return and HCM.

LConclysions

We identified 3 missense CARP mutations in <<1% of
unrelated paticnts with HCM, which not only increased the
binding of sarcomeric CARP to I-band components but
also resulted in the mislocalization of CARP to the nucleus.
Although the molecular mechanisms of HCM due to the
CARP ‘mautations rémain to be clucidated, our” findings
imply that HCM may be associated with the abriormal
recruitment of CARP in cardiomyocytes, leading to patho-
logical hypertrophy.
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Zacl Is an Essential Transcription Factor for
Cardiac Morphogenesis

Shinsuke Yuasa, Takeshi Onizuka, Kenichiro Shimoji, Yohei Ohno, Toshimi Kageyama,
Sung Han Yoon, Toru Egashira, Tomohisa Seki, Hisayuki Hashimoto, Takahiko Nishiyama,
Ruri Kaneda, Mitsushige Murata, Fumiyuki Hattori, Shinji Makino, Motoaki Sano, Satoshi Ogawa,
Owen W.J. Prali, Richard P. Harvey, Keiichi Fukuda

Rationale: The transcriptional networks guiding heart development remain poorly understood, despite the
identification of several essential cardiac transcription factors.

Objective: To isolate novel cardiac transcription factors, we performed gene chip analysis and found that Zacl, a
zinc finger—type transcription factor, was strongly expressed in the developing heart. This study was designed to
investigate the molecular and functional role of Zacl as a cardiac transcription factor.

Methods and Results: Zacl was strongly expressed in the heart from cardiac crescent stages and in the looping heart
showed a chamber-restricted pattern, Zacl stimulated luciferase reporter constructs dri by ANF, BNP, or
aMHC promoters. Strong functional synergy was seen between Zacl an promoter, which
carries adjacent Zacl and Nkx2-5 DNA-binding sites. Zacl directly associated with the ANF promoter in vitro
and in vivo, and Zacl and Nkx2-5 physically associated through zinc fingers 5 and 6 in Zacl, and the
homeodomain-in. ka2 5.Zacl is a materna}ly 1mprmted gene and is the first such gene found to be involved in

) i e carrying an interruption in the Zacl
: d apoptotic cells, partlally penetrant

the discovery

into fibroblasts produces plurlpotent stem cells.! Heart devel-
opment is known to be regulated by a number of highly
conserved transcription factors, although the mechanisms and
logic of that regulation remain unclear. GATA4, myocyte
enhancer factor (MEF)2C,: serum response. factor: (SRF),
Tbx5, and Nkx2-5 are expressed in the heart and play
essential roles in its formation.?-5 Furthermore, many of these
transcription factors interact and act cooperatively and syn-
ergistically to direct cardiac developmental programs.® De-
spite their importance in cardiac development, however, none
of the factors shows heart-specific expression, and it seems
unlikely that a single factor determines cardiac cell fate.

entiation.” Exploiting this system, we subsequently screened
embryonic stem cell-derived cardiomyocytes for novel car-
diac transcriptional factors using a gene chip analysis and
found abundant cardiac expression of the zinc finger protein
gene, Zacl. Zacl was initially identified as an antiprolifera-
tive protein,® with subsequent studies implicating Zacl in
tumor suppression and organ development.®!® Furthermore,
Zacl expression is regulated epigenetically ‘during normal
development. Imprinted genes are expressed from one allele
according to their parent of origin, and this phenomenon is
essential for mammalian embryogenesis. Zac! is a paternally
expressed, imprinted- gene.!% Although: imprinted genes are
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Non-standard Abbreviations and Acronyms

ANF atrial natriuretic factor

BNP brain natriuretic peptide

ChiP chromatin immunoprecipitation
E embryonic day

EB embryoid body

ES embryonic stem

GST glutathione S-transferase
LoT1 lost on transformation 1

MEF2C myocyte enhancer factor 2C
MHC myosin heavy chain

MLC myosin light chain

P postnatal day

PLAG pleomorphic adenoma gene
SRF serum response factor

IRE Zac1-response element

important for mammalian development, their roles in heart
organogenesis ar unknown

mice) mduced defectxve embryomc heart development and
reduced expression of chamber and myofilament genes. Our
results indicate that Zacl is an essential transcription factor
for cardiac morphogenesis. Moreover, this is the first report
that an.imprinting gene: mutation: causes abnormal develop-
ment of the heart.

Methods

Experimental procedures for: in:situ hybridization, animal study,
immunostaining; Western blotting; plasmids; cell culture; electro-

phoretic mobility-shift assay, chromatin immunoprecipitation (ChIP)

assay, glutathione S-transferase (GST) pull-down assay, RT-PCR
analysis; and - statistical “analyses are- provided in the expanded
Methods section in-the Online” Data " Supplement, available “at
http://circres.ahajournals.org.

Results

Zacl Expression in the Embryonic Heart

We used- gene- chip. analysis. to- search for novel cardiac
transcription factors. Initially; we screened for genes upregu-
lated in Noggin-treated: differentiating: embryonic stem (ES)
cells that contained conserved transcription factor motifs and
then confirmed the expression in the heart by whole-mount in
situ hybridization. We also analyzed the transcriptional po-

tency of each identified factor in vitro using the ANF
promoter as target gene. The ANF promoter is a marker of the
developing chamber myocardium, and is responsive to vari-
ous signals, including those controlling cardiac growth, re-
modeling and pathological overload.!! We screened for up-
regulated genes by comparing cardiomyocyte-rich
differentiating ES cell-derived embryoid bodies (EBs) and
nontreated EBs at day 6 of culture. Three hundred fifty-three
genes were upregulated (>4-fold) in Noggin-treated EBs.

‘Among them, 13 genes encoded a recognizable conserved

transcription factor motif and had not yet been analyzed in the
context of heart development.. These were’ analyzed for
cardiac expression, and. 6 genes were analyzed for ANF
promoter transactivation.

In situ hybridization of staged mouse embryos showed
weak expression of Zacl in the cardiac crescent and other
embryonic sites at E7.75 and stronger heart expression at
E8.5, E9.0 and E9.5 (Figure 1A). Expression at E8.5 was
enriched in chambcr _myocardium unostaining revealed
: 5,E9.5, and E10.5,
with a heart expressxon pattcm similar to that of a-Actinin,
but included more extensive expression in. mesenchyme
dérsal to the heart tube, corresponding. to-the second heart
i igure 1B). Zacl protein expression was also

gure B) In COS7 cells, overexpressed Zacl was
lized to the nucleus, as assessed by immunohistochemis-
th an anti-Zacl antibody (Figure 1C). Fractionation of

We used the gene promoters from ANF, brain natriuretic
peptide (BNP/Nppb), and a-myosin heavy chain (a-MHC/
Mpyh6)- to evaluate the transactivational potency of Zacl in
COS7 cells in ‘comparison to that of cardiac transcription
factors MEF2C, GATA4, and SRF. Zacl activated these
promoters in a-manner similar to:the: other factors (Figure
2A), in the case of ANF >250-fold."We also performed the
luciferase assay using neonatal rat ventricular cardiomyo-
cytes. (Online Figure 1). In these cells; Zacl increased ANF
and®BNP promoter- activities, as did the other transcription
factors; however, relative transactivation was not as strong as
in COS7 cells. The a-MHC promoter did not significantly
respond to any of the factors, likely because cardiac transcrip-
tion factors including Zacl are strongly expressed in- these
cardiomyocytes. and the effect of additional expression is
weak or insignificant; depending on the promoter. Although
Zacl has been identified as a’ transcription- factor and its
binding sequence reported,'> homologous sequences were not
identified in the ANF promoter. To show that the Zacl-
dependent -ANF promoter activation- was regulated in a
DNA-binding=dependent manner, we constructed a series of
ANF promoter mutants: and mapped the: cis-regulatory. se-
quence that mediates. the response to Zacl to the region from
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Figure 1. Expression of Zac1 in the murine embryonic heart. A,
Zac1 transcripts were detected in mouse embryos by whole-mount
in situ hybridization. Zac? expression is weakly expressed in the
cardiac crescent at E7.75 but detected throughout the heart at
E8.5; 9.0, and E9.5. Frontal view of heart is shown in the inset. B,
Immunostaining for the Zac1- protein in £8.5; E9.5; and E10.5
mouse embryos (transverse section). Zac1 protein is expressed in
the heart enriched in chamber myocardium, whereas a-actinin is
expressed throughout the heart and in the somites. Expression at
E8.5 was enriched.in chamber myocardium (arrow); Zaci expres-
sion included more extensive expression in mesenchyme dorsal to
the heart tube, corresponding to the SHF (arrowhead). Zac1 pro-
tein was also enriched in chamber myocardium (arrow) at £9.5
and E10.5, being: lower in nonchamber myocardium of the atrio-
ventricular canal (short arrow). C, Immunostaining of Zac1 protein
in transfected COST cells, showing expression in the nucleus. D,
Subcellular location of Zac1 protein in transfected COS cells, as
detected by Westem blotting. The nuclear accumulation of Zac1 is
proportional to the DNA dosage used for transfection. Lamin A/C.is a
nuclear protein control, and Rho-GDI is cytosolic protein control,

—111 to. —93 (Figure 2B).: The specific DNA ‘sequence
responsible for transactivation by Zacl was further delineated
by point mutagenesis. A Zacl-response element (ZRE) can-
didate sequence (GCCGCCG) within the ANF promoter was

Zacl Is an Essential Cardiac Transcription Factor 3

>

Ry Bid abaRion

- 5 %8

3

HEfaciferase reporter constructs.
Values are expressed as the fold increase in luciferase activity
compared to the empty expression plasmid (Gontrol). B, COS7
cells were transfected with the Zac1 expression plasmid and the
indicated ANF luciferase reporter constructs. Values are
expressed as the fold increase in luciferase activity compared to
the empty expression plasmid (Control). Colored rectangles
indicate conserved transcription factor-binding site; green box,
E box site; blue box, NKE; yellow box, SRF-binding elerment.
C, COS7 cells were transfected with the Zac1 expression plas-
mid and the indicated ANF luciferase reporter constructs. The
Zacl response element is shown in blue (wild-type [WT)), and
this element is mutated in the mutant (MT) promoter. D; Eléctro-
phoretic mobility-shift assay reveals the binding of Zac1 to
radioactively labeled ZRE. Cold competitor interferes with the
binding of Zac1 to the labeled ZRE. An antibody specific for
Zac1 (anti-Zac1 Ab) supershifts the Zac1/ZRE complex. E, ChiP
analysis reveals the binding of Zac1 and Nkx2-5 to the ANF
promoter including the region —148 to +43 in vivo. PCR-
amplified bands are apparent for the input DNA and anti-Zac1
antibody-precipitated DNA.

at least in part responsible for Zac1-deépendent transactivation
because mutation of this sequence to GTATATG attenuated
responsiveness: to - Zacl. (Figure: 2C).  An  electrophoretic
mobility-shift assay was performed ‘ to- determine: whether
Zacl bound directly to this GCCGCCG sequence. The total
amount of Zac1/DNA complex increased in propottion to the
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nuclear-localized Zacl protein in' COS7 cells at increasing
DNA dosage. Furthermore, this complex was extinguished by
the addition of cold competitor and was supershifted by the
anti-Zacl antibody (Figure 2D). To confirm that Zacl binds
to the - ANF. promoter in’ vivo, we used-a ChIP assay.
Cross-linked chromatin obtained from neonatal rat hearts was

immunoprecipitated with the anti-Zac1 antibody. The precip- .

itated chromatin DNA was then purified; and PCR analysis
for enrichment of ‘the target sequences revealed: that Zacl
bournd directly to the ANF promoter in vivo (Figure 2E). ChIP
assay also: showed that’ Nkx2-5 bound to ‘same promoter
region which' includes an' Nkx2-5-binding region (NKE).
Zacl-did not bind fo distant promoter regions  which do not
include a ZRE:

Zacl Activates ANF Gene Expression
Synergistically With Nkx2-5

The: Zacl. DNA-binding  site: within'the  ANF - promoter is
adjacent to the reported binding site for Nkx2-5.1>Therefore,
we used the ANF promoter to- ascertain- whether Zacl acts

AmirZaa1~

Rekaive fold activaton
Contrd | ¢ Figure 3. Zac1 and Nkx2-5 physically
—— Pl H interact and synergistically activate
203 .i ANF transcription. A, COS7 cells were
)

transfected with ANF luciferase and
expression vectors, encoding Nkx2-5
and Zac1. Both constructs synergisti-
cally activate ANF transcription (n=3).
Nkx2-5 (10 to 300 ng); Zact (10 to 300
ng). B, Deletion mutants of Zac1 were
tested for their abilities to synergize with
Nkx2-5 to activate ANF luciferase in
COS7 cells. Values are expressed as
fold increase in luciferase expression
compared to the control. Colored rect-
angles indicate conserved protein
motifs; green box, zinc finger motif;
blue and red boxes; amelogenin motif;
brown box, trypan PARP-like motif. C,
Zact was fused with' GAL4: A luciferase
gene controlled by multiple GAL4-
binding sites was used.'Nkx2-5 cannot
directly bind to GAL4 sites. D, Zact-

i e transactivation by
MNkx2-5 increased this
fthout direct DNA bind-
ing.in presence of Zac1-GAL4. Wild-type
Nkx2-5 and wild-type Zac1 aione did not
show transactivation. E, GST-Zac1 dele-
tion mutants were incubated with
[*>S]methionine-labeled Nkx2-5 trans-
lated in vitro. The input Zac1 deletion
mutant proteins are shown at top.
Nkx2-5 proteins that bind to GST-Zact
deletion mutants are shown at bottom.
F, GST-Zac1 was incubated with
[5S]methionine-labeled Nkx2-5 deletion
mutants transiated in vitro. The input
Nkx2-5 deletion mutant proteins are
shown in the left panel. Nkx2-5 proteins
sT-Zac1 deletion mutants
W Ae right panel. G, Coim-
munoprecipitated proteins for Nkx2-5 or
alyzed by immunobilotting
Nkx2-5 antibody. Nkx2-5
as§ochatad with Zac1 in neonatal heart
extracts.

synergistically with Nkx2-5 to activate transcription. Vectors
for these transcription factors were cotransfected at different
DNA ‘dosages into' COS7 cells (Figure 3A). Zacl activated
the ANF promoter >1100-fold in a“dose-dependent manner
and this required the presence of Nkx2-5. Moreover, maxi-
mum’ activation by Nkx2-5 (>600 fold) required Zacl. To
identify the protein domain of Zacl that is involved in this
synergistic: activity ‘with' Nkx2-5, we cotransfected several
mutated forms of Zacl and Nkx2-5:into COS7 cells and
measured the' transcriptional activity of the ANF promoter
(Figure 3B). Deletion of the 6 zinc finger domains in Zacl
(green domains in Figure 3B) reduced ifs ability to stimulate
transcription. Notably, carboxyl-terminal deletion mutants 1
to- 360 ‘and 1 to~270, which potentially lack C-terminal
repression domains, showed strong synergistic activities with
Nkx2-5'(1000- to- 1400-fold), which in turn was reduced by
deletion” of the zinc finger 5 and 6 domains” (Figure 3B).
Therefore, our data implicate zinc finger domains 5 and 6 of
Zacl'in the functional interaction with Nkx2-5. To clarify the
requirement’ of DNA" binding ‘for the’ interaction between
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Figure 4. Nkx2-5 regulates Zac1 gene
expression. A, Structure of the mouse
Zac1 gene. The red line indicates the
3000-bp promoter used in this assay.
COS87 cells were transfected with Zac1-

b T~ W < I - ]

luciferase and expression vectors,

encoding Tbx5, SRF, MEF2C, GATA4,

1Y Zact, and Nkx2-5, B, Four Nkx2-5-

binding sites (blue bar) within the Zac1

3kb promoter/enhancer region are
shown. Mutation of the third Nkx2-5-
binding site {e and f) diminished the
Nkx2-5-dependent Zac1 promoter
transactivation. C, Detection of Zac1
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Zacl and Nkx2-5, we performed a mammalian 1-hybrid assay
(Figure 3C). In this assay, Zacl, expressed as a fusion protein
with the DNA-bmdmg d@mam of the yeast transcription

irectly activate Tuciferase gene
D). Zacl-GAL4 alone increased basal
activity up to ¢
transactivation
These data sugg
and Nkx2-5 ¢z

translated w11d -type {SS]methxomne-labeled Nkx2-5. The
wild-type Zacl-GST fusion profein interacted with Nkx2-5,
as did the GST-Zacl 1 to 580, 1 to 360, 1 to 270, and 151 to
270 mutants, which encompass the. zinc finger 5 and 6
domains (Figure 3E). The results indicate that: these 2 zinc
finger domains located within the N-terminal half of Zac1 are
necessary. and sufficient for: association with Nkx2-5. To
determine the domain of Nkx2-5 that interacts with wild-type
Zacl, pull-down  assays were  performed. with: GST-
conjugated full-length Zacl and [**S]methionine-labeled de-
letion mutants of Nkx2-5 translated in vitro. Wild-type and
homeodomain:containing deletion mutants of Nkx2-5, in-
cluding. a homeodomain-only fragment, clearly interacted
with Zacl, whereas an. N-terminal fragment lacking the
homeodomain ‘did not (Figure 3F).. The homeodomain ' of
Nkx2-5 is therefore necessary- and sufficient to mediate
association with Zacl. These results demonstrate the impor-
tance: of. a: protein—protein : interaction between. Zacl ‘and
Nkx2-5 for gene activation in the heart. Although: the Zacl
constructs amino acids 270 to 678, 314 t0-278, 360.to 678,
and 570 to 678 do not interact with Nkx2-5; they still show
significant. synergy  with.. Nkx2-5.. Because  those: mutants
contain amino acids 570 to 678, we speculated that the 570 to

transcripts by whole-mount in situ
hybridization in wild-type and Nkx2-5
knockout embryos at E8.5. D, Quantita-
tive RT-PCR analyses for Zac1 tran-
scripts in wild-type and Nkx2-5~/~ mice
are shown.

678 region of Zacl was responsxble for Zacl dominant-active
activity. Its ‘mechanistic role is independent of a protein—

i protem interaction with Nkx2-5, and will be further

of Nkx2-5
u hybridization analysis
revealed expressxon of Zacl transcnpts in the cardiac crescent
rdiogenic precursors are
] ergafter, Zacl was expressed
strongly in a chamber-restricted manner in the developing
heart tube. To investigate the regulation of Zacl expression in
the heart, we evaluated a 3000bp Zac! S’ proximal, cis-
regulatory fragment, which contained numerous putative
cardiac transcription factor binding sites. as predicted by the
TESEARCH' program: (http://mbs.cbre.jp/research/db/
TFSEARCH.html). Although Tbx5; SRF, and MEF2C had no
significant effect on transcriptional activity; both Zacl: and
Nkx2-5 specifically augmented Zacl expression (Figure 4A).
The activity of Zacl suggests . autoregulation, "perhaps . in
collaboration with Nkx2-5. To clarify the role on Nkx2-5 on
Zacl promoter. activation, we deleted ‘or mutated several
Nkx2-5-binding sites found. within the 3kb. promoter. frag-
ment (Figure 4B). Of the 4 consensus:Nkx2-5-binding. sites
detected, mutation of the third site alone: or in: combination
with other sites diminished Nkx2-5-dependent Zac/ transac-
tivation (Figure 4B). We also examined the expression of
Zacl in Nkx2-5-null embryos to confirm that Nkx2-5 regu-
lates Zacl expression:in:vivo.:Zacl mRNA: levels ‘were
downregulated, as assessed by whole mount insitu hybrid-
ization, and quantitative RT-PCR analysis indicated a reduc-
tion'to approximately one-third of wild-type levels at E8.5.in
Nkx2-571~ embtyos (Figure -4C:and 4D). These: results
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Figure 5. Zac1 gene targeting-induced
cardiac malformations. A, Schematic
representation of the gene-trapping vec-
tor {top), as well as wild-type (middie),
and.interrupted Zac1 gene (bottom). B,
Genotyping by PCR. The wild-type allele
yields a 407-bp product, which is absent
in the homozygous mutant mice. The
250-bp product represents the targeted
allele-specific band. C, Confirmation of
Zac1 expression by Western blotting. D,
Whole embryos at E10.5 and an embry-
onic heart at E15.5 and E17.5. Gross
analysis of mutant embryos showed
growth retardation and defective neural
tube closure. Atrial septum defect
(arrowhead) at E15.5, ventricular sep-
tum defect (arrow) at E17.5, and thin
ventricular wall (asterisk) at E17.5 in
Zac1-mutated embryos are shown com-

{ooews | T }i"‘" g175

pared to the wild-type controls.

indicate that Nkx2-5 induces and/or maintains Zacl expres-
sion in vivo, likely in a collaborative manner with Zacl itself.

termates. = As
totally abrogatéd in tale ZacI fiutant—descendent heterozy®
gotes: and homozygote mice (Figure 5C). Therefore, we
deemied these 2 groups of mutant mice to be equivalent for the
purpose of phenotypic analysis. At first we examined the
gross phenotype of Zacl knockout mice which we generated
and compared to the phenotypes previously described.!2 We
confirmed that: our Zacl knockout neonatal mice: showed a
similar phenotype with respect to. overall weight loss; curly
tail, and wrinkled skin. We analyzed 66 embryos at E10.5, 52
embryos at E15.5; and 89 embryos at E17.5. Gross examina-
tion of embryos at E10.5 revealed a defect of neural tube
closure in 9% of Zacl mutants (Figure 5D). Histological
analysis of the hearts of mutant embryos by serial sectioning
along the anterior-posterior: axis revealed: an-atrial septal
defect in° 42% of the mutant hearts at E15.5, as-well-as a
ventricular septal defect involving fenestration of the muscu-
lar septum in 23% of the mutants and a thin ventricular wall
in. 26% at E17.5 (Figure 5D). At E17.5, we: could not fonger
observe. any: of the neural tube:defects evident in 9%: of
mutants at E10.5; suggesting a partially penetrant embryonic
lethality before E17.5. Indeed, at E10.5, the expected Men-
delian number . of . heterozygous : embryos was - observed
(n=66). At E17.5, however,; the number of heterozygous

hese findings suggest
neural developmental disorder ‘as-a cause of embryonic
lethality in a low percentage of mutants. We also genotyped
neonates at posmatal day (P)0 and P5 and adults at P90. At
imber of heterozygote mice was reduced to
ough there seems to be approximately
ieterozy gous embryo, we could not obtain
tistical significant differences compared to expected Men-
ratios until PO probably because of the limited number
ryos. At PS5, this was further reduced to 44% (n=386)
at-P90 was 40% (n=62), indicating an additional post-
ignificant differences in
any cardlac phenotypes

tent: with  our own.12 To confirm that the targeted locus is a
null allele; we reexamined Zacl expression in knockout mice
and could not detect Zacl by Western blot analysis using 2
different antibodies and quantitative RT-PCR analysis using
independent primer sets and probes (data not shown).

The Zacl Mutant Mouse Shows Abnormal
Cardiac Gene Expression and ‘Patterning and a
Significantly Increased Number of Apoptotic Cells
in the Heart
Because Zacl mutant mice: showed cardiac morphogenetic
abnormalities, we examined the expression patterns of several
cardiac genes in these mice. The expression patterns of
cardiac-expressed transcription factors Nkx2-5 and GATA4
were unaffected (Figure 6A'and 6B)..By contrast, the expres-
sion levels: of the cardiac-specific genes ANF, MLC2v (my-
osin light chain 2v); and- MLC2a were ‘significantly down-
regulated by both in situ hybridization and quantitative PCR
(Figure 6C through 6E).

To-: clarify the mechanisms: of cardiac malformation, we
analyzed proliferation and apoptosis in the embryonic hearts. -
We found that Zacl mutant mice: displayed a significantly
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MLC-2v, and MEC-2

sis. F, Representative histological sections from the wi -type and Za
bers of positive cells in 5 different hearts of each genotype are shown. G, Representative histological sections from the wild-type and
Zac1-mutated hearts at E13.5 stained with anti-phospho-histone H3 antibod

are shown.

increased number of apoptotic cells in the heart (Figure 6F).
No such differences were observed in the number of prolif-
erating cardiac cells (Figure 6G).. Zacl is a known tumor
suppressor: gene, is frequently. lost in: multiple: car¢inomas,
and promotes cell cycle and apoptosis.®'* However, many of
those studies are performed in cancer cell, and there is no
study in. the heart. Therefore, we. considered that Zacl may
have different, unique, and possibly: opposite roles in cardiac
development,

Discussion
In the present study, we identified the transcription factor
Zac1 as an important to heart development. Initially, we used
gene chip analysis of ‘ES: cell~derived cardiomyocytes to
discover new cardiac-specific transcription factors.” Upregu-
lated genes: were: tested: for cardiac-specific ‘expression and
transcriptional potency using the ANF promoter, well studied
as a- cardiac ‘target - gene reflective - of *development and

hybridization and QT-PCR analy-
n the TUNEL assay. The num-

y. The numbers of positive cells in each 5 different hearts

pathological hypertrophy. We confirmed Zac1 to be a strong
transcriptional activator of cardiac ‘gene in:‘synergy with
Nkx2-5 and that Zacl itself is regulated by Nkx2-5. Analysis
of ‘a- Zacl  mutant mice verified that Zacl is required for
proper: cardiac morphological - development and - gene
expression.

The Zacl Family of Transcription Factors

Zacl/LOTI/PLAGLI is a member of the subfamily of PLAG
(pleomorphic adenoma - gene) - transcriptional * factors. The
PLAG family genes were defined by the capacity of PLAG1
overexpression: to - induce - pleomorphic ‘adenomas.!s  The
PLAG family comprises PLAG1, Zacl/LOT1/PLAGL], and
PLAGL2. These factors share high  levels of homology,
especially in- their  zinc finger - amirno-terminal regions, ‘al-
though they are functionally distinct. PLAGI is a protoonco-
gene and a target of chromosomal rearrangemerits that results
in tumorigenesis. PLAGL2 is induced in human acute my-
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eloid leukemia, and may in fact induce acute myeloid
leukemia in cooperation with other fusion genes.'s PLAGI1
and PLAGL2, therefore, have similar capabilities in tumori-
genesis and have indistinguishable DNA-binding specifici-
ties, which are different from that of Zacl.'? Zacl/LOT!/
PLAGLI is lost in malignantly transformed rat ovarian
surface epithelial cells, hence the name LOT! (lost on
transformation).'* However, Zacl was also shown to regulate
apoptosis and the cell cycle, accordingly named Zacl.?®
Subsequently, the gene symbol for this family member was
designated as PLAGLI. Although having a similar protein
structure, Zacl appears to have an opposite function to
PLLAGI and PLAGL2 in tumor formation and binds different
DNA sequences.!” Therefore, we speculated that there is no
functional overlap between Zacl and the other PLAG family
genes.

Imprinting Genes in the Heart

From a metaanalysis of microarray data, Zac/ was found to
be a member of an imprinted gene network.!? Classically,
both alleles of a gene were thought to be actively transcribed
and functionally equivalent. Since the identification of the
first autosomall »xmprmted genes in 1990s, researchers have

humans.22.23
The matern
human Zacl
genes.?*25 Gerégtic ar
are also associated thh Beckwnh—Wledemann syndrome
Although Beckwith=Wiedemann syndrome is generally char-
acterized by exomphalos, macroglossia, and giantism, cardiac
manifestations are also known to occur, including congenital
heart disease (ventricular septum defect, atrial septum defect,
aortic ‘stenosis) and cardiomyopathy.?’-3! Beckwith—Wiede-
mann syndrome is associated: with a region of chromosome
11" in_which many candidate disease. genes are present
including IGF-1 and p57"P2. Although the molecular mech-

anisms underlying cardiac’ abnormalities seen in Beckwith— .

Wiedemann syndrome remain unknown, we have shown here
a possible mechanistic link between Zacl and heart disease
seen in the syndrome.

Regulation of Cardiac Gene Expression by Zacl

Our data show that Zacl acts as a transcriptional activator for
cardiac genes based ‘on the following observations: (1) in
development; Zacl was highly expressed in the heart and
enriched in chamber myocardium; (2) Zacl bound directly to
the ANF promoter and strongly activated the ANF; BNP, and
a-MHC promoters; (3) Zacl physically interacted with
Nkx2-5 to synergistically activate cardiac gene expression,
(4) Zact functioned as a downstream target of Nkx2-5 both in

vitro and in vivo; (5) Zacl] mutant mice showed cardiac gene
expression abnormalities; and (6) Zac/ mutant mice exhibited
cardiac malformations.

A number of cardiac transcriptional factors collaborate in a
complex manner to guide development and homeostasis in
the heart. Nkx2-5, GATA4, Tbx5, MEF2C, and SRF are
essential and potent cardiac transcriptional factors, regulating
the expression of one another and serving to stabilize and
reinforce the cardiac gene regulatory network. Zacl expres-
sion was first observed at early stages of heart development,
coincident with just after cardiac specification and expression
of early transcription factors such as Nkx2-5. Our data also
indicate that Nkx2-5 directly activates Zac/ expression in the
heart. We speculate that Zacl and Nkx2-5 orchestrate and
support the expression of other transcription factors and
cofactors. In particular, cardiac transcription factors and Zacl
function together to stabilize the transcriptional machinery, in
part by binding to adjacent sites within.the promoter/enhancer
regions of cardiac:genes idnd:al; rough direct protein—
protein interaction: ‘This: robust scriptional activation
network promotes development:and maturation of the heart.
Our work establishes Zacl as a new player in this network.
Zacl may pr0v1de a valuable entry pomt for genetic analysis
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What Is Known?

e Cardiac development is siringently reguiated by various  cardiac
transcription factors, although many aspects of the underlying
mechanisms remain to be elucidated.

» Mammals have evolved the intriguing process of gene imprinting; but
it is not clear what roles gene imprinting plays in heart develop-
ment and homeostasis.

What New Information Does This Article Contribute?

o We identify the matemally imprinted zinc finger-type transcription
factor Zac? as a potent cardiac transcriptional activator.

o Qur examination of homozygous and paternally derived heterozygous
mice reveals several congenital cardiac malformations, indicating
that Zac? is an essential transcription: factor for: cardiac
morphogenesis.

Transcription factors play central roles in gene expression; organ
morphogenesis, and pathogenesis. Although' several essential
cardiac transcription factors have been identified, the complex

transcriptional networks. in the heart are still poorly- understood.
To identify novel: and potent cardiac transcription. factors, we
performed: gene chip analysis using cardiomyocytes that were
differentiated from ES celis; We found that the Zac? gene, which
encodes a zinc finger-type transcription factor and is a mater-
nally imprinted gene, was strongly: expressed in the: mouse
embryonic heart. Zac1 is a potent transcriptional activator of
several cardiac genes and binds directly to the ANF promoter.
Binding ' sites for- Zact 'within  the ANF promoter were “also
determined. Zac1 was found to ‘exert strong synergistic tran-
scriptional - activity ‘and: to" interact” physically with  Nkx2-5.
Nkx2-5: also activated: the Zac? promoter, and- Nkx2-5-null
hearts showed decreased Zac1 expression. ZacT-mutated mice
showed decreased levels of several cardiac-specific genes and
increased numbers: of apoptotic: cells in. the embryonic: heart.
The Zac1-mutated mice also exhibited severe cardiac deformi-
ties: an atrial septum defect, a ventricular septum defect; and
thinning of the ventricular wall. Our results suggest a potential
mechanistic link between genetic. or. epigenetic defects and
congenital heart disease manifestations.
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