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SUMMARY

Neutrophils rapidly undergo polarization and direc-
tional movement to infilirate the sites of infection
and inflammation. Here, we show that an inhibitory
MHC 1 receptor, Ly49Q, was crucial for the swift
polarization of and tissue infiltration by neutrophils.
During the steady state, Ly49Q inhibited neutrophil
adhesion by preventing focal-complex formation,
likely by inhibiting Src and PI3 kinases. However, in
the presence of inflammatory stimuli, Ly49Q medi-
ated rapid neutrophil polarization and tissue infiltra-
tion in an ITIM-domain-dependent manner. These
opposite functions appeared to be mediated by
distinct use of effector phosphatase SHP-1 and
SHP-2. Ly49Q-dependent polarization and migration
were affected by Ly49Q regulation of membrane raft
functions. We propose that Ly49Q is pivotal in
switching neutrophils to their polarized morphology
and rapid migration upon inflammation, through its
spatiotemporal regulation of membrane rafts and
raft-associated signaling molecules.

INTRODUCTION

The rapid infiltration of affected tissues by neutrophils is critical
for the host defense against invading bacteria and response to
acute inflammation, and neutrophils have specific inherent
properties for polarization and migration. They migrate to sites
of infection and inflammation along a gradient of chemoattrac-
tants, such as chemokines, and the bacterially derived tripeptide
fMet-Leu-Phe (fMLP). Neutrophils respond to the shallow
chemoattractant gradient by becoming morphologically potar,
with a lamellar pseudopod at the cell's leading edge (lamellipo-
dia) and a rounded contractible trailing edge (uropodia) (Affolter
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and Weijer, 2005; Downey, 1994; Servant et al., 2000). Interest-
ingly, exposure to a single concentration of chemoattractant (i.e.,
without a gradient), can trigger neutrophil polarization (Wong
et al., 2006; Xu et al.. 2003), and the neutrophil’s pseudopod is
far more responsive to chemoattractants than are its sides and
uropod (Xu et al., 2003; Zigmond et al., 1981).

Studies aimed at understanding the molecular mechanisms
of these neutrophilic attributes have demonstrated specific roles
for cellular signals and cytoskeletal assemblies that restrict
“frontness” and “backness” in a neutrophilic cell line derived
from HL-60 (Wong et al., 2008; Xu et al., 2003). The main feature
of frontness is the protruding pseudopod, which contains poly-
merized F-actin and is dependent on a heterotrimeric G protein
(Gi), PIP3, the Rho GTPase Rac, and F-actin. In contrast, "“back-
ness" is characterized by a contractile actomyosin system, and
its formation is induced by signals that include a different heter-
otrimeric G protein (Ga.12 and Ge13), RhoA, a Rho-dependent
kinase, ROCK, and myosin Il. Backness signals inhibit frontness
signals and vice versa. Localized incompatible actin responses
triggered by different G proteins, actin polymerization in the front
and actomyosin contraction at the back, provide a partial
explanation of how polarity is organized in neutrophils. However,
these signaling molecules are widely expressed in various
cell types, and their spatiotemporal regulation is still largely
unknown. Therefore, the molecular basis for the specific behav-
iors of polarized neutrophils is still not fully explained by the infor-
mation on the roles and locations of these signaling molecules.

Inhibitory receptors possessing one or mare immunoreceptor
tyrosine-based inhibitory motifs (ITIMs) play crucial roles in the
regulation of a wide range of immune responses (Lanier, 1998).
Ly49Q is an ITIM-bearing inhibitory receptor belonging to the
Ly49 family (Makrigiannis et al., 2002; Toyama-Sorimachi et al.,
2004). Inhibitory NK receptor family members recognize MHC
class | or its related molecules to distinguish target cells from
nontarget ones (Lanier, 1998). Recognition of the self MHC class
| molecules on the target cell induces a signal via ITiM-bearing
inhibitory receptors that inhibits NK cell cytotoxic functions
and cytokine production {Lanier, 1998). Like other NK receptor
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family members, Ly49Q recognizes classical MHC class |
molecules such as H-2K® (Scarpellino et al., 2007, Tai
et al., 2007). The ITIM of Ly49Q can recruit phosphatases
SHP-1 and SHP-2 in a tyrosine-phosphorylation-dependent
manner (Toyama-Sorimachi et al., 2004). However, even though
its high sequence similarity and chromosomat location have led
to Ly49Q being classified as an NK receptor family member, it is
not expressed on either NK cells or T cell subsets. Rather, it is
preferentially expressed on Gr-1" cells, including monocytes
and macrophages, plasmacytoid dendritic cells (pDCs), and
neutrophils (Omatsu et al., 2005; Tai et al., 2008, Toyama-Sori-
machi et al., 2004).

Recently, in a report on Ly49Q-deficient mice, we showed that
Ly49Q is important for pDC function, including the TLR9-trig-
gered production of type | IFN and IL-12 (Tai et al., 2008). We
also showed that the impaired cytokine production in Ly49Q-
deficient cells was due to dysregulation of both the trafficking
of TLRS and CpG-containing endolysosomes and the TLR9-
mediated activation of MAP kinase (Yoshizaki et al., 2009). Using
immunohistochemistry, we also found that Ly49Q colocalizes
not only with TLR9 and CpG, but also with Rab5 and phosphor-
ylated MAP kinases in endosomes. Thus, Ly49Q appears to be
involved in membrane dynamics, especially in the spatiotem-
poral regulation of endosome-lysosome trafficking and the
associated signaling.

We also reported that Ly49Q is involved in the rapid induction
of macrophage spreading and polarization, with marked forma-
tion of lamellipodia and filopodia (Toyama-Sorimachi et al.,
2004). Several studies have shown that membrane trafficking
is crucial for polarization and migration in various cell types
(Mafies et al., 1999; Pierini et al., 2003; Polishchuk et al., 2004).
These and our earlier observations, including on Ly49Q-medi-
ated endosome-lysosome trafficking, led us to hypothesize
that Ly49Q contributes to the organization of cell polarity and
the subsequent migration of inflammatory cells by regulating
membrane trafficking. Indeed, Ly49Q is itself internalized in
a raft-dependent manner, and its internalization and trafficking
are regulated by its ITIM and by the activity of associated phos-
phatases (Yoshizaki et al., 2009). Here, we demonstrate that
Ly49Q was essential for the organization of neutrophil polarity
and their subsequent invasion of extravascular tissues during
early inflammation. Importantly, in the absence of inflammatory
stimuli, Ly49Q inhibited the firm adhesion and spreading of
neutrophils by suppressing the formation of focal adhesion
complexes, indicating that Ly49Q helps prevent the deleterious
adhesion of neutrophils during the steady state. Interestingly,
Ly49Q associated with the inhibitory phosphatase SHP-1 in
the steady state, but it recruited SHP-2, which plays a largely
positive role in cell activation, adhesion, and migration, in the
presence of inflammatory stimuli. Therefore, these apparently
opposite functions of Ly49Q in the steady state and the inflam-
matory state appeared to be mediated by recruiting an additional
associated effector phosphatase. We propose a mechanism in
which Ly49Q directs the organization of neutrophil polarization,
as well as their migration to sites of inflammation, by regulating
membrane raft functions. These membrane raft functions permit
the rapid reorganization of neutrophils in the presence of inflam-
matory signals, and maintain neutrophil homeostasis in the
absence of such signals.

RESULTS

Expression and Distribution of Ly490 on Neutrophils

We previously reported that Ly49Q is expressed on Gr-1" cells,
including monocytes, macrophages, and pDCs, in the mouse
spleen, bone marrow (BM), and fetal liver (Omatsu et al., 2005;
Toyama-Sorimachi et al., 2004). We first confirmed that neutro-
phils in mouse peripheral blood and BM expressed Ly49Q
under steady-state conditions (Figure S1A available online). Infil-
trating neutrophils that had migrated to the peritoneal cavity in
response to casein or to the air pouches in response to zymosan
also expressed Ly49Q, showing the typical lobulated nucleus
(Figure 1A, see also Figure S1A). Ly48Q colocalized with H-2K®
not only at the cell surface, but also in endosomal vesicies,
suggesting that Ly49Q was internalized together with H-2KP
{Figure 1B, see also Figure S1B). This was consistent with our
recent observation in pDCs that Ly49Q is internalized and
localizes to endosomes (Yoshizaki et al., 2009). Because the
association of Ly49Q with H-2K® is stable under acidic condi-
tions (Yoshizaki et al., 2009), it is likely that the Ly49Q-H-2KP
interaction is sustained in the internalized vesicles.

To investigate whether Ly49Q contributes to the polarization
of neutrophils in response to inflammatory signals, neutrophils
obtained from Ly49Q-deficient or control littermate mice were
stimulated with fMLP, and their adoption of the polarized pheno-
type and chemotactic migration were examined. The control
Ly49Q*" neutrophils responded to fMLP by spreading their
cytoplasm and adopting the polarized distribution of polymer-
ized actin and of CD44, a known uropodial marker (Figures 1C
and 1D) (del Pozo et al., 1995). In contrast, in Ly49Q-deficient
{Kira17 ) neutrophils, the distribution of the polymerized actin
and of CD44 remained uniform in the presence of fMLP (Figures
1C and 1D). The percentage of polarized cells among the fMLP-
treated Kira17~’~ neutrophils was significantly (p < 0.0002) lower
than among the Klra?7*/~ neutrophils (Figure 1E). Consistent
with this, significantly (p < 0.05) fewer Kiral 77/~ neutrophils
showed fMLP-induced chemotactic migration than Kiral7*/~
neutrophils (Figure 1F). Kira17~'~ neutrophils also showed
reduced chemotaxis to KC compared with Kira17*/~ neutrophils
(Figure 1F), whereas no difference in ROS production in
response to fMLP was observed between the Kira17/ and
Klra17*'~ neutrophils (Figure S1C). Furthermore, in vivo, the
number of neutrophils infiltrating the air pouch 3 hr after zymosan
or E. coli inoculation and the neutrophilic migration to inflamed
tissue were reduced in the Ly49Q-deficient mice (Figures 1G
and 1H). To confirm the role of MHC class | as a Ly49Q ligand
in neutrophil migration, we examined the chemotactic activity
of B2m™" neutrophils in vitro. The migration of 82m~'~ neutro-
phils to the chemoattractants was significantly (p < 0.001)
reduced (Figure 11), suggesting that the Ly49Q-MHC class |
interaction plays an important role in neutrophil migration. Taken
together, these results indicated that Ly49Q plays an important
role in the polarity formation and migration of neutrophils.

Constitutive Association of SHP-1 and
Activation-Dependent Recruitment of SHP-2 to Ly49Q
To understand how Ly48Q is involved in neutrophil polarization,
we compared the intracellular distribution of Ly42Q-related
molecules in neutrophils from Ly49Q-deficient mice and their
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Figure 1. Impaired Polarization and Migra-
tion of Neutrophiis from Ly49Q-Deficient
Mice
(M) Expression of Ly49Q on neutrophils from in-
flamed dorsal air pouch of C57BL/6 mice. Cells
L» ey 7 . - - prepared from inflamed dorsal air pouch were
Gr-1 -+ Ly49Q ) ‘ ) stained with FITC-conjugated anti-Gr-1 and
PE-conjugated anti-Mac-1 (CD11b) with a biotin-
conjugated anti-Ly49Q (NS34, filled histograms)
D or biotin-conjugated isotype-matched (rat IgG2a,
F-actin CD44 Merge open histograms) antibody, followed by streptavi-
- , | din-conjugated APC. Cells expressing both Gr-1
and Mac-1 were analyzed for the expression of
Ly48Q. Scale bars (insets), 20 pm.
(B) Colocalization of Ly49Q and H-2K® 1n neutro-
phils. Confocal images show casein-induced
neutrophils staned with anti-Ly49Q and anti-
H-2K®, Scale bars, 5 pm.
(C) Phase-contrast microscopic analysis of
neutrophil polarization. Neutrophils were enriched
from the BM of Ly48Q-deficient (KO} or control
littermate (hetero) mice by removing B220* cells
by magnetic cell sorting and were treated with
fMLP (25 uM). The adhered cells were fixed with
4% formalin and microscopically analyzed. The
lower photographs show a higher magnification.
(D) Impairment of fMLP-induced polarization in
Ly49Q-deficient neutrophils (KO). Neutrophils
B Hetero were prepared as described in (C). Confocal
0 KO images show the cytoskeletal organization
(F-actin) stained with Alexa594-labeled phalloidin
: g:g-g; (red) and uropodia stamed with FITC-labeled
: anti-CD44 (green) in fMLP-treated neutrophils.
L 0l Arrowheads and asterisks indicate lamellipodia
é0+0 0 10 100 0 10 100 and uropodia, respectively. No obviously polar-
N A
W MLP (M) KC (ng/ml) ized distribution of F-actin or CD44 was observed
in the Ly49Q KO neutrophils.
(E) Quantitative analysis of polarized neutrophils
| in response to fMLP. Neutrophils prepared as
described in (D) were photographed, and the cells
4., P=0.002 10 P<0.005 18 : showing a polarized actin structure and CD44
1 ’”] W jocalization at the uropodia were counted. Over
600 cells within three independent fields were
counted. Data are presented as mean + SEM.
(F) Impairment of the chemotactic migration of
Ly49Q-deficient neutrophils. The BM neutrophils
that had migrated in response to fMLP or KC to
the lower wells of chemotaxis chambers were
= ] counted. The resuits from three independent
0 0,0 04— 0 10 100 0 0 10 100 experiments are shown. Data are presented as
@\Q’ + KO Wi mean + SEM.
A . MLP (uM) KC (ng/ml) (G and H) Neutrophil migration into an air pouch.
Bgs OB2m-/- ~P<0.001 The neutrophil migration in vive was examined
using the dorsal air pouch model. Three hours
after zymosan injection (0.5 mg/mouse) (G) or
E. coli (DH5 strain, 3 x 108 cfu/mouse) (H) into the air pouch, the neutrophils were collected from the air pouch and counted. More than four mice from each
group were examined. Data are presented as mean £ SEM.
() Impairment of the chemotactic migration of B2m-deficient neutrophils. The BM neutrophils that migrated in response to fMLP or KC to the lower wells of chemo-
taxis chambers were counted. The results from three independent experiments are shown. Data are presented as mean + SEM.
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contro! littermates. In the absence of fMLP, H-2K® (the Ly49Q  because it was not observed in the Kira17-/~ neutrophils

ligand) was predominantly localized to the plasma membrane  (Figure 2A). We confirmed the association between SHP-1 and
in Kira17*~ neutrophils (Figure 2A). Distribution of H-2K® H-2K® in the absence of fMLP by immunoprecipitation
appeared to form clusters. Notably, SHP-1 was colocalized  (Figure S3). Interestingly, in fMLP-treated Kira17*/~ neutrophils,
with H-2K® in the absence of fMLP in the Kira?7*/~ neutrophils H-2K® and SHP-1 together relocated from the cell surface to en-
(Figure 2A), and this colocalization was Ly49Q dependent dosomal compartments, with many positive immunofluorescent
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signals in the perinuclear region. In contrast, even in the pres-
ence of fMLP, the Kiral7~'~ neutrophils showed neither SHP-1
colocalization with H-2K® nor the efficient translocation of
H-2K® to the endosomal compartments, although the amount
of H-2K® in the Kira?17~'~ neutrophils appeared to be reduced.
This result might have been due to the structural instability of
H-2K® in the absence of Ly49Q during endosomal acidification.
These results indicated that SHP-1 was constitutively associated
with Ly49Q, which interacted with H-2K" in cis at the cell surface
in the steady state, and that the Ly49Q-H-2K"-SHP-1 complexes
were internalized and transported to the perinuclear endosomal
compartments in response to fMLP stimulation.

in contrast to SHP-1, SHP-2 was not colocalized with H-2K® in

the steady state (Figure 2B). Notably, fMLP stimulation induced
the colocalization of SHP-2 with H-2K® and the redistribution

o Red: SHP-1 Green H-2K"

) Trpapiy
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e ey "i«"’y‘ \
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Figure 2, Intracellutar Distribution of
Ly49Q-Related Molecules in Neutrophils

The colocalization of H-2K® with SHP-1 (A) or with
F’\" SHP-2 (B) in the absence or presence of fMLP was
) examined by confocal microscopy. Neutrophils
were enriched from the BM of Kira17~'" or litter-
mate Kira17"  mice by removing the B220" cells,
treated with fMLP (25 uM) at 37°C for 40 min, and
subsequently stained with anti-H-2K® (green) in
combination with anti-SHP-1 or anti-SHP-2 (red).
The nuclei were visualized using DAPI. Histograms
b at the night show the profiles of H-2KP {green) and
the SHPs (red) along the white arrows. All data are
representative of three independent expenments.

A

b of SHP-2 to the perinuclear endosomal
compartments. Importantly, the recruit-
ment and transport of SHP-2 was
Ly49Q dependent, as it was not observed
b in Kira17™'~ neutrophils. These results
indicate that Ly49Q is responsible for the
fMLP-dependent recruitment of SHP-2
to membrane compartments from the
cytoplasm. In addition, Ly48Q, along
with the SHPs and H-2K®°, was localized
to lipid rafts, as visualized by cholera
toxin B subunit (CTB) binding, at the cell
surface and in the endosomal compart-
ments (Figure 3A). These results indicate
that Ly49Q is responsible for recruiting
SHP-2 to membrane rafts and for the traf-
ficking of the rafts and the associated
SHP-1 and SHP-2. A previous study
established that SHP-2 partitioning to
raft compartments triggers Rho activa-
tion and subsequently integrin-mediated
signaling (Lacalle et al., 2002). Therefore,
the Ly49Q-dependent recruitment of
SHP-2 ta rafts during neutrophil polariza-
tion indicates that Ly49Q has an impor-
tant role in the regulation of polarity
formation. These data also demonstrate
that Ly48Q differentially associates with
SHP phosphatases and regulates neutro-
phil functions in a different manner, depending on the presence
or absence of the fMLP stimulus.

o
L Y
il pug e
b

Ly49Q-Dependent Internalization and Movement

of Lipid Rafts

Previous studies reported that the trafficking and redistribution
of lipid rafts are critical for cell polarization and directional migra-
tion (Mafies et al., 1999; Pierini et al., 2003; Polishchuk et al.,
2004). Therefore, we hypothesized that Ly49Q regulates the traf-
ficking of endocytosed rafts in neutrophils to induce polarity. To
test this hypothesis, raft distribution was compared between
Kira17*'~ and Klra17~'~ neutrophils. In the presence of fMLP,
polarized Kilra17*~ neutrophils efficiently internalized raft
components (Figure 3B). The internalized rafts gathered at the
perinuclear region, similar to the distribution of H-2K® shown in
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Figure 2. In contrast, in the Klra? 77/~ neutrophils, the rafts largely
remained at or near the cell surface, and the efficient redistribu-
tion of raft components was not observed in the presence of
fMLP. in the absence of fMLP, there was little difference in the
distribution of the rafts between Kira17*~ and Kira17~'~ neutro-
phils, and the staining was mainly observed at the cell surface
(data not shown).

To confirm the importance of Ly49Q in raft behavior, we
carried out siRNA gene-targeting experiments using X63
myeloma cells expressing endogenous Ly49Q. The intracellular
distribution of raft components, labeled by CTB binding,
decreased in the Ly49Q-specfic siRNA-expressing X63 cells,
but not in cells expressing a control RNA (Figures 3C and 3D).
Quantitative analysis of the CTB fluorescence and a comparison
of the areas covered by intracellular CTB-labeled rafts, by count-
ing the corresponding pixels, also indicated that the decreased
Ly48Q expression reduced intracellular raft componenis
(Figures 3E and 3F). A similar impairment in raft distribution
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Figure 3. Ly49Q-Dependent Raft Endocy-
tosis

(A} Colocalization of Lyd8Q with lipid rafts.
RAW264 cells were transfected with FLAG-tagged
Ly49Q} and stained for Ly49Q with anti-FLAG (red)
and for rafts with CTB (green). Confocal images
from a single plane are shown.

(B) Lipid raft internalization and redistribution
during fMLP-induced neutrophil polarization.
Neutrophils enriched from BM were incubated at
37°C for 40 min in the presence of fMLP and
stained for rafts with CTB (green) and for F-actin
with phalloidin (red). Nuclei were visualized with
DAPI. These data are representative of three or
four independent experiments.

(C) Decreased expression of Lyd8Q in X63 cells
after introducing Ly49Q-specific siRNA. The X63
myeloma cell line, which expresses Ly49Q endog-
enously, was transfected with Ly49Q-specific
siRNA or control RNA and then analyzed for
Ly49Q expression by flow cytometry. Histograms
show the mean fluorescence intensities.

(D) Confocal images of lipid rafts in the Ly49Q
gene-targeted X63 myeloma cells. After 72 hr of
siRNA transfection, the cells were stained with
CTB to visualize the lipid rafts and analyzed by
confocal microscopy. This figure is representative
of two independent experiments.

(E and F) Quantitative analyses of the intracellular
raft distribution in Ly49Q gene-targeted X63
myeloma cells. The CTB fluorescence intensity in
the confocal images shown in (D) is represented
by 3D histograms (E) according to the LC500 anal-
ysis program. Each 3D histogram represents
about 15-20 cells, and each peak indicates the
fluorescence intensity of one celi. Bar graph (F)
shows the percentage of pixels with a signal inten-
sity less than 10 (dark gray bars) or greater than 10
(light gray bars). The fluorescence signal intensi-
ties of ten non-overlap photographs for each
condition were digitalized for the pixel analyses.
*p < 0.0002; **p < 0.0002. Data are presented as
mean = SEM.

SIRNA

was observed in Ly49Q", but not in Ly49Q"™ RAW264 clones
(Yoshizaki et al., 2009) (Figure S2), also supporting an important
role for Ly49Q in raft trafficking.

Importance of Ly49Q in the Persistence

of Raft-Mediated Signaling

We next investigated whether the dysregulated raft behavior in
Kira17~'~ neutrophils affected fMLP-triggered signals, which
are transduced at lipid rafts (Sitrin et al., 2006). Lipid rafts have
been shown to serve as an important signaling platform for
various receptors, including chemokine receptors (Gomez-
Moutdn et al., 2004; Mafies et al., 2001; Sitrin et al., 2006). After
ligand binding to a chemokine receptor, a heterotrimeric GTPase
is activated, which is coupled to downstream signaling pathways
by mechanisms such as the activation of Src family kinases
(Thelen, 2001). Therefore, we focused on raft-associated and
G protein-coupled receptor (GPCR)-proximal kinases and found
that the Src kinase activation induced by fMLP was severely
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impaired in Kirat 7~~ neutrophils. The amount of Src kinases
phosphorylated on Tyr416 was substantially increased 1 min
after fMLP treatment in the Klra17~'~ neutrophils (Figures 4A
and 4B), but this activation was transient and the amount
of phosphoryiated Src kinase had drastically decreased by
30 min after the treatment. In contrast, in the Kira?7*  neutro-
phils, there was an early, moderate activation of Src kinase,
with the amount of active Src kinase increasing at each time
point. During fMLP treatment, the total amount of Src kinase
gradually decreased in the Klral 7+~ neutrophils, but not in the
Kira17~/~ neutrophils, consistent with the accepted under-
standing that active Src is proteolytically degraded (Ben-Neriah,
2002). These observations were also consistent with the recruit-
ment of SHP-2 by Ly48Q because SHP-2 positively regulates
Src kinase activity (Zhang et al., 2004). Given that Ly49Q
recruited SHP-2 to rafts and maintained its association with
SHP-2, even after the raft components had been transported
to the perinuclear endosomal compartments, Src kinase may
be active throughout its association with the rafts, in the pres-
ence of Ly49Q.

Interestingly, the amount of Tyr416-phosphorylated Src kinase
at 0 min was higher in the Klra? 7-'~ neutrophils than in the
Kira17*'~ neutrophils after normalizing the activated Src kinase
to the total amount of Src kinase in the preparations
(Figure 4B). This may suggest that Ly49Q inhibits Src kinase in
the absence of stimuli. To confirm the inhibitory function of
Ly49Q, the mouse myeloid cell line WEHI3, which does not
express endogenous Ly49Q, was transfected with a Ly48Q
expression plasmid, and the effects on Src and related signaling
molecules were examined. The WEHI3 cell line was derived from
BALB/c mice and expresses H-29, but not H-2° (Ralph et al.,

0l
0 1

Figure 4. Crucial Role of Ly49Q in the
Kinetic Regulation of Src Activity

{A) Activation of Src kinase in neutrophils in the
presence of fMLP. Neutrophils enriched from BM
were treated with fMLP (25 uM) for the indicated
periods (in minutes), and the phosphorylation of
Src kinase at Tyr416 was examined by immuno-
blotting.

(B) Relative amount of Src kinase phosphorylated
at Tyr416 in fMLP-treated neutrophils. Bands of
the phosphorylated Src and total Src were quanti-
fied as described in Experimental Procedures. The
y axis values are the amounts of active Src relative
to the amount of total Src.

(C and D) Effect of Ly49Q expression on raft-asso-
ciated signaling molecules. Gell lysates of WEHI3
transfectants were prepared, and immunoprecipi-
tation and immunoblot analyses with the indicated
antibodies were performed. The precipitates were
analyzed by immunoblotting with the antibodies
indicated (C). The signal intensities of the phos-
phorylated Src and PI3 kinases were digitalized
according to the LAS-3000 analysis program and
are shown as bar graphs (D). All data are represen-
tative of three independent experiments.

- KO
== Hetero

515 30
Time {min)

0
WT Mock

1976). As recently reported, Ly49Q interacts with H-2D9, so we
expected that Ly49Q would interact with its MHC class | ligand
in the WEHI3 cells (Scarpellino et al., 2007). The Src kinase in
WEHI3 cells transfected with empty vector (mock) was constitu-
tively phosphorylated at Tyrd16 in the steady state (Figure 4C).
When Ly49Q was expressed in the WEHI3 cells, phosphorylation
of Src kinase at Tyrd16 was almost completely inhibited
(Figure 4C). Notably, the immunoprecipitation of Ly49Q-express-
ing lysates with antibodies to caveolin-1, an important raft-asso-
ciated molecule, also brought down C-terminal Src kinase (Csk),
showing that the exogenous Ly49Q recruited Csk to the raft
compartment (Figure 4C) (Parton and Richards, 2003). Because
Csk negatively regulates Src kinase activity (Zhang et al., 2004},
inhibition of Src by Ly49Q may be mediated by a Csk-dependent
mechanism. In addition to inhibiting the tyrosine phosphorylation
of Src kinase, the expression of Ly49Q inhibited the tyrosine
phosphorylation of the PI3 kinase p85 (Figures 4C and 4D). Taken
together, these results strongly suggest that, on one hand, Ly49Q
inhibits Src and PI3 kinase activity in the steady state, but on
the other, Ly49Q is necessary for the sustained activation of
Src kinase, probably through the recruitment of SHP-2 to the
raft compartment in the presence of fMLP. Because Src kinase
has an essential role in cell polarization and migration (Charest
and Firtel, 2007; Grande-Garcia et al., 2007), our findings strongly
suggested that Ly49Q-regulated Src activation contributes to
neutrophil polarization and migration.

Inhibition of Neutrophil Infiltration into Inflammatory
Sites in Tg Mice Expressing Ly49Q-YF

To clarify the importance of its ITIM sequence in promotion of
polarization and migration by Ly49Q, we analyzed transgenic
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mice expressing a mutant of Ly49Q lacking an ITIM domain
(Ly49Q-YF), which was designed to function as a dominant-
negative isoform for ITIM-dependent functions (Toyama-Sori-
machi et al., 2004). The ligand-binding ability of Ly49Q-YF was
confirmed by both flow cytometry analyses of H-2K® tetramer
binding (Figures S3A and S3B) and coimmunoprecipitation
experiments (Figure S3D). Ly49Q-YF formed heterodimers with
Ly49Q-WT (Figure S3E). The dominant-negative function of
Ly49Q-YF was validated by examining the effects of its expres-
sion along with Ly49Q-WT on PI3 kinase and Src family kinases
(Figures S3F and S3G). We also found that the phosphorylation
of Ly49Q-associated SHP-2, and probably that of SHP-1, was
substantially diminished in the presence of Ly49Q-Ly49Q-YF
heterodimers, indicating that the dimers required both ITIMs to
fully exert their functions (Figure S3H). The dominant-negative
function of Ly49Q-YF was further confirmed by its abrogation
of the fMLP-induced changes in tyrosine phosphorylation in
neutrophils from Ly49Q-YF Tg mice (Figure S3l).

To determine whether the ITIM of Ly49Q is involved in neutro-
phil migration, we examined the ability of neutrophils to infiltrate
inflammatory sites. The infiltration of air pouches by neutrophils
was assessed by inoculating them with zymosan and evaluating
the amount of infiltration 3 hr later. We found a significant (p =
0.00001) decrease in the number of infiltrating neutrophils in
the Ly49Q-YF Tg mice (Figure 5A). In contrast, the neutrophilic
infiltration into air pouches at the same time point was signifi-
cantly (p = 0.03) greater in the Ly49Q-WT Tg mice than in
their control littermates (Figure 5A). By 6 to 18 hr after zymosan
injection, the difference in the number of infiltrating neutrophils
between the Tg and littermate control mice was no longer
significant (data not shown, p > 0.2). We further confirmed the
impairment of neutrophil migration using Matrigel chambers for
in vitro invasion assays. As shown in Figures 5B and 5C, signifi-
cantly (p < 0.005) fewer Ly49Q-YF than Ly48Q-WT neutrophils
migrated in vitro (Figure 5C). These results indicated that the
iTIM of Ly49Q is important for chemokine-induced neutrophil
infiltration into tissues.

Critical Role of the Ly49Q ITIM in Organizing the Celiular
Polarity of Neutrophils

To clarify whether the impaired migration of the Ly49Q-YF
neutrophils was associated with impaired cellular polarity, we
examined of the adoption of polarity by Ly49Q-YF neutrophils.
As shown in Figure 5D, in the presence of fMLP, the Ly49Q-
WT neutrophils clearly became polarized, with a ruffled lamelli-
podia, a contracting uropodia, and a nucleus with a well-orga-
nized lobulated structure. Neutrophils prepared from control
littermates also showed a polarized morphology in response to
fMLP. In contrast, the spreading Ly49Q-YF neutrophils did not
exhibit clear polarization, and a number of cells showed an
unusual folding of the lobulated nucleus (Figure 5D). An examina-
tion of filamentous actin confirmed that both actin polymeriza-
tion and the organization of cell polarity were impaired in the
Ly49Q-YF neutrophils (Figures 5E and 5F). In the Ly49Q-YF
neutrophils, the raft internalization and subsequent redistribution
in response to fMLP was also severely impaired, and most rafts
remained at the cell surface (Figure 5G). In contrast, the Ly48Q-
WT neutrophils and the non-Tg neutrophils, which expressed
endogenous Ly49Q, showed internalization of the raft compart-
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ments and their redistribution to the perinuclear region. When the
intracellular distribution of Ly49Q itself was examined, most
Ly49Q-WT was at the plasma membrane in the absence of
fMLP (Figure 5H, see also Figure S3J). After fMLP treatment,
Ly49Q-WT was clearly internalized and transported to the peri-
nuclear region, consistent with the redistribution of the H-2K®
and SHP phosphatases shown in Figure 2 (Figure 5H, see also
Figure S3J). In contrast, Ly48Q-YF was localized to the perinu-
clear regions even in the absence of fMLP, and its location
did not change with fMLP treatment (Figure 5H, see also Fig-
ure S3J). Therefore, the fMLP-triggered raft movements were
accompanied by the redistribution of Ly49Q and were depen-
dent on its ITIM. These results indicated that the Ly49Q-depen-
dent raft redistribution was controlled by the ITIM-dependent
trafficking machinery of Ly49Q itself.

Inhibition of Neutrophil Adhesion and Spreading
by Ly49Q in the Absence of Chemoattractant
We next examined the roles played by Ly49Q in the steady state
because the inhibition of the Src and PI3 kinase activities might
affect cell behavior. Since both kinases are important for the
formation of focal adhesions, we compared the adhesiveness
of Ly49Q Tg-derived neutrophils in the absence of chemoattrac-
tant stimuli with that of control B6 neutrophils. The guantitative
adhesion assay showed no obvious difference in the adhesion
of Ly49Q-YF compared with control B6 neutrophils, in the pres-
ence or absence of fMLP, although a slight inhibition of adhesion
was observed in the Ly43Q-WT neutrophils in the absence of
fMLP (Figure 6A). However, microscopic analyses revealed
marked morphological differences between the Ly49Q-WT and
Ly49Q-YF neutrophils in the absence of fMLP. The Ly49Q-WT
neutrophils were bright, round, and easily detached from the
substrate by shaking (Figure 6B), whereas the Ly49Q-YF neutro-
phils spread and adhered more tightly. The Ly49Q-YF neutro-
phils appeared dark and had a flat, elongated morphology with
protrusions. Staining for paxillin, a scaffolding protein essential
for the stable formation of focal adhesions (Webb et al., 2004),
showed it to be attenuated at the focal adhesion-like structures
in the Ly49Q-WT neutrophils, verifying their decreased adhe-
siveness (Figure 6B). There was no substantial difference in the
expression levels of adhesion molecules, such as integrins
between Ly49Q-WT and Ly43Q-YF neutrophils (data not shown).
We further confirmed this inhibitory effect using WEHI3 trans-
fectants expressing Ly49Q-WT, Ly49Q-YF, or empty plasmid
(Figure 6C). WEHI3 cells expressing Ly43Q-WT showed rounded
shapes and decreased adhesiveness. In contrast, WEHI3 cells
expressing almost equal amounts of Ly49Q-YF adhered and
spread. Control and Ly49Q-YF transfectants exhibited paxillin
staining at the pericellular edges, associated with structures
that looked like focal adhesions. in contrast, in the Ly49Q-WT
neutrophils, paxillin staining appeared diffuse, and the focal
adhesion-like structures were not distinct. Inhibition of Src
kinase by Ly49Q in the steady state was consistent with this
observation, because Src activity is necessary for focal adhesion
formation (Parsons and Parsons, 1997). Thus, in the absence of
chemoattractant, Ly49Q prevents firm adhesion in an ITIM-
dependent manner. This function may be attributable to a
specific feature of Ly49Q, because Ly49A did not show a compa-
rable effect on focal adhesion formation (Figures S4A and S4B).
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Figure 5. Impaired Neutrophil Polarization
and tnfiltration into Inflammatory Sites in
Ly49Q-YF Tg Mice

(A) Reduced infiitration of Lyd9Q-YF neutrophils
into an air pouch with zymosan-induced inflamma-
tion. Three hours after zymosan injection (0.5 mg/
mouse} into the air pouch, the infiltrating cells
were collected and counted. The Ly48Q-WT
mice were from lines 19 and 8, and the Ly49Q-YF
mice were from lines 2—4 and 2-6. Three to
four mice from each line were studied.

(B) The Ly49Q-YF neutrophils showed reduced
invasiveness in response to fMLP. The images
show transmigrated neutrophils stained with Diff-
Quick.

(C) Neutrophil migration through Matrigel. At least
four independent fields were photographed at
200x%, and the migrated celis were counted. Data
are presented as mean + SEM.

(D) Spreading morphology of neutrophils stimu-
lated with fMLP. Neutrophils that adhered to fibro-
nectin-coated culture dishes in the presence of
fMLP were stained with DifQuick. Arrows indicate
the orientation of cellular polarity. Asterisks indi-
cate uropodia. Neutrophils expressing Ly49Q-YF
showed defective lamellipodia and filopodia
formation (compare the left and right panels to
the middle).

(E) Impairment of fMLP-induced polarity n
Ly49Q-YF neutrophils. Confocal images show
cytoskeletal organization (F-actin) stained with
Alexa594-labeled phalloidin (red) in neutrophils
that were polarized in response to fMLP. Arrow-
heads and asterisks indicate lamellipodia and uro-
podia, respectively.

(F) Quantitative analyses of the polarized neutro-
phils in response to fMLP. Neutrophils were
stained with phalloidin as described in (B}, the
cells containing polarized actin were counted,
and the percentage of polarized cells is shown.
Over 100 cells from over five independent micro-
scopic fields were counted. Results represent
the mean x SD of three separate experiments.
*p < 0.00001. Data are presented as mean + SEM.
(G) Impaired raft movement in Ly4d9Q-YF neutro-
phils. Neutrophils prepared from BM were incu-
bated with fMLP and stained with CTB (green)
and an anti-tubulin (red). Raft compartments
were internalized and observed at the perinuclear
region in the Ly49Q-WT and non-Tg neutrophiis,
but not in the Ly49Q-YF neutrophils. Confocal
images from three planes along the z axis in the
same cells are shown.

(H) ITIM-dependent redistribution of Ly49Q in
response to fMLP. Confocal analysis of the intra-
cellular distribution of Ly42Q in Tg neutrophils.
Neutrophils prepared from Tg BM were incubated
with or without fMLP and stained with a Ly49Q anti-
body (red) and phaliloidin (green). The Ly49Q-WT
neutrophils responded to fMLP with a marked
change in Lyd9Q distribution. All data are represen-
tative of three or four independent experiments.

Such functional differences between Ly49Q and Ly49A may be  Ly49Q-Dependent Raft Organization and Enhancement
explained by differences in the acid resistance of their ligand-  of the Demarcated Response of Neutrophils

binding activity and the phosphatases they preferentially recruit ~ Finally, we examined whether the presence of Ly49Q causes
(Yoshizaki et al.. 2009) (Figures S4C and S4D). quantitative and qualitative changes in raft compartments. Using

Immunity 32, 200-213, February 26, 2010 ©2010 Elsevier Inc. 207



Fiuorescence intensity

- r -+

WT YF Non-Tg

MLP

B ) . Paxillin

Lyd9Q-WT

Ly49Q-YF

WEHI3 transfectants, the rafts were separated as detergent
insoluble fractions by sucrose density-gradient centrifugation,
and the distribution of raft-associated molecules, including
GM1 and caveolin-1, was examined. In WEHI3 transfectants,
the rafts identified by CTB binding were mainly detected in
fractions 4 and 5 (Figure 7A). Interestingly, the Ly49Q-WT trans-
fectants showed an increase in GM1 content in the detergent-
insoluble fractions (Figures 7A, 7B, and 7D). A small increase in
GM1 in the light fractions was aiso observed in the Ly49A
transfectants. In addition, the amount of GM1 was increased
in the intermediate-density fractions (fractions 6 to 8) of
Ly49Q-WT WEHI3 compared to those of the other transfectants
(Figure 7B). These intermediate-density fractions included
caveolin-1 and Rab5 (Figures S5A and S5B) and were qualita-
tively different from the light-density fractions (fractions 3 to 5).
Ly49Q itself was detectable in these intermediate fractions
(Figure 7C). These results indicated that Ly49Q mediates the
formation of a certain type of raft domain in an {TIM-dependent
manner.

We then compared the distribution of raft-associated signaling
molecules in the absence or presence of stimulation. No
remarkable differences in the distribution of SHP-1 and SHP-2
were observed among the transfectants in the steady state
(Figure 7E, see also Figure S5C). However, when the cells were
stimulated by raft crosslinking, a noticeable redistribution of
SHP-2 to the intermediate fractions was observed in Ly49Q-
WT WEHI3. In contrast, in the Ly49Q-YF, mock, and Ly49A
transfectants, less SHP-2 was redistributed to the intermediate
fractions than in Ly49Q-WT. Surprisingly, the Src distribution
was greatly influenced by the presence of Ly49Q-WT. In the
absence of stimulation, there was less Src in the light and inter-
mediate fractions of Ly48Q-WT WEHI3 than in those of the other
transfectants, and it appeared to be excluded from the raft
fraction (Figure 7E). On the other hand, when the cells were
stimulated by raft crosslinking, a redistribution of Src to the inter-
mediate fractions was induced in the Ly49Q-WT transfectants.
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Figure 6. Effects of Ly49Q on Cell Adhesive-
ness and Paxillin Distribution in the
Absence of {MLP

(A) Quantitative adhesion assay of BM neutrophils.
Neutrophils prepared from the Tg BM were
labeled with BCECF and incubated without (black
bars) or with {gray bars) fMLP (25 uM) at 37°C for
40 min, and the fluorescence intensity of the lysed
adherent cells was measured. Resuits are pre-
sented as the mean = SD of triplicate cultures.
*p = 0.04; “'p = 0.007. Data are presented as
mean = SEM.

(B) Effects of the Ly49Q transgenes on neutrophil
adhesion and paxillin distribution. Photographs
show adherent neutrophils in the absence of
fMLP. Ly49Q-YF neutrophils exhibited a spread-
out morphology in the absence of fMLP. The
neutrophils were stained with an anti-paxiflin and
Alexa594-conjugated anti-mouse IgG.

(C) Morphology and paxillin accumulation of
WEH!3 cells expressing Ly49Q-YF and Ly49Q-
WT. Focal adhesion complexes were labeled
with the anti-paxillin (arrowheads, upper panels).
Phase-contrast images of transfectants cultured
on plastic dishes are shown (lower panels).

In addition, phosphorylation status of the redistributed Src
appeared to be changed. In contrast, in the Ly49Q-YF- and
mock-transfected WEHI3, Src was constitutively broadly distrib-
uted, and the stimulation-induced redistribution and change of
phosphorylation status of Src was almost undetectable. The
distribution of Ly49Q-WT and Ly49Q-YF did change before
and after the stimulation (data not shown). These resuits indi-
cated that Ly49Q is responsible for the organization of a certain
type of raft and for the correct partitioning of Src to the rafts, with
the correct timing, which is important for the sharp demarcation
between quiescent and active-state neutrophils.

DISCUSSION

Compared with most vertebrate cells, blood neutrophils become
polarized and move quickly to immediately infiltrate inflamma-
tory sites. To do this successfully, neutrophils possess a partic-
ular competence for polarization and directional movermnent
(Zigmond et al., 1981). in the current study, we found, using
Ly49Q-deficient mice, that an inhibitory MHC class | receptor,
Ly49Q, plays a critical role in the ability of neutrophils to become
polarized and infiltrate extravascular tissues. Our data demon-
strated that Ly49Q was necessary for one of the key events
required for adhesion and migration: the recruitment of SHP-2
and Src to the raft compartments (Lacalle et al., 2002). In parallel,
Ly48Q also mediated raft internalization and redistribution,
which is known to be required for cellular polarization. Our
data from dominant-negative Ly49Q Tg mice and transfectants
clearly demonstrated that the ITIM of Ly49Q is important for
these functions. The preferential expression of Ly49Q in inflam-
matory cells, such as neutrophils and plasmacytoid dendritic
cells, might confer on these cells the unique ability to respond
immediately to inflammatory stimuli. Membrane lipid rafts play
crucial roles as signaling platforms and modulate many signaling
pathways in diverse biological processes, such as cell division,
apoptosis, adhesion, and chemotaxis (Mafies et al., 2001; Parton
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and Richards. 2003; Simons and Toomre, 2000). Lipid rafts also
regulate the spatial targeting of the small GTPases required for
cell spreading and migration (Lacalle et al., 2002). Previous
studies established that lipid rafts are internalized when cells
are detached from a substratum (Balasubramanian et al.,
2007). The endocytosed rafts are transported in a microtubule-
dependent manner to a distinct perinuclear region, where they
coalesce; they are eventually returned to the plasma membrane
via recycling endosomes (Balasubramanian et al., 2007). The
precise mechanism underlying how Ly49Q influences raft
behavior requires further investigation. The amount of GM1 in
the detergent-insoluble fractions was increased in the Ly49Q-

Src

recruited there when the cells underwent
raft-dependent stimulation. Importantly,
our data clearly indicated that Ly49Q
is pivotal for the sharp demarcation
between the quiescent and active states of neutrophils, which
is mediated by the partitioning of Src. That is, in the steady state,
Src seems to be excluded from the raft compartments by Ly49Q,
but in the presence of raft-mediated stimuiation, Src is recrujted
to certain raft compartments and phosphorylated, in a Ly49Q-
dependent, ITIM-dependent manner.

Our finding that the sustained activation of Src kinase in
Kira17~'~ neutrophils was impaired indicated that Ly49Q is a
positive regulator of tMLP-induced signals. Similarly, Kira?7~/~
macrophages show impaired CpG-induced activation of JNK
and p38, which correlates well with the abnormal trafficking of
CpG-containing endosomes (Yoshizaki et al.,, 2009). On the
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other hand, in Kira17*'* macrophages, activated p38 and JNK
are recruited to the cytosolic surface of Ly49Q-containing endo-
somes (Yoshizaki et al.. 2009). Based on these data, it is
intriguing to speculate that endocytosed rafts continue to
function as a signaling platform for locally sustained signals, by
rmaintaining the activity of the raft-associated signaling
complexes. Maintenance of these activated complexes might
also be beneficial for delivering them as a whole to specific
regions in a cell during polarization. Although in some cases,
receptor-ligand internalization has been thought to contribute
to the downmodulation of a signal (Beguinot et al., 1984,
Stoscheck and Carpenter, 1984), we found that the Ly49Q-
MHC class | association appears to be maintained in an acidic
environment (Yoshizaki et al., 2009), indicating that it at least
retains the machinery required for signaling. Therefore, Ly49Q
may maintain activated signaling complexes within endosomes
and thereby help to transduce signals in locally partitioned
regions such as the juxta-nuclear region or in the course of endo-
some transport along microtubules (Yoshizaki et al., 2009). We
cutrently speculate that the intermediate-density fractions may
include such signaling endosomes, because they inciuded the
endosomal marker Rab5 and Ly49Q localizes to endosomes
(Yoshizaki et al., 2009).

A previous study demonstrated that the recruitment of SHP-2
to rafts is crucial for chemotactic migration via activation of the
Rho small GTPase, which helps regulate the localized activation
of myaosin, uropodial retraction, cell-body traction, and adhesion
dynamics (Lacalle et al., 2002). Therefore, the Ly49Q-depen-
dent, stimulation-dependent partitioning of SHP-2 to the rafts
may be a critical step in neutrophil migration. SHP-2 is generally
a positive component of cell signaling, because this phospha-
tase functions upstream or downstream of various signaling
molecules that activate cells, such as the EGF receptor,
platelet-derived growth factor receptor, fibroblast growth factor,
and Src family kinases (Poole and Jones, 2005). Recent reports
also show that SHP-2 positively regulates the ERK pathway,
promoting Src family kinase activation by inhibiting the recruit-
ment of Csk to membrane fractions by dephosphorylating
a Csk-targeting protein, Cbp (Dance et al., 2008; Zhang et al.,
2004). Thus, the Ly49Q-mediated SHP-2 recruitment to rafts
can also account for the subsequent activation of the Src and
MAP kinases.

In contrast to SHP-2, SHP-1 plays a largely negative signaling
role in signal transduction (Poole and Jones, 2005; Zhang et at.,
2000). Negative functions of SHP-1 downstream of various
immune recognition receptors, such as TCR and KIR, are well
studied. Studies on moth-eaten mice have also provided strong
evidence that this phosphatase plays a major role in the negative
regulation of cell function (Tsui and Tsui, 1894). Our data showing
Ly49Q’s association with SHP-1 in the steady state suggests
that Ly49Q negatively regulates cell function through SHP-1 in
the absence of stimuli. This idea is supported by our finding
that the tyrosine phosphorylation of Src and PI3 kinases, both
of which play important roles in the positive regulation of focal
adhesions formation and migration, was inhibited in the steady
state by Ly49Q (Fincham et al., 2000). Therefore, Ly49Q'’s inhibi-
tion of focal complex formation in the steady state correlates well
with its ability to inhibit the Src and PI3 kinases. PI3 kinase is
a substrate for SHP-1(Poole and Jones, 2005), suggesting that
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SHP-1 is responsible for inhibiting the tyrosine phosphorylation
of PI3 kinase.

Taken together, our data support a model in which, in the
absence of chemoattractant stimuli, Ly49Q is largely located at
the cell surface, where it inhibits the firm adhesion and spreading
of neutrophils by preventing the stabilization of focal complexes
(Webb et al., 2004). This inhibitory role includes the SHP-1-medi-
ated inhibition of PI3 and Src kinases. When chemokine stimuli
trigger the endocytosis of Ly49Q, accompanied by raft compo-
nents, the process of neutrophil polarization begins. In this
process, the Ly49Q ITIM and recruitment and phosphorylation of
SHP-2 are crucial. These events also contribute to the sustained
activation of endosomal raft-associated signaling, which accounts
for the transduction of signals at compartments that are spatially
and temporally segregated from the cell surface. The above
model suggests a role for Ly49Q as a switching device in neutro-
phils. That is, it may turn off or suppress the adhesion and
extravasation of neutrophils that would be deleterious in the
steady state but swiftly switch on the neutrophil response to
inflammation by redistributing the raft compartment to initiate
polarization once a chemoattractant is encountered. Thus,
Ly49Q is a dual-function receptor that functions as an inhibitory
receptor in the steady state, as well as an activation receptor in
the presence of inflammatory stimuli. We propose that the
Ly49Q-mediated switching function from inhibitory to activating
hinges on L49Q's additional recruitment of the effector phospha-
tase SHP-2. Inaddition, because Ly49Q expression is upregulated
during cellular maturation (Omatsu et al.. 20085), its upregulation
may represent an increased potential for neutrophilic locomotion.
We also speculate that the increased expression of both
Ly49Q and MHC class | by IFNs (Toyama-Sorimachi et al., 2005)
enhances raft functions, including phagocytosis, by increasing
the raft content during inflammatory responses. Furthermore,
the massive reorganization of lipid rafts resulting from the
Ly48Q-MHC class | interaction would help ensure the rapid
response of inflammatory cells. It is important to clarify whether
human neutrophils have similar regulatory system because Ly49
family did not evolve in human. Several {TIM-bearing receptors,
including ILT-LIR family members, have beenidentified inhumans,
possessing properties similar to Ly49Q regarding ligand interac-
tion and tissue distribution (Volz et al., 2001) Therefore, a different
ITIM-bearing receptor may substitute for Ly49Q function to
mediate rapid response in human neutrophils.

One of the important functions of inhibitory MHC class | recep-
tors in the context of target recognition by NK cells is to inhibit
the polarization of lipid rafts and the disruption of the actin
network, either of which causes the attenuation of NK cytotox-
jcity. In neutrophils, as we have demonstrated here, Ly49Q
was integrated into lipid rafts and mediated neutrophil polariza-
tion by regulating raft status and its behavior, and the ITIM and
associated phosphatases were crucial for Ly49Q’s functioning.
it is interesting that a simitar mechanism regulates raft dynamics
in immune cells ranging from myeloid cells to NK cells. Phyloge-
netically, given that Ly43Q is one of the oldest genes of the Ly49
family (Wilhelm et al., 2002), the Ly49 molecule may have origi-
nally functioned in lower polymorphonuclear cells, such as
phagocytes, to regulate membrane dynamics through cis inter-
actions with MHC class I, a mechanism that was later adopted
by NK cells to recognize self MHC class | in trans.
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In conclusion, Ly49Q functions as a switching device for the
swift initiation of neutrophil polarization to produce sharply
demarcated responses. Furthermore, we showed an important
role for Ly49Q as a safeguard from undesirable adhesion and
migration, which might be important for the maintenance of
neutrophilic homeostasis. Since Ly49Q is expressed in cells
that migrate rapidly to sites of inflammation and infection,
Ly49Q may also act as an important device in these cells to
ensure their rapid and specific responses.

EXPERIMENTAL PROCEDURES

Mice

C57BL/6J mice (6 to 7 weeks old) were purchased from CLEA Japan Inc.
(Tokyo, Japan). C57BL/6 Rag2 ' mice were purchased from Taconic Farms,
inc. {Hudson, NY). Ly48Q-WT Tg mice (C57BL/6) and Ly49Q-deficient
(Kira17~"") mice (12951) were described previously (Tai et al., 2008; Yoshizaki
et al.. 2009). Ly49Q-deficient mice were bred with 12981 mice, and the resuit-
ing Kira17 ™ and Klra17* littermates were used for the same sets of exper-
iments. Experiments for establishing Tg mice were performed according to the
Guidelines for Animal Use and Expenmentation set out by The Tokyo Metro-
politan Institute of Medical Science (Rinshoken) (Tokyo, Japan). Experiments
for analyzing Tg and Ly49Q-deficient mice were performed according to the
Gurdelines for Animal Use and Experimentation set out by the International
Medical Center of Japan (Tokyo, Japan).

Establishment of Ly49Q-YF Tg Mice

The construction of FLAG-tagged Ly49Q-YF was described previously
(Toyama-Sonmachi et at. 2004). FLAG-tagged Ly48Q-YF inserts were
excised from pME18S-Ly49Q-YF with Sall and Hind Il and then ligated into
the Xho | sites in pCAGGS in the correct orientation. The construct for the
transgene was excised from pCAGGS-Ly49Q-YF with Sall and Hind Il and
purified with the QlAquick Gel Extraction Kit (QIAGEN K.K,, Tokyo, Japan).
To screen Tg mice, genomic PCR and FACS were performed using Ly49Q-
specific primers (Toyama-Sorimachi et al.. 2004) and a Ly49Q antibody,
respectively.

Cell Preparation

Murine neutrophils were isolated using the Histopaque-1077-Histopaque-
1119 two-layer gradient method (Sigma-Aldrich, St Louis, MO) according to
the manufacturer’s instructions. PECs were collected by washing the perito-
neal cavity with cold PBS containing 0.05% EDTA 4 hr after intraperitoneal
injections of 9% casein. in the experiments of Figure 1, the neutrophils were
highly purified by cell sorting with an AutoMACS (Miltenyi Biotec GmbH,
Germany) using magnetic beads followed by a FACS Vantage (Becton
Dickinson, San Jose, CA).

Antibodies and Reagents

Preparation of the Ly49Q antibody was described previously (Toyama-
Sonmach: et al.. 2004). The following mAbs were from BD Bioscience
PharMingen (San Diego, CA): FITC-conjugated anti-mouse Gr-1 (RB6-8C5),
PE-conjugated anti-mouse Mac-1 (M1/70), streptavidin-conjugated APC and
PE, control rat IgG2a and 1gG2b, anti-mouse CD18 (M18/2), and anti-CD29
(9EG7). Biotin-conjugated and purified anti-FLAG M2 were from Upstate
Biotechnology Inc. {Lake Placid, NY). The anti-HA was from Roche Diagnostics
GmbH (Mannheim, Germany). Antibodies against SHP-1, SHP-2, phospho-
SHP-2, SHIP. Hck, Fgr, and FPR were from Santa Cruz Biotechnology Inc.
(Santa Cruz, CA). Antibodies against Src and phospho-Src were from Daiicht
Pure Chemicals Co. LTD. (Tokyo, Japan). TRITC-conjugated anti-paxillin was
from BD Biosciences (San Jose, CA). FITC-conjugated or Alexa Fluor
594-conjugated CTB, Alexa Fluor 594-conjugated anti-rat IgG, Alexa Fluor
594-conjugated anti-mouse IgG. Alexa Fluor 488-conjugated anti-rat IgG,
Alexa Fluor 633-conjugated SA, and Alexa Fiuor 488- or Alexa Fluor 594-
conjugated phalloidin were from Molecular Probes Inc. (Eugene, OR). PE-
conjugated H-2KP tetramer (T-Select H-2KP OVA tetramer-SIINFEL-PE) was
from Medica! & Biological Laboratories Co. Ltd. {Nagoya, Japan). Zymosan A

from Saccharomyces cerevisiae was from Sigma Aldrich (St Lows, MO).
fMLP was from Sigma (St. Louis, MO) and Peptide Institute inc. (Osaka, Japan).

Flow Cytometric Analysis

Immunofluorescence analysis was performed as previously described
(Toyama-Sorimachs et at.. 2004). Cytoplasmic staming was performed using
the Cytofix/Cytoperm kit according to the manufacturer's mstructions (BD
Biosciences, San Diego, CA). Stained cells were analyzed with a FACSCalibur
(Becton Dickinson, San Jose, CA).

Vectors and cDNA Transfection

WEHI3 transfectants expressing Lyd9Q-WT or Ly49Q-YF were described
previously (Toyama-Sorimachi et al., 2004). COS7 cells were transfected by
electroporation using a Gene Pulser Il (Bio-Rad Laboratories, CA). In some
experiments, a Microporator MP-100 (Digital Bio, NanoEnTek inc., Seoul,
Korea) was used to miroduce plasmids into RAW264.7 celis, following the
manufacturer's instructions.

immunohistochemical Staining

Cells adhering to glass coverslips or fibronectin-coated multiweli chamber
slides (BD Biosciences, Bedford, MA) were fixed with 3.7% formalin in PBS
at RT for 15 min, then treated with 0.1% Triton X-100 in PBS for 26 min. After
being washed with PBS contaming 0.05% BSA, the celis were treated with 3%
BSA in PBS to prevent nonspecific protein binding. The celis were then stained
with FITC-conjugated antibodies or Alexa594-labeled phalloidin. The unconju-
gated antibodies were visualized using Alexa488- or Alexab84-labeled second
antibodies. The cells were then mounted and analyzed by confocal or fluores-
cence microscopy (Olympus, Hamamatsu, Japan). In the experiment using
siRNA, the staining of rafts was analyzed by confocal microscopy (Zeiss,
Germany) and quantified by the LC500 analysis program,

Transmigration Assay In Vitro

The in vitro transmigration assay was performed using a Chemotaxicell system
with a 5 um pore size (Kurabo Ind. LTD, Osaka, Japan). BM cells (1 X 10% in
serum-free RPMI containing 2% BSA were seeded into the upper chambers
of the system. In the lower chambers, fMLP at the concentrations indicated
was added. After 45 min of incubation at 37°C, 5% CO,, the cells that had
migrated to the lower chamber were collected by centrifugation (1,QOd rpm
for 5 min at 4°C), and counted.

Neutrophil Migration Assay In Vivo

In vivo neutrophil migration was assayed using the dorsal air pouch model.
Sterilized air (4 mi) was injected into the back of mice two times with a 3 day
interval, followed by the injection of 1 mt of 0.5 mg/ml zymosan suspension
into the air pouch. Three hours later, the cells that had infiltrated the air pouch
were collected with cold PBS containing 0.05% EDTA and were counted.

Neutrophil Invasion Assay In Vitro

The neutrophil invasion assay was performed using BD Matrigel Invasion
Chamber 24-well plates (8.0 uM) (BD Biosciences, Bedford, MA), according
to the manufacturer's protocol with minor modification. Briefly, BM cells
(2.5 x 10% in serum-free RPMI containing 2% BSA were seeded into the upper
chambers of the system. In the lower chambers, fMLP at various concentra-
tions was added. After 2.5 hr of incubation at 37°C, 5% CO,, the filters were
stained with Ditf-Quick and analyzed by light microscopy (Olympus, Hama-
matsu, Japan). Four randomiy selected fields at 200-fold magnification were
photographed, and the cells were counted. In addition, the outlines of the
migrated cells were traced using ImageJ, a Java image-processing program
ingpired by NIH image, to determine the area in pixels occupied by the
migrated celis. Outlines were drawn around cell clusters, which appeared as
large 1slands, and around single rmugrated cells, which appeared as smatl
islands. The number of pixels within the outlined areas was determined with
Imaged, and the frequencies of regions that covered more than 150 pixels
were displayed as 200 pixel intervals.

Cell Adhesion Assay
The cell adhesion assay was performed as described previously with the
following modifications (Toyama-Sonmachi et al., 1995). Fibronectin-coated
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8-well chamber slides (BD Biosciences, Bedford, MA} were used. The
adherent cells were lysed with PBS containing 1% NP-40, and the fluores-
cence intensity in the lysates was quantified by a Fluoroskan Ascent FC
(Thermo Fisher Scientific Inc., Suwanee, GA).

immunoprecipitation

Cells were lysed n 1% NP-40 lysis puffer consisting of 10 mM Tris-HCI
(pH 7.5), 150 mM NaCl, 1 mM EGTA. 1.5 mM MgCl, 100 mM NaF, 1 mM
NazVO,, and complete, EDTA-free protease nhibitor mixture (Roche Diagnos-
tics GmbH, Mannheim, Germany). The lysates were incubated with agarose
beads coupled with anti-FLAG or with protein G-Sepharose coupled with
the antibodies indicated. The immunoprecipitates were resolved by 5%-
20% SDS-PAGE and transferred to PVDF membranes. The proteins were
detected by incubating the membranes with horseradish peroxidase (HRP)-
conjugated antibodies and visualized by SuperSignal West Dura Extended
Duration Substrate (Pierce, Rockford, USA). In some experiments, SuperSig-
nal Wast Femto Extended Duration Substrate was used for detection (Pierce,
Rockford, USA). For quantification of the precipitated proteins, a LAS3000 (Fuji
Photo Film Co., Ltd., Tokyo, Japan) was used.

Analysis of Tyrosine-Phosphorylated Proteins

Cells were collected in ice-cold PBS and suspended in cold 5% FCS/PBS at
1-5 x 10° cells/75 pi. After 25 i of 100 uM fMLP was added, the cells were
incubated at 37°C for various periods. Incubation was terminated by adding
1 mi of 1% NP-40 iysis buffer contaming 100 mM NaF and 1 mM NagVO,.
The cell lysates were subjected to immunoprecipitation and immunoblotting.

RNA Interference

Double-stranded RNA for Ly49Q interference (UGAGGACAAUCAAGGGU
CAAGAGAA) was purchased from Hokkaido System Science (Tsukuba,
Japan). To introduce the siRNA into X863 cells, a myeloma cell line that
expresses Ly49Q endogenously, a Microporator MP-100 (Digital Bio,
NanoEnTek Inc., Seoul, Korea) was used, according to the manufacturer’s
instructions. Transfection efficiency was estimated by using an FITC-conju-
gated control siRNA-A (Santa Cruz Biotech. Inc. CA).

Sucrose-Gradient Centrifugation to Prepare Raft Compartments
WEHI3 transfectants (5 x 10° celis) were collected and washed with S-buffer
(160 mM HEPES [pH 7.5], 150 mM NaCl, 5 mM EDTA). After cooling the cells on
ice, the cells were lysed in 400 i of Brij 96 lysis buffer (0.5% Brij 96, phospha-
tase inhibitors and protease inhibitors in S-buffer), and the lysates were mixed
with an equal volume of 90% sucrose in S-buffer. The mixture was transferred
to a centrifuge tube and sequentially overlaid with 800 ul of 35% sucrose
n buffer A and 800 ul of 5% sucrose in S-buffer. After centrifugation at
55,000 rpm at 4°C for 18 hr using a Beckman optima TLX/55000), 200-u!
fractions were collected from the top of the tube. For quantification of the
precipitated proteins, a LAS3000 (Fuji Photo Film Co., Ltd., Tokyo, Japan}
was used. The percentages of CTB-bound GM1 and caveolin-1 in each frac-
tion (Figure 7B) were calculated as follows: % of total = pixel density in each
fraction quantified by Fuji Photo Film Image Manager/sum of the pixel densi-
ties 1n all the fractions x 100.

Statistical Analysis

The statistical significance of differences in the values for the migration,
invasion, adhesion, and spreading of neutrophils was determined with the
two-tailed Student’s t test. Differences with a p value less than 0.05 were
considered significant.

SUPPLEMENTAL INFORMATION

The Supplemental Data include five figures and Supplemental Experimental
Procedures and can be found with this article onfine at doi:10.1016/
Jammuni.2010.01.012,
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Toll-like receptor (TLR) 9 recognizes un-
methylated microorganismal cytosine
guanine dinucleotide (CpG) DNA and elic-
its innate immune responses. However,
the regulatory mechanisms of the TLR
signaling remain elusive. We recently re-
ported that Ly49Q, an immunoreceptor
tyrosine-based inhibitory motif-bearing
inhibitory receptor belonging to the natu-
ral killer receptor family, is crucial for
TLRY9-mediated type | interferon produc-

tion by plasmacytoid dendritic cells.
Ly49Q is expressed in plasmacytoid den-
dritic cells, macrophages, and neutro-
phils, but not natural killer cells. In this
study, we showed that Ly49Q regulates
TLR9 signaling by affecting endosome/
lysosome behavior. Ly49Q colocalized
with CpG in endosome/lysosome com-
partments. Cells lacking Ly49Q showed a
disturbed redistribution of TLR9 and CpG.
In particutar, CpG-induced tubular endoly-

sosomal extension was impaired in the
absence of Ly49Q. Consistent with these
findings, cells lacking Ly49Q showed im-
paired cytokine production in response
to CpG-oligodeoxynucleotide. Our data
highlight a novel mechanism by which
TLRS signaling is controlled through the
spatiotemporal regulation of membrane
trafficking by the immunoreceptor tyrosine-
based inhibitory motif-bearing receptor
Ly49Q. (Blood. 2009;114:1518-1527)

Introduction

Toll-like receptors (TLRs) recognize molecular patierns unique
to microorgamsms, and then clicit host immune responses
against the pathogens. Among the TLR family members. TLR3.
4. 7. and 9 can elicit type 1 interferon (IFN) production n
responsc o microbial components.” TLR3. 7, and 9 reside in
tracellular compartments such as endosomes and detect micro-
bial nucleic acids. The intracellular localization of such TLRs
might be necessary to prevent the recognition of self nucleotides
while facilitating access to microbial ones.> TLRY is a sensor of
unmethylated cytosine guanine dinucleotide (CpG) DNA and
resides in the endoplasmic reticulum.>? TLR9's recognition of
CpG DNA is accompanied by changes in membrane dynamics
and tralticking. resulting in a strict spatiotemporal compartinen-
tatization ot the TLRY and CpG DNA. The CpG oligonucleotide
(CpGhr moves into early endosomes and 1s subsequently trans-
ported to a tubular endolysosomal compartment. and in both of
these structures it is colocalized with TLR9.* In endosomes.
TLRY forms a complex with myeloid differentiating factor 88
(MyD&88) and IFN regulatory tactor 7. and activates MyD88-
[FR7—dependent type T TFN induction.® Interestingly. the man-
ner of CpG internalization and the retention time of CpG in
endosomes ditfer between CpG-A and CpG-B. and the retention
of CpG/TLRY9 complex in the endosomes is the primary
determinant of TLRY signaling.® After the TLRY signaling
complexes form in endosomes. they translocate to the jux-
tanuclear area, in tubular endolysosomal structures that extend

toward the cell periphery and plasma membrane.** However,
the molecular mechanisms underlying the mtraccliular traffick-
g of TL.RY are largely unknown

Ly49Q is an immunoreceptor tyrosine-based inhibitory motif
(ITIM)-bearing inhibitory receptor belonging to the lectin-type
natural killer (NK) receptor family.”* However, il possesses
unique distinguishing features. Ly49Q is expressed neither on
NK nor NKT cells. but on plasmacytoid dendritic cells (DCs).
macrophages. and neutrophils.™® " The expression of Ly49Q
appears to be regulated during the maturation of these cells and
is significantly up-regulated by TFN-y treatment.”'™! Ly49Q
can associate with both Src homology 2-containing protein
tyrosine phosphatase (SHP)-1 and SHP-2 in a tyrosine phosphor-
ylation-dependent manner.” We recently reported that Ly49Q 1s
crucial for TLR9-mmediated type I IFN production by pDCs.!-
pDCs in Ly49Q-deficient mice show impaired CpG-triggered
IFN-a and interleukin (IL)-12 production: consequently. TLR9-
dependent antiviral responses are dinimished i Ly49Q-
deficient mice. To gan insight into how Ly49Q regulates TLR9
signaling, we focused on the fact that Ly49Q localizes to
endosome-like vesicular compartments. We found that Ly49Q
was crucial {or the efficient development of the tubular endoly-
sosomes during the intracellular trafficking of CpG and TLRO.
Our results reveal a novel mechanism by which TLR signaling is
controlted through the spatiotemporal regulation ol membrane
trafficking by the receptor Ly49Q.
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Methods
Mice

Mice (6-7 weeks old) were purchased from CLEA Japan. Experiments were
perforined according to the Guidelines for Animal Use and Experiments-
tion as set by the International Medical Center of Japan. and were approved
by the Iternational Medical Center of Japan. Ly49Q knockout mice were
described previously

Antibodies and reagents

The preparation of the anti-Ly49Q antibody was described previously " The
tottowing monoclonal antibodies were purchased from BD Pharmingen:
phycoerythrin (PE)-conjugated anti-mouse Mac-1 (M1/701 streptavidin-
conjugated atlophycocyanin and Pk, controf rat immunoglobulin (1g)G2a
and 1gG2b: and ant—mouse CDIK (M18/2). Biotn-conjugated and purified
anti-FLAG M2 antibodies were purchased {rom Upstate Biotechnology
PE-conjugated H-2K" tetramer was purchased from MBL. Alexa Fluor
594-conjugated anti-rat 1gG. Alexa Fluor 594-conjugated anti-mouse 1gG.
and Alexa Fluor 488-conjugated anti—rat [gG were purchased from
Molecular Probes. Antibodies for phospho-c-Jun N-terminal Kinase (JNK)
and INK were purchased from Sunta Cruz Biotechnology. Antibodies for
phospho-p38 and p38 were purchased from Dai-ichi Pure Chemicals.
Antibody for Glu-tubulin was purchased from Chemicon International.
Recombinant IFN-y was purchased from PeproTech. CpG-oligodeoxynucle
atide 1668 and rhodamine-conjugated CpG-oligudeoxynucleotide 668 were
purchased from Hokkaido System Science.

Cell culture

The murine macrophage cell line RAW264.7 was purchased trom American
Type Culture Collection. Cells were cultured tn complete RPMI 1640
medium supplemented with 10% fetal calf serum. 10 mM HEPES (N-2-
hydroxyethylpiperazine-N - 2-ethanesulfonic acid). 2 mM t-glutanine
1 mM sodium pyruvate. 30 uM 2-mercaptoethanol. 5% (vol/vol) nonessen-
tal anuno acids. 100 Usmb pemcdime and 100 pgrml streptomyein
Macrophages and pDCs were treated with CpG-N-{1-¢2,3-Dioleoyloxy)pro-
pyl-N.NN-trimethylanmonium methylsalfae (DOTAP: Roche Diagnos-
ties). prepared following the manufacturer’s instructions. Peritoneal exuda-
tion macrophages were prepared by injecting 2 mL of 4% thioglycolate
medium intraperitoncally into mice. Cells infiltrating the peritoneal cavity
were collected 4 days alter the injection

Flow cytometric analysis

Acid treatment and immunofluorescence analysis were perlormed. as
previousty described ' Stained cells were analyzed with a FACSCalibur
(B Biosciences)

Vectors and cDNA transfection

The expression vector for TLRY-green Huorescent protein (GEP: pCAGGS-
TTRO-GEFP) was a gift of Dr k. Mivake Clokyo University) ™% Expression
vector tor Rabd-DsRed was a gift of Dr €. R Roy (Yale Unmiversity,
WEHI transfectants expressing wild-type Lv49Q (Ly49Q-WT). the I'TIM-
less mutant. vt containing the mock vector were previously described.” The
vectors for the 1y49Q knockdown were a gitt ol Dr Takayanagi (lTokyo
Medical and Dental University). RAW264.7 cells were uansfected by
electroporation using a Microporator MP-100 (Digital Bio: NanoEnFek).
following the manutacturer’s instructions.

Immunohistochemical staining

Cells adhering o glass coverslips were fixed with 3.7% formalin in
phosphate-buffered saline (PBSY at room temperature for 1S mnutes. and
then treated with 0.1% Treiton X-100 in PBS (or 20 minules. After being
washed with PBS contining 0.03% hovine sevum albumin. the celis were
treated with 3% bovine serum albumin in PBS to prevent nonspecific
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protein hinding. The cells were then stained with the indicated antibodies or
reagents. mounted. and analyzed by contocal (Zeiss) or fluorescence
(Olympus) microscopy.

Western blot analyses

The cells were lysed in radioimmunoprecipitation assay buffer consisting of
10 mM Tris-HCL, pH 7.5, 150 M NaCl. | mM EGTA (ethyleneglycoltet-
raacetic acid). 1.3 mM MgCh. 10 mM NaF | mM Na:VO,. and complete
EDTA tethylencdiaminetetraacetic acid)-free protease inhibitor mixture
(Roche Diagnostics). The lysates were resolved by 5% o 20% sodium
dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis and transferred
to polyvinylidene difluoride membranes. The proteins were detected by
incubating the membranes with the indicated antibodies and visualized
using SuperSignal West Dura Extended Duration Substrate (Pierce). In
some experiments. SuperSignal West Femto Extended Duration Substrate
was used for detection (Pierce). For quantification ot the precipitated
proteins, 4 LAS-3000 (Fuii Photo Film) was used

Reverse transcription—polymerase chain reaction and
quantification of mRNA

For RNA preparations. Isogen was used according (o the manufacturer’s
instructions (Wako Pure Chemical). ¢cDNA synthesis was performed
according to standard protocols using oligo(dT) and random hexamer
oligonucleotides. For semiquantitative reverse transcription—-polymerase
chain reaction (RT-PCR). gene-specitic fragments were obtained by linear
phase PCR amplification. and standardized using the B-actin or hypoxan-
thine guanine phosphoribosyl transfevase 1 level. Quantitative differences
in mRNA levels were determined by real-time RT-PCR using SYBR Green
PCR Master Mix (Applied Biosystems) and a thermal cycler controlled by
the 7900HT Fast Real Time PCR system (Applied Biosystems). Primers
used for PCR analyses are shown in supplemental Table | (available on the
Biood website: sec the Supplemental Materials link at the top of the online
article)

ANA interference

Double-stranded RNA for Ly49Q interference (UGAGGACAAU-
CAAGGGUCAAGAGAA) was purchased from Hokkaido System Sci-
ence. To introduce the small interfering RNA (siRNA) into RAW264 cells.
a Microporator MP-100 (Digital Bio: NanoEnTek) was used according to
the manufacturer’s instructions. Transfection efficiency was estimated by
using a fluorescein isothiocyanate—conjugated control siRNA-A (Santa
Cruz Biotechnology).

Statistical analysis

The statistical signiticance of differences in values for the migration.
invasion. adhesion. and spreading of neutrophils was determined with the
2-tailed Student 1 test. Differences with a P value of less than .05 were
considered significant.

Resulis
Colocalization of Ly49Q with CpG in lysosomal compartments

We recently reported that. in Ly49Q-deficient mice. the TLR9-
triggered production of cytokines such as IFN-a and IL-12 is
severely impaired.’> To investigate how Ly49Q affects TLR9
signaling. we first examined whether Ly49Q colocalizes with
CpG-containing endosomes. Because Ly49Q is internalized and
tocalizes to endocytic compartments. we hypothesized that Ly49Q
colocalizes with CpG/TLRY in endosomal compartments and
affects TLRY signaling. To facilitate the immunohistochemical
analyses. peritoneal macrophages expressing FLAG-tagged Ly49Q
were obtained from Ly49Q-expressing transgenic (Tg) mice (supple-
mental Figure 1), Ly49Q was detected not only at the cell surlace.
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but also in annular-shaped vesicular compartments (Figure 1A).
The CpG fuorescence partially overlapped with the Ly49Q-
associated vesicles. and some of the CpG-containing endosomes
were closely encircled by Ly49Q  vesicular structures. suggesting
that the Ly49Q-associated vesicles had fused with the CpG-
containing endosomes. Z-axis sections revealed that the Ly49Q-
containing compartments were intricately intertwined with the
CpG-containing endosomes, Similar results were obtained using
the RAW264 macrophage cell line (data not shown). As previously
demonstrated. the CpG-containing endosomes subsequently ac-
quired lysosome-like features along with acidification, which was
detectable with an acidic organelle-targeting fluorescent dye (Fig-
ure IB).'™7 To clarify whether Ly49Q also localized to the
lysosome-like compartments, a Ly49Q-DsRed fusion protein was
expressed in RAW264 cells. The Ly49Q localized to lysotracker-
targeted compartments in the steady state (Figure 1C). CpG
stimulation caused the Ly49Q to be redistributed to tubular
vesicular compartments. which were previously described as
tubular endolysosomal structures.
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Figure 1. Ly49Q colocalized with CpG in endosome/lyscsome
compartments. (A) Colocalization of Ly49Q with CpG in endosomes
Peritoneal exudate macrophages were prepared from Ly49Q Tg mice.
The cells were incubated with rhodamine-conjugated CpG (0.3 uM for
15 minutes, fixed with 4% formalin in PBS, then stained with an
anti-FLAG antibody and analyzed by confocal microscopy. The bottom
4 photographs show serial Z-axis—sectioned patterns after 60-minute
incubation with rhodamine-conjugated CpG. Squares indicate the
region shown in higher magnification. (B) Localization of CpG to late
endosomesflysosomes. RAW264 cells were incubated with rhodamine-
conjugated CpG for 60 minutes. To visualize the late endosomes/
tysosomes. the cells were incubated with lysotracker for the last
30 minutes. {C} Localization of ty49Q in the late endosomes/
tysosomes. A Ly49Q-DsRed fusion construct was introduced into
RAW264 cells. Twenty-four hours after transfection. the cells were
cutlured with lysotracker at 37°C for 30 minutes, and the intracellular
localization of Ly49Q was examined by confocal microscopy. Ly49Q
localized lo the late endosomes/lysosomes. In the presence of CpG
stimutation, Ly49Q-containing compartments showed a tubular structure.

Defective CpG redistribution and endolysosome extension in
Ly49Q- pDCs and macrophages

Previous studies demonstiated that the intracellular trafficking of CpG is
spatiotemporally regulated, and that the behavior of CpG endosomes
affects the quality of TLRY signaling.’® Therefore, we next investigated
whether Ly49Q is involved in CpG trafficking using Ly49Q™~ pDCs
and macrophages. The intemalization of’ CpG and its subsequent
redistribution to tubular endolysosomes were observed in bone marrow-
derived pDCs prepared from a Ly49Q '~ mouse (Figure 2A). The
tubular endolysosomal structures radiated from the perinuclear region,
extending toward the cell periphery. Lysosomal-associated membrane
protein-1 (LAMP-1)* late endosomes were localized to the perinuclcar
region. and some of the CpG colocalized with LAMP-1. These results
are consistent with a previous report showing that internalized CpG is
transported to the perinuclear region through late endosomes and
subsequently distributed into tubular endolysosomes.?

In contrast, Ly49Q~"" pDCs showed fractionated and undi-
rected CpG-containing compartments. Only a small portion of the
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Glu-tubulin

Figure 2. Formation of tubular endolysosomal structures was impaired in pDCs and macrophages derived from Ly49Q knockout mice. (A) Bone marrow—derived
pDCs ware preparad by cultunng bone marrow celis with FIt3L. and they were then incubated with rhodamine-conjugated CpG (0.3 M) for 60 minutes. The cells were fixed
and then stained with an anti—-LAMP-1 antibady. Confocal images of representative cells are shown. (B) The number of cells showing the directionally extending CpG-including
tubular endotysosomal structures was counted. and the proportion of total cells was calculated. (C) Peritoneal exudate macrophages were prepared from Ly49Q knockout and
control tittermate mice and incubated with rhodamine-conjugated CpG (0.3 uM) for 24 hours. The intracellular distribution of CpG was examined by confocal microscopy
(D) The peritoneal exudate macrophages were treated with rhodamine-conjugated CpG (0.3 uM} for 24 hours. The cells were fixed and then stained with anti-detyrosinated
tubulin (Glu-tubutin antibody. Arrowheads indicate MTOC. (E) Cytokine production by penitoneal exudate macrophages was compared between Ly49Q-deficient and control
littermate mice. Macrophages were stimulated with CpG, and the amount of cytokine in the culture supernatant was estimated by cytokine bead array 24 hours later.

CpG compartments colocalized with the late endosomes, and the
perinuclear localization of the late endosomes was nat obvious in
the Ly49Q~/~ pDCs. The trequency of cells possessing radiating
and clongating endolysosome structures was decrcased in the
Ly49Q " pDCs compared with the Ly49Q™" pDCs (Figure 2B).
A similar defect in the redistribution of CpG-containing endolyso-
somes was observed in Ly49Q ™" peritoncal exudate macrophages
(Figure 2C). The dircctional extension of CpG-containing endoly-
sosomes was not observed in the Ly49Q '~ macrophages. whereas
numerous directional CpG-containing endolysosomes clongating
from the perinuclear region were observed in the Ly49Q'”
macrophages. The tubular cndolysosome clongation has been
shown 10 be MyD88 independent. but microtubule dependent '
Stabilized microtubules are enriched with posttranstationally modi-
fied tubulins such as detyrosinated tubulin (Glu-tubulin). 1n which
the C-terminal tyrosine of «-tubulin is removed by tubulin
carhoxypeptidase.'” Immunohistochemical staining ot Glu-tubulin
clearly demonstrated that. in Ly49Q "/~ macrophages. Glu microtu-
bules colocalized with the wbular endolysosomes, indicating that
stabilized microtubules exist along the endolysosomes (Figure 2D).
In addition. the Glu-tubulin at the microtubule organizing center
(MTQC) appeared to be connected to the tubular endolysosomes n

Ly49Q "~ macrophages. In contrast, in Ly49Q™"" macrophages.

Glu-tubulin did not colocalize with the endolysosomes, and no
connection between Glu-tubulin and the endosomes at the MTOC
was observed. Thus. the impairment of endolysosome elongation in
the Ly49Q ™'~ macrophages was associated with decreased stability
of the microtubules. Consistent with these observations. in Ly49Q ™"~
macrophages. the CpG-triggered production of cytokines. includ-
ing IL-6. tumor necrosis factor o, and monocyte chemoattractant
protein- 1. was severely diminished (Figure 2E). Thus. the absence
of Ly49Q upsct the CpG tratficking in both pDCs and macro-
phages. in close correlation with the failure of cytokine production
in both pDCs and macrophages.

Importance of Ly4%Q in TLR9-mediated IFN-B and iL-6
production in RAW264 cells

Next. we tried to investigate the intracettular trafficking of CpG
and TLRY in the presence or absence of Ly49Q using the mouse
macrophage cell line RAW264. which expresses TLR9 and readily
permits the introduction of various expression constructs. To do
this, we established Ly49Q" and Ly49QY RAW264 clones to
examine the relevance of Ly49Q in CpG/TLRO tratficking. because
the expression level of Ly49Q in RAW264 cells was heterogeneous
in the steady state (Figure 3A). Four clones each of Ly49QM or
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Figure 3. Inefficient uptake of CpG and retarded redistribution of TLR8 in Ly49Q' cells. (A) Expression of Ly49Q in RAW264 clones. Ly49QM or Ly49Q"° RAW264 clones
were established from bulk RAW264 cells by hmiting dilution. Four clones of each type were analyzed. and similar results were obtained. Data from representative clones are
shown. {B) No difference n TLRS and TLR4 expression in RAW264 cells. Semiquantitative RT-PCR was carried out using RNA prepared from the indicated cells. The presence
or absence of Ly49Q had no effect on the transcription of these TLRs. In the photographs. the PCR templates were sequentially diluted by 5-fold. (C) Quantitative analysis of
IFN-8 transcription in RAW264 cells in résponse to CpG. Ly49QM or Ly4gQ RAW264 cells were stimulated with CpG1668 (0.3 pM) for 4 hours. and quantitative RT-PCR
analyses were performed. The histograms show the retative amounts of IFN-3 mRNA evaluated by real-time PCR. (D) Intracellular redistribution of CpG and TLR9. TLR9-GFP
expression plasmids were introduced into RAW264 cells. Twenty-four hours after transfection. the cells were incubated with rhodamine-conjugated CpG (0.3 uM) for the
indicated peniods. Impaired CpG/TLR redistribution was observed in the Ly43Q' RAW264 celis. (E) intemalization and distribution of CpG in RAW264 cells. RAW264 cells
were incubated with rhodamine-conjugated CpG (0.3 pM) and fixed at the indicated time points. (F) intraceliular distribution of rhodamine-conjugated CpG. Atter 24 hours of
\ncubation with CpG, tubular endolysosomal structures were observed in Ly48QM RAW264, but notin Ly49Qk RAW264 celis




