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Marked reduction of RNA editing at the glutamine (Q)/arginine (R) site of the glutamate receptor subunit
type 2 (GIuR2) in motor neurons may be a contributory cause of neuronal death specifically in sporadic
ALS. It has been shown that deregulation of RNA editing of several mRNAs plays a causative role in
diseases of the central nervous system such as depression. We analyzed the effects of eight
antidepressants on GluR2 Q/R site-RNA editing in a modified HeLa cell line that stably expresses half-
edited GluR2 pre-mRNA. We also measured changes in RNA expression levels of adenosine deaminase
acting on RNA type 2 (ADAR2), the specific RNA editing enzyme of the GIuR2 Q/R site, and GluR2, in order
to assess the molecular mechanism causing alteration of this site-editing. The editing efficiency at the
GluR2 Q/R site was significantly increased after treatment with seven out of eight antidepressants at a
concentration of no more than 10 M for 24 h. The relative abundance of ADAR2 mRNA to GluR2 pre-
mRNA or to B-actin mRNA was increased after treatment with six of the effective antidepressants,
whereas it was unchanged after treatment with milnacipran. Our results suggest that antidepressants
have the potency to enhance GluR2 Q/R site-editing by either upregulating the ADAR2 mRNA expression
level or other unidentified mechanisms. It may be worth investigating the in vivo efficacy of

antidepressants with a specific therapeutic strategy for sporadic ALS in view.
© 2009 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

1. Introduction

Amyotrophic lateral sclerosis (ALS) is a progressive neurode-
generative disease that affects approximately 1 in 2000 people
over their lifetime (Cleveland and Rothstein, 2001). ALS is
characterized by a selective loss of upper and lower motor
neurons that initiates a progressive paralysis with muscle wasting
in mid-life, and is usually fatal within 1-5 years after onset.
Approximately 5-10% of all ALS cases are familial, and at least five
causal genes have been so far identified in individuals affected with
familial ALS (SOD1, ALS2, senataxin, vesicle-trafficking protein/
synaptobrevin-associated membrane protein, and TDP-43),
although the mechanism underlying motor neuron death of
familial ALS pathology has not been elucidated (Rosen et al,
1993; Hadano et al., 2001; Yang et al,, 2001; Chen et al., 2004;
Nishimura et al., 2004; Yokoseki et al., 2008; Gitcho et al., 2008;
Kabashi et al., 2008; Sreedharan et al., 2008; Van Deerlin et al,,
2008). However, sporadic ALS accounts for the majority of all ALS
cases, and one clue to the pathomechanism of sporadic ALS, low
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editing efficiency of GIuR2 mRNA, has been elucidated (Takuma
et al., 1999; Kawahara et al., 2004).

One of the most plausible hypotheses for selective neuronal
death in sporadic ALS is excitotoxicity mediated by abnormally
Ca%*-permeable  a-amino-3-hydroxy-5-methyl-4-isoxazolepro-
pionate (AMPA) receptors, a subtype of ionotropic glutamate
receptor (GluR) (Kwak and Kawahara, 2005; Carriedo et al., 1996;
Lu et al., 1996). The contribution of excessive Ca?* influx through
glutamate receptors to the death of motor neurons is the basis for
the recent suggestion that deficient GluR2 Q/R site-RNA editing
might play a role in ALS (Kawahara et al., 2004; Kwak and
Kawahara, 2005). A decrease or loss of RNA editing function
occurring specifically in motor neurons could lead to AMPA-
channels highly permeable to Ca%*, mimicking or exacerbating the
overexcitation of glutamate receptors due to excitatory amino acid
transporter loss. The Ca?* conductance of AMPA receptors differs
markedly depending on whether the GIuR2 subunitis a component
of the receptor. AMPA receptors that contain at least one GluR2
subunit have low Ca?* conductance, whereas those lacking a GluR2
subunit are Ca* permeable (Hollmann et al., 1991; Verdoorn et al.,
1991; Burnashev et al., 1992). These properties of GluR2 are
generated post-transcriptionally by RNA editing at the glutamine/
arginine (Q/R) site in the putative second membrane domain,
during which the glutamine codon is substituted by an arginine
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codon (Verdoorn et al, 1991; Burnashev et al., 1992). AMPA
receptors containing the unedited form of GluR2Q have high Ca**
permeability in contrast to the low Ca®* conductance of those
containing the edited form of GIuR2R (Burnashev et al., 1995;
Swanson et al.,, 1997). Editing of the GIuR2 Q/R position was
inefficient in a subset of motor neurons in sporadic ALS, whereas it
was completely efficient in all the motor neurons of control cases
(Takuma et al., 1999; Kawahara et al., 2004). This finding indicates
that abnormal editing may be a contributory cause of neuronal
death specifically in sporadic ALS.

A-to-I RNA editing is catalyzed by adenosine deaminase acting
on RNA (ADAR) (Bass, 2002; Keegan et al., 2001; Gott and Emeson,
2000; Maas et al., 2003). An association between the level of ADAR
type 2 (ADAR2) mRNA expression and editing efficiency at the
GluR2 QJR site has been demonstrated in human brain white
matter (Kawahara et al., 2003). Hence, the expression level of
ADAR2 mRNA is one factor determining the efficiency of GluR2 Q/R
site-editing, although the nonlinear correlation suggests that
another factor or factors may be also involved in the regulation of
editing activity (Kawahara et al., 2004).

Several lines of evidence suggest an association between major
psychiatric disorders and the pattern of RNA editing at several
known A-to-I positions in the serotonin (5-HT),. receptor mRNA
(Dracheva et al., 2003; Niswender et al., 2001; lwamoto and Kato,
2003; Sodhi et al., 2001; Gurevich et al., 2002a). Furthermore, one
research group reported that the extent of editing was altered at
some of the A-to-I positions in glutamate receptors mRNAs in the
pre-frontal/frontal cortex and hippocampus of rats after a contin-
uous 2-week-treatment with antidepressants (Barbon et al., 2006).

Based on the evidence showing that antidepressant drugs affect
the function of AMPA/Kainite (KA) receptors (Barbon et al., 2006),
we postulated that antidepressants had the potency to modulate
GIuR2 QJR site-editing, thereby becoming a potential therapy for
ALS. We established methods to analyze editing levels at the GluR2
Q/R site using a modified HeLa cell line, which stably expresses the
half-edited GluR2 pre-mRNA (TetHeLaG2m cell). We investigated
the abilities of three kinds of antidepressants, i.e., a selective
serotonin reuptake inhibitor (SSRI), serotonin noradrenaline
reuptake inhibitor (SNRI), and tricyclic antidepressant, to upre-
gulate the GluR2 QR site-editing using a newly developed
modified HeLa cell line (TetHeLaG2m).

2. Materials and methods

2.1. Generation of HeLa cell line stably expressing GluR2 mini-gene
using Tet-on gene expression system (TetHeLaG2m cell line)

The GluR2 mini-gene was designed toinclude the Q/R sitein exon
11 and its exon complementary sequence in the adjacentintron 11 of
human GluR2 pre-mRNA in order to evaluate the efficacy of A-to-I
editing by ADAR2. The regions of GluR2 pre-mRNA including the
sequence between exon 11 and intron 11 (5’-PCR) and the sequence
between intron 11 and exon 12 (3'-PCR) were separately amplified
by PCR (Fig. 1A). For each PCR, the following primer pairs were used:
for the 5/-PCR, 5'-AAAAACGCGTATGAAAGCTGATATTGCAATTGCTC-
CAT-3' and 5'-TGTATCATGAAAGGCACCCGCTCCACTAGT-3'; for the
3/-PCR, 5'-TGTTTAATGATTTCCAGTTTCATTAACTAG-3' and 5'-ATAT-
TACGCGTCTACCTGAAAAACTCTTTAGTGGAGCCA-3'.  Each  PCR
amplification began with a 10-min denaturation at 95 °C, followed
by 30 cycles of denaturation at 95 °C for 10's, annealing at 60 °C for
30s,and extension at 68 °C for 90 s. The resulting PCR products were
digested by Mlul, which recognizes the exon 11-intron 11 junction of
the 5'-PCR product and the intron 11-exon 12 junction of the 3'-PCR
product. Then, both PCR-amplified fragments were ligated at the
Spel restriction sitesin intron 11. The ligated products were inserted
into the Tet-on pTRE-Tight Vector (Clontech, Palo Alto, CA, USA), and

then transfected into Tet-on HeLa cells (Clontech). Tet-on HeLa cells
were transfected with the GluR2-mini gene pTRE-Tight Vectorand a
linear puromycin marker (Clontech). Then, TetHeLaG2m cells were
isolated from the puromycin-resistant clones.

2.2. Cell culture and drug treatment

TetHeLaG2m cells were seeded at 1 x 107 cells/well in 10 cm
plastic wells, cultured in MEM-o medium (Wako, Tokyo, Japan)
supplemented with 10% Tet System-approved fetal bovine serum,
0.75 pg/mL puromycin (both Clontech), 100 IU/mL penicillin, and
100 pg/mL streptomycin (Invitrogen) and incubated in a 5% CO;
atmosphere. After growing to confluence, TetHeLaG2m cells were
plated at 2 x 10° cells/well in 6-well plates,

Culture cells were incubated with 0-10 .M of antidepressant
for 24 h and then harvested for RNA extraction. The antidepres-
sants used in this study were SSRIs (fluvoxamine, fluoxetine,
paroxetine), SNRIs (milnacipran, reboxetine), and tricyclic anti-
depressants (amitriptyline, desipramine, imipramine); these drugs
were purchased from Sigma (St Louis, MO, USA). Fluvoxamine and
paroxetine were dissolved in dimethyl sulfoxide, while the other
drugs were dissolved in distilled water.

2.3. RNA extraction and reverse transcription

RNA was extracted from the cells in each well using an RNeasy
mini kit according to the manufacturer's instructions (Qiagen,
Hilden, Germany). One microgram of total RNA was incubated at
70 °C for 10 min with 500 ng of Oligo(dT). First-strand cDNA was
synthesized from the total RNA with 4 pL of 5x first-strand buffer,
2 pLof 0.1 M DTT, 4 pL of 2.5 mM dNTPs, 1 L of RNase inhibitor
(Toyobo, Tokyo, Japan), and 1 pL of SuperScript™ II Reverse
Transcriptase (Invitrogen) in a final volume of 20 L. The reverse
transcription started with incubation at 42 °C for 60 min, followed
by incubation at 51 °C for 15 min, and was stopped by heating to
72 °C for 15 min.

2.4. Nested polymerase chain reaction and restriction digestion

To determine the editing efficiency at the Q/R site of GIuR2 in
TetHeLaG2m cells, nested PCR products including the Q/R site were
digested with restriction enzyme Bbvl (New England BioLabs,
Beverly, MA, USA) as previously described (Kawahara et al., 2003).
In brief, 2 j.L of cDNA were subjected first to PCR in duplicate in a
reaction mixture of 50 pL containing 10 M each primer, 4 L of
2.5 mM dNTPs, 5 pL of 10x PCR buffer, and 0.5 pL of Gene Taq
(Nippon Gene, Tokyo, Japan). The PCR amplification began with a
2-min denaturation step at 95°C, followed by 20 cycles of
denaturation at 95 °C for 10s, annealing at 66 °C for 30s and
extension at 68 °C for 60 s. Nested PCR was conducted on 2 pL of
the first PCR product under the same conditions with the exception
of the number of PCR cycles (30 cycles). For each PCR, the following
primers were used (amplified product lengths are also indicated):
for the first PCR (352 bp), F1 (5/-TTCCTGGTCAGCAGATTTAGCC-3")
and R1 (5'-GCAACATTCAAAGAACATTGTTC-3'), and for the nested
PCR (200 bp), F2 (5'- TCTGGTTTTCCTTGGGTGCC-3') and R2 (5'-
CCGAAGCTAAGAGGATGTCCTTC-3').

After gel purification using the Zymoclean Gel DNA Recovery Kit
according to the manufacturer's protocol (Zymo Research, Orange,
CA, USA), PCR products were quantified using a 2100 Bioanalyzer
(Agilent Technologies, Palo Alto, CA, USA). An aliquot (0.5 .g) was
then incubated at 37 °C for 12 h with 10x restriction bufferand 2 U
of Bbvl in a total volume of 20 pL and inactivated at 65 °C for
30 min.

The PCR products had one intrinsic Bbvl recognition site,
whereas the products originating from unedited GluR mRNA had
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Fig. 1. TetHeLaG2m cell line. (A) Schematic figure of the GluR2 minigene with pTRE-tight vector. (B) Editing efficiencies at the Q/R site of GIuR2 minigene pre-mRNA in
conventional Hela and TetHeLaG2m cell lines cultured in a dish for 48 h. Each symbol represents the extent of Q/R site-editing of GluR2 minigene pre-mRNA isolated from a
single culture dish. Each large symbol represents the results of five culture dishes. For each cell line, the mean + SEM (n = 15-30) is also indicated. (C) Culture time-dependent
changes of editing efficiency at the Q/R site of GluR2 minigene pre-mRNA and expression levels of ADAR2 mRNA and GluR2 pre-mRNA, and relative abundance of ADAR2 mRNA to
GluR2 pre-mRNA in the TetHeLaG2m cell line. TetHeLaG2m cells were plated at a low concentration (5 x 10° cells/well in 6-well plate). The relative abundance of ADAR2Z mRNA to
GluR2 pre-mRNA increases in parallel with the editing efficiency at the GluR2 Q/R site in a time-dependent manner. For each culture time, the mean + SEM (n =6) is also indicated.

an additional recognition site (Fig. 2). Thus, in TetHeLaG2m cells,
restriction digestion of the PCR products originating from edited
GluR2 mRNA should produce two bands at 129 and 71 bp, whereas
those originating from unedited GIluR2 mRNA should produce
three bands at 91,38, and 71 bp. As the 71-bp band would originate
from both edited and unedited mRNA but the 129-bp band would
originate from only edited mRNA, we quantified the molarity of the
129- and 71-bp bands using the 2100 Bioanalyser and calculated
the editing efficiency as the ratio of the former to the latter for each
sample.

2.5. Standard preparation for quantitative polymerase chain reaction

To prepare an internal standard for quantitative PCR of
TetHeLaG2m cells, we inserted the genes we aimed to estimate
into the plasmid vector. Total RNA was extracted from conventional
Hela cells by using an RNAspin Mini kit (GE Healthcare) and the
cDNA was synthesized from the total RNA with Ready-To-Go You-
Prime First-Strand Beads (Amersham Bioscineces). Gene-specific
PCR products of GluR2, ADAR2, and 3-actin were amplified from the
cDNAwith the primers notedinTable 1. EachPCRwas done using the

following program; the PCR amplification began with a 10-min
denaturation step at 95 °C, followed by 30 cycles of denaturation at
95 °C for 10 s, annealing at 60 °C for 30 s, and extension at 68 °C for
40 s. Using the primers (Table 1) shown in the previous report
(Nishimoto et al., 2008), 2 p.L of cDNA extracted from Hela cells
(human control) was subjected to PCR with 1 pL of Advantage 2
Polymerase mix (BD Biosciences Clontech, Palo Alto, CA, USA). After
gel purification, PCR products were subcloned using the TOPO TA
cloning kit (Invitrogen), and clones containing inserts were
sequenced with an ABI PRISM 3100 sequencer (Applied Biosystems,
Foster City, CA). The concentration of each standard plasmid was
measured spectrophotometrically at 260 nm (Nano Drop™ ND-
1000; Nano Drop Technologies, Wilmington, DE). We prepared
standard solutions by serial dilutions of the sample ranging from
107" t0 1071%, 1079, 107 and 107° p.g per 1 pL.

2.6. Real-time quantitative polymerase chain reaction
PCR was performed on: TetHeLaG2m cells using a LightCycler

System (Roche Diagnostics, Mannheim, Germany). The PCR
primers and probes were designed from the cDNA sequences of
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Fig. 2. Method of detecting editing efficiency at the Q/R site of GluR2. (A) Scheme for
detecting editing efficiency at the Q/R site of GluR2. Open bars represent nested PCR
products. Intrinsic Bbvl recognition sites are indicated by vertical solid arrowheads.
The sizes of the DNA fragments generated by restriction digestion are indicated. (B)
Example of the quantification of editing efficiency using a 2100 Bioanalyzer. The
molarity of the 129-bp (derived from edited GluR2 pre-mRNA) and 71-bp (derived
from both edited and unedited GluR2 pre-mRNA) bands was quantified after
restriction digestion with BbvI for 12 h, and the editing efficiency was calculated as
the ratio of the former to the latter. The lower figure indicates gel-like image
produced by the 2100 Bioanalyzer. GluR, glutamate receptor; Q, glutamine; R,
arginine; PCR, polymerase chain reaction.

GluR2, ADAR2, and B-actin (as an internal control), which were
obtained from GenBank (Table 1). The PCR primers and probes
were designed from the cDNA sequences of GluR2, GluR2 mini-
gene (pre-GluR2), ADAR2, and B-actin (as an internal control),
which were obtained from GenBank (Table 1). A set of standard and
cDNA samples was amplified in duplicate in a master mixture
(20 pL total volume) comprising 2 pL of 5x TagMan DNA
polymerase (Roche Diagnostics) containing the reaction mix,
0.5 .M each primer, 0.1 M Universal probes (Roche Diagnostics).
Herring sperm DNA solution was coamplified as a negative control
in each series of reactions. The reactions started with incubation
for 10 min at 95 °C to activate TagMan DNA polymerase. Templates
were amplified by 60 cycles of denaturation at 95 °C for 10s and
primer annealing at 60°C for 30s. This was followed by
fluorescence acquisition and extension at 72 °C for 1s.

2.7. Statistical analysis

For the value of GIuR2 QJR site-editing efficiency, one-way
analysis of variance (ANOVA), followed by the Dunnett’s

Table 1

Sequences of primers and fluorescent hybridization probes used for quantitative

polymerase chain reaction.

Oligonucleotide sequence

GIuR2
Forward primer
Reverse primer
Universal probe library probe #63

pre-GluR2
Forward primer
Reverse primer
Universal probe library probe #73

ADAR2
Forward primer
Reverse primer
Universal Probe Library probe #42

B-Actin
Forward primer
Reverse primer
Universal Probe Library probe #64

5'-ATGCGATATTTCGCCAAGA-3'
5'-CAGTCAGGAAGGCAGCTAAGTT-3'
5'-CTCCTCCT-3'

5'-GATGGTGTCTCCCATCGAAA-3'
5'-TCCATAAGCAATTTCTGTTTGCT-3'
5'-GCTGAGGA-3'

5/-GTGTAAGCACGCGTTGTACTG-3'
5/-CGTAGTAAGTGGGAGGGAACC-3'
5'-GCTGGATG-3'

5'-CCAACCGCGAGAAGATGA-3'
5'-CCAGAGGCGTACAGGGATAG-3'
5'-CCAGGCTG-3'

multiple comparison test, was used to compare the control
group with antidepressant-treated groups, and Steel's test
was used for multiple comparison to compare the mRNA
expression levels of the treated group with the control group
in the statistical analysis. Results are given as the mean value +
standard error.

3. Results

3.1. Establishment of HeLa cell line (TetHeLaG2m) suitable for
measurement of editing activity at GluR2 Q/R site

To measure RNA editing activity at the GluR2 Q/R site, we
developed a double-stable HeLa cell line carrying a GluR2 mini-
gene, which included human GluR2 exon 11, a part of intron 11,
and exon 12, using Tet-on system (Fig. 1A). In contrast to HeLa cell
line in which the editing efficiency at the GluR2 Q/R site varied
widely from 0% to 100%, this cell line (TetHeLaG2m) stably
expressed the pre-mRNA of GluR2-mini gene with both edited and
unedited Q/R sites in nearly the same amounts after culture in
vitro for 48 h (Fig. 1B). The extent of RNA editing at this site
increased linearly with the length of culture until the cells were
confluent in 6-well plates (Fig. 1C).Because the expression level of
pre-GluR2 mRNA relative to B-actin mRNA in TetHeLaG2m cells
was 100-fold high than that in HeLa cells (2.0E-05 + 2.9E-06
(n=18) and 2.6E-03 + 2.4E-04 (n=12) in Hela cells and TetHe-
LaG2m cells, respectively), it is likely that the majority of pre-GluR2
mRNA in Fig. 4 were derived from the GluR2 mini gene in
TetHeLaG2m cells.

3.2. Effect of antidepressant treatment on GluR2 Q/R site-editing

We investigated the editing efficiency at the GIuR2 Q/R site in
TetHeLaG2m cells after antidepressant treatment. The RNA editing
level depends on culture time, but the variation of the editing level
at given culture time is small among cells in sister culture (Fig. 1C).
GIuR2 QJR site-editing was increased after incubation with each
antidepressant except reboxentine, The effects of these drugs
appeared to be dose-dependent, and the extents to which they
increased editing were most marked after treatment with 10 pnM
milnacipran (Fig. 3D) and imipramine (Fig. 3G) (each about 40%),
followed by 10 pM fluvoxamine (Fig. 3A), fluoxetine (Fig. 3B),
paroxetine (Fig. 3C), and desipramine (Fig. 3G) (about 20%), and 1
and 10 pM amitriptyline (Fig. 3F) and 1 wM imipramine had some
effect (about 10%).
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glutamine; R, arginine; ANOVA, analysis of variance.

3.3. Changes in expression levels of ADAR2 mRNA, GluR2 mRNA, and
GluR2 pre-mRNA

Because seven out of the eight antidepressants we examined
(fluvoxamine, fluoxetine, paroxetine, milnacipran, amitriptyline,
desipramine, and imipramine) significantly increased the GluR2
editing efficiency, we next investigated the relative changes in
the expression levels of ADAR2, GluR2 mRNAs, and GluR2 pre-
mRNA normalized to the expression level of B-actin mRNA
before and after treatment with the above drugs. We also

calculated the ratios of the amount of ADAR2 mRNA to that of
GIuR2 pre-mRNA in order to assess changes in the enzyme-
substrate ratio after treatment with these antidepressants
(Fig. 4).

The expression of ADAR2 mRNA was higheér than that of the
control group after treatment with 1 and 10 pM of fluvoxamine
and 0.1 and 10 .M of imipramine (Fig. 4A and G), whereas it was
lower than that of the control group after treatment with
milnacipran (0.1 and 10 pM) (Fig. 4D). The other drugs did not
alter the amount of ADAR2 mRNA significantly (Fig. 4B, C,E, and F).
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Fig. 4. Expression levels of ADAR2 mRNA, GluR2 mRNA and GIuR2 pre-mRNA. Amounts of RNA that were upregulated by seven out of eight antidepressants that upregulated
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actin mRNA. The amount of ADAR2 mRNA is also expressed as a value relative to that of GluR2 mRNA. Mean = SEM of at least 5-8 wells are displayed. Statistical analysis was
performed with Steel's multiple comparison test (*P < 0.05, **P < 0.01 and *#*p < 0.001). GluR, glutamate receptor; ADAR, adenosine deaminase acting on RNA; Q, glutamine; R,

arginine.

The expression of GluR2 mRNA was higher after treatment with
1 and 10 wM of fluoxetine and 0.1, 1, and 10 p.M of milnacipran
compared with that of the control group (Fig. 4B and D). In the
imipramine-treated group, the expression of GluR2 mRNA with
0.1 M of imipramine was higher than that of the control group,
but at concentrations of 1 uM and 10 M it was lower than that of

the control group (Fig. 4G). The treatment with fluvoxamine,
paroxetine, amitriptyline, and desipramine did not alter the
amount of GIuR2 mRNA significantly (Fig. 4A, C, E, and F).

The expression of GluR2 pre-mRNA was decreased by 70% after
treatment with paroxetine (1 and 10 wM) (Fig. 4C), and by 20%
after treatment with amitriptyline (0.1 and 10 uM) (Fig. 4E).
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Similarly, after treatment with 0.1 M of fluvoxamine, 0.1 pM of
fluoxetine, 1 and 10 .M of milnacipran, and 0.1 and 10 pM of
desipramine, the expression of GluR2 pre-mRNA was significantly
lower than that of the control group (Fig. 4A, B, D, and F). On the
other hand, imipramine did not significantly alter the expression of
GluR2 pre-mRNA at each concentration compared with that of the
control group (Fig. 4G).

The relative abundance of ADAR2 mRNA to GIuR2 pre-mRNA
was significantly higher than that of control groups after treatment
with the antidepressants at the concentration of 10 M or lower,
except milnacipran (Fig. 4).

4. Discussion

We investigated the effects of three kinds of antidepressants
including SSRI, SNRI, and tricyclic antidepressants on GluR2 Q/R
site-editing using the newly developed cell line TetHeLaG2m. As
shownin Fig. 1, TetHeLaG2m cells stably expressed the mini-GluR2
pre-mRNA with their Q/R sites both edited and unedited in nearly
equal amounts, The GIuR2 mini-gene pre-mRNA included a
sequence identical to that found in the naturally occurring GluR2
pre-mRNA; hence, RNA editing at the Q/R site of this gene pre-
mRNA was likely mediated by ADAR2. Thus, this cell line may be
suitable for measurement of RNA editing activity, or in other
words, ADAR2 activity at the GluR2 Q/R site,

In order to examine the effect of drugs on RNA editing of the
GluR2 QJR site in cell lines, basic editing level of the cells is
required to be about 50% and these cells express GluR2 mRNA at a
level abundant enough to be easily amplified by PCR. We tested
various cell lines including N1E-115 (a mouse neuroblastoma cell
line) and NSC34 (a hybrid cell line produced by fusion of motor
neuron enriched, embryonic mouse spinal cord cells with mouse
neuroblastoma), which, however, were not suitable for our
purpose due to that the RNA editing at the Q/R site of GluR2
was either too high or too variable, or the expression of GluR2
mRNA was too low (data not shown). For these reasons, we created
the modified HelLa cell line (TetHeLaG2m) which was suitable for
our purpose to examine the effect of drugs on RNA editing of the
GluR2 Q/R site.

We showed that seven of the eight antidepressants we
examined significantly upregulated the editing efficiency at the
Q/R site of the GluR2-mini pre-mRNA in TetHeLaG2m cells after
24-h-exposure, although the absolute increase in GIuR2 Q/R site-
RNA editing efficiency was rather small. This is the first report on
the effects of antidepressants on GluR2 Q/R site-RNA editing in
human cell lines. A moderate but persistent increase of Ca?*
permeability of AMPA channel causes degeneration of spinal motor
neurons in the mouse (Kuner et al., 2005), suggesting that chronic
moderate amending of the inactive GluR2 Q/R site-RNA editing
observed in ALS would rescue the spinal motor neurons from death
in ALS (Kwak and Kawahara, 2005). Treatment with reboxetine, an
SNRI drug, did not increase the editing level at any concentration
examined, suggesting that antidepressants upregulated GluR2 Q/R
site-editing through a mechanism other than that exerting their
anti-depressive effects.

Because the expression level of ADAR2 mRNA is one of the
factors that determine the editing efficiency of GluR2 mRNA at the
Q/Rsite (Kawahara et al., 2003), we next investigated the changes
in the relative expression levels of ADAR2 mRNAs to GluR2 mRNA
and GIuR2 pre-mRNA (the majority were derived from the pre-
mRNA of the GluR2-mini gene) in TetHeLaG2m cells after
treatment with antidepressants that had significantly increased
QJR site-editing at concentrations ranging from a sub-p.M order
(paroxetine) to a 10 M order (fluvoxamine, fluoxetine, milna-
cipran, and desipramine). The amount of GluR2 mRNA in
TetHeLaG2m cells was less than 10% of GluR2 pre-mRNA,

indicating that the majority of Q/R site-editing occurred in GluR2
pre-mRNA. Indeed, upregulation of editing efficiency at the GluR2
QJR site after incubation with antidepressants seemed to be
markedly influenced by the changes in the ratio of ADAR2 mRNA
to GIuR2 pre-mRNA, but not to GluR2 mRNA, except milnacipran
(Figs. 3 and 4).

Treatment with fluvoxamine or imipramine increased the
ADAR2 mRNA expression level (Fig. 4). On the other hand,
treatment with fluoxetine, paroxetine, amitriptyline, or decipra-
mine decreased the expression level of GluR2 pre-mRNA more
than that of ADAR2 mRNA at a certain concentration. Thus, it
seems likely that the increase in the ratio of ADAR2 mRNA to
GIuR2 pre-mRNA was mainly due to an increase in the expression
level of ADAR2 mRNA after treatment with fluvoxamine or
imipramine, whereas it was due to a decrease in the expression
level of GIuR2 pre-mRNA after treatment with the other
antidepressants. The effects of antidepressants on GluR2 mRNA,
GIuR2 pre-mRNA, and ADAR2 mRNA expression levels may differ,
even though they have the same antidepressant effects pharma-
cologically.

Several research groups reported alterations in RNA editing
efficiency at A-to-l positions in the 5-HTc receptor (5-HT2cR)
expressed in brains of both depressed suicide victims (Niswender
et al., 2001; Iwamoto and Kato, 2003) and individuals with major
depression (Gurevich et al., 2002b). Similar changes were also
observed in a rat model of depression, which was reversed after
treatment with fluoxetine (Iwamoto et al., 2005). In addition, mice
chronically treated with fluoxetine also exhibited decreased 5-
HT,.R E site-editing in the brain (Gurevich et al, 2002a,b).
Although the expression level of ADAR2 mRNA is one determinant
of the efficiency of GluR2 Q/R site-editing, it has been reported that
editing extents of the various A-to-I editing sites in 5-HT>cR mRNA
correlated with the mRNA expression level of none of the members
of ADAR families in cells from the rat hypothalamic tuberoma-
millary nucleus (Sergeeva et al., 2007). Taking our data and these
reports together, antidepressants might have modulatory effects
on A-to-I RNA editing sites in various mRNAs by direct upregula-
tion of ADAR2 mRNA or other mechanisms. The molecular
mechanism underlying the modulatory effects of antidepressants
on A-to-I RNA editing remains to be elucidated, hence, further
analysis of the activity and cellular localization of the ADAR
enzymes (Sansam et al., 2003) and possible co-factors, such as
nuclear RNA (Cavaille et al., 2000), that might be affected by
antidepressants is necessary.

In conclusion, our results showed that antidepressants,
although at rather high concentrations, increased the RNA
editing efficiency at the GluR2 Q/R site in a human cell line. It
is worth noting that this is the first report that the drugs could
increase the RNA editing efficiency at the GIuR2 Q/R site. Because
a marked reduction of RNA editing at the GluR2 Q/R site in motor
neurons may be a contributory cause of neuronal death
specifically in sporadic ALS (Takuma et al., 1999; Kawahara
et al., 2004), the drugs that upregulate GluR2 Q/R site-editing
may be potential therapeutic tools for sporadic ALS. It is
important to investigate whether these antidepressants could
enhance GluR2 Q/R site-editing in vivo, and also to elucidate the
mechanism underlying the upregulation of GluR2 Q/R site-
editing by antidepressants.
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