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markedly reduced in the wild-type somites, in concert with
formation of skeletal muscle derived from myotomes (Figure 7).
Because the myogenic master transcription factor myoD plays
essential roles in muscle differentiation [30] and can drive
apoptotic pathways as reported by Asakura et al. [37], the per-
turbed expression of myod in the C45T-1 morphants may imply an
immature developmental state of myotomes and/or disruption of
the somitic musculature accompanied by excessive stimulation
of the apoptotic cascade, leading to the aberrant morphology in
the trunk and tail.

The defects in somites with persistent expression of myod,
which were evoked by the functional knockdown of C4ST-1,
have been also reported for zebrafish embryos injected
with MOs, which inhibited functions of HS6ST-2, one of
the sulfotransferases involved in Hep/HS (heparan sulfate)
biosynthesis {38,39]. HS-PGs play roles in various cellular
signalling pathways through the high-affinity binding of HS
moieties to diverse Hep-binding proteins including growth
factors, cytokines and morphogens [40,41]. Recent studies have
demonstrated that CS also possesses the capacity to bind
various Hep-binding proteins [9,41]. In fact, signalling pathways
involving TGFB (transforming growth factor 8) and BMP (bone
morphogenetic protein) are dramatically affected in growth plates
of C4ST-1-deficient mice [19]. Hence, the apparently similar
muscular defects in both morphants might be indicative of
partially overlapping or compensatory functions of CS and HS
in the regulation of local signalling pathways via Hep-binding
myogenic morphogens such as hedgehog and Wnt [42,43]. Most
recently, Nadanaka et al. [44] reported that the decreased Wnt-3a
signalling in sog9 cells lacking C4S7-7 mRNA is recovered by
the introduction of C4ST-1, providing strong support to the notion
that the fine structures of CS formed by C4ST-1 are required for
efficient signalling inputs mediated by multiple morphogens.

C4ST-1 has been screened as one of the target genes induced
by BMP signalling during differentiation of mouse embryonic
stem cells [45]. This indicates that C4ST-1 is one of the
essential modulators in a sequence of the BMP-dependent cell
fate decisions. In zebrafish, BMPs are known to be key regulators
of posterior (i.e. trunk and tail) mesoderm patterning, as typified
by zebrafish mutants lacking bmp2b that do not form a tail [46].
In view of generally mild but definitive phenotypic abnormalities
biased to trunk and tail in C457-1 morphants, C4ST-1 might also
be one of the downstream targets of the BMP signalling in the
posterior half of the body axis and might play important roles
in at least several developmental processes induced by BMPs.
Therefore elucidation of the transcriptional regulatory mechanism
for C4ST-1 will provide insights into how C4ST-1 participates in
body axis formation including muscle development.

Emerging evidence suggests that CS-PGs are crucial
environmental modulators in the nervous system of vertebrates.
During neuronal development and regeneration, they have
apparently contradictory roles as major inhibitors of axonal
pathfindings and regeneration and as neuritogenic molecules
[2,3]. These functions are exerted mainly through their CS
moieties [2,3,9,10]. During zebrafish embryogenesis, CS is
abundantly distributed at the interface between the notochord
and somites where ventral motor axons located in the middle
of each spinal cord hemisegment project into ventral muscle [22].
As reported previously {23], elimination of CS in the trunk by
injection with chondroitinase ABC induces axonal projections
with abnormal side branches, indicating that CS constrains the
outgrowth of the ventral motor nerves through its inhibitory role
as a physical barrier or a repulsive cue for axonal growth. In
the present study, aberrant axonal outgrowth of ventral motor
neurons was also observed in C4S7-I morphants (Figure 7).

However, the most common abnormality was characterized by
truncated axons rather than abnormally branched and misrouted
axons (Table 3). One explanation for this discrepancy is that a
low but significant level of CS in the trunk of C4ST-] morphants
supports fasciculation of the ventral motor nerves, preventing
the formation of side branches, whereas a nearly complete
loss of CS by treatment with chondroitinase ABC does not.
Furthermore, in view of the requirement of myotome-derived
cues for the migration of motor axons [24,47], we cannot rule
out the possibility that defects in muscle development in C457-/
morphants led to additional indirect effects on the axonal
pathfindings, because it has been reported that there was no
damage in either the notochord or somites in chondroitinase-
treated zebrafish embryos [23].

Although the precise molecular basis of the axonal pathfindings
of ventral motor nerves involving 4-O-sulfated CS remains
unclear, the high incidence of truncated axons, probably
representing axons straying from their pathways, in C4ST-J
morphants suggests potential bifunctional roles of CS not only
as a repulsive cue but also as a permissive/attractive guidance
cue for specific axons, as described above. In fact, a substrate
uniformly precoated with oversulfated CS variants promoted
the outgrowth of neurites in rodent embryonic hippocampal
neurons, at least in part, by capturing and presenting several Hep-
binding growth factors to neurons [2,3,9]. In addition, habenula
nucleus axons derived from the developing rat diencephalon
were also able to extend over a substrate precoated with a
relatively high concentration of CS-PGs [48]. Interestingly,
a CS-PG-coated substrate coexisting with sema5A (semaphorin
5A), a bifunctional guidance cue, serves as an inhibitory cue
for habenula nucleus axons, resulting from conversion of the
attractive property of semaSA into an inhibitory one through
its specific interaction with the CS moieties of CS-PGs [48].
Therefore further exploration of CS-interacting molecules in the
extracellular matrix and unidentified functional CS receptor(s) is
required for a better understanding of the apparent contradictory
neuroregulatory functions of CS.

In contrast with C4ST-1 morphants and chondroitinase-treated
embryos, functional knockdown of zygotic ChSy-1 (chondroitin
synthase-1), which encodes one of the glycosyltransferases
involved in the biosynthesis of the chondroitin backbone, has been
reported to have no significant effects on the pathfinding of the
motor axons, although CS immunoreactivity was reduced in
the morphants (47]. Recently, Izumikawa et al. [49,50] demons-
trated that chondroitin polymerization can be achieved by any two
combinations of four ChSy family members including ChSy-1.
Therefore, if similar biosynthetic machinery is encoded by the
zebrafish genome, a single knockdown of ChSy family members
may not always lead to a drastic reduction in the amount of
CS, which provokes developmental defects. Consequently, our
results in conjunction with earlier studies [18,19,23] strongly
suggest the critical functions of C4ST-1 in CS biosynthesis and
in zebrafish embryogenesis. Thus further analysis focusing on
C4ST-1 will facilitate our understanding of the molecular mecha-
nisms underlying the development and pathology of various
diseases involving CS.
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