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Many studies suggest that antidepressants act as neuroprotective agents in the central nervous system
(CNS), though the underlying mechanism has not been fully elucidated. In the present study, we examined
the effect of SA4503, which is a sigma-1 receptor agonist and a novel antidepressant candidate, on oxida-
tive stress-induced cell death in cultured cortical neurons, Exposure of the neurons to H,0; induced cell
death, while pretreatment with SA4503 inhibited neuronal cell death, The SA4503-dependent survival
effect was reversed by co-application with BD1047 (an antagonist of sigma-1/2 receptors). Previously
we found that H, 0, triggers a series of events including over-activation of mitogen-activated protein
kinase/extracellular signal-regulated kinase (MAPK/ERK)and intracellular Ca?* accumulation via voltage-
gated Ca?* channels and ionotropic glutamate receptors, resulting in neuronal cell death (Numakawa et
al.(2007)[20]). Importantly, we found in this study that SA4503 reduced the activation of the MAPK/ERK
pathway and down-regulated the ionotropic glutamate receptor, GluR1. Taking these findings together,
itis possible that SA4503 blocks neuronal cell death via repressing activation of the MAPK/ERK pathway

and, consequently, expression levels of glutamate receptors.

© 2009 Elsevier Ireland Ltd. All rights reserved.

The sigma-1 receptor (sig-1R) is a possible target to treat for several
brain-related illnesses [6], because sig-1R is putatively involved
in synaptic plasticity and neuroprotection in the CNS, Sig-1R has
been shown to play a role in critical intracellular processes that
regulate Ca?* signaling and protein transport. Hayashi and Su
demonstrated that the endoplasmic reticulum (ER) protein Sig-1R
is a Ca?* (via inositol 1,4,5-trisphosphate receptors, IPsR)-sensitive
and ligand-operated receptor chaperone at the ER membrane [7].
Sig-1R chaperones at the ER-mitochondrion interface regulate Ca?*
signaling and cell survival.

SA4503 [1-(3,4-dimethoxyphenethyl)-4-(3-phenylpropyl)
piperazine dihydrochloride] is recognized as a selective ligand
for sig-1R chaperones [15]. Previous studies suggest that SA4503
positively affects memory by improving memory impairments
and increasing cell survival [25,26]. Up-regulation of hippocampal
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Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1
Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan. Tel.: +81 42 341 2711x5132;
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0304-3940/$ - see front matter © 2009 Elsevier Ireland Ltd. All rights reserved.
doi:10.1016/j.neulet.2009.12.013

BDNF levels (brain-derived neurotrophic factor), which play a cru-
cial role in synaptic function and neuronal survival [11,21,29,30],
have been demonstrated after chronic treatment with SA4503
[8]. Previously, we reported that BDNF rapidly induces release of
the neurotransmitter glutamate through PLCy/IP3R/Ca?* signaling
and that antidepressants, including imipramine and fluvox-
amine, enhance the PLCy/IP3R/Ca?* system via Sig-1R [19,32].
These studies indicate that Sig-1R has multiple roles in the
CNS.

Interestingly, SA4503 shows antidepressant-like, and neu-
roprotective effects [16,27]. SA4503 decreased the immobility
time in the forced swim test in rats, suggesting that SA4503
may have potential antidepressive properties [27]. Moreover,
in the same study, SA4503 showed a synergistic effect with
imipramine during the forced swim test. Lucas et al. reported
further evidence supporting the antidepressant potential of SA
4503 through electrophysiological, morphological and behavioural
studies [12]. In addition, Nakazawa et al. showed that SA4503
demonstrates a protective effect on neuronal cultures against
the hypoxia/hypoglycemia-induced neurotoxicity [16]. Thus, it
is possible that SA4503 is a potential drug for treatment for
several brain-related illnesses, including depressive disorder.
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However, little is known concerning detailed cellular mechanisms
underlying the effect of SA4503 in CNS neurons.

Oxidative stress may be associated with various neurodegener-
ative diseases including Alzheimer’s disease, Parkinson's disease,
Huntington's disease and amyotrophic lateral sclerosis [1,2]. In
this study, we examined whether SA4503 demonstrates a preven-
tive effect on cultured cortical neurons from oxidative stress when
SA4503 is applied before H;0, exposure.

Primary cortical cultures were prepared from postnatal 2-
day-old rats as previously reported [22,23]. The culture medium
consisted of 5% fetal bovine serum, 5% heated-inactivated horse
serum, 90% of a 1:1 mixture of Dulbecco’s modified Eagle’s medium,
and Ham's F-12 medium. Dissociated cortical neurons were cul-
tured for 4 or 5 days before SA4503 (a gift from M's Science
Corporation, Hyogo, Japan) was applied. Twenty-four hours after
SA4503 addition, H,0; (final 50 uM) was applied for 12 h. Then,
the cell viability was analyzed. To determine the cell viability, we
carried out a mitochondrial-dependent conversion of the tetra-
zolium salt (MTT) assay. The metabolic activity of mitochondria
was estimated with the MTT assay as previously reported [20].
BD1047 (1 uM, Tocris Cookson Ltd., Avonmouth, UK), an antago-
nist of sigma-1/2 receptors [13], was applied 20 min before adding
SA4503. U0126 (an inhibitor for MEK, an upstream molecule of
MAPK/ERK) was purchased from Promega (WI, USA), and used at
a final concentration of 10 wM. 6-cyano-7-nitroquinoxaline-2,3-
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dione (CNQX) was purchased from Tocris Bioscience (Bristol, UK).
Other reagents were obtained from SIGMA (MO, USA). All animals
were treated according to the institutional guidelines for the care
and use of animals.

Immunostaining was carried out as reported previously with
some modifications [18]. First, cultured cells were fixed in 4%
paraformaldehyde at room temperature for 20 min. After three
times washes with PBS, the cells were permeabilized, and the non-
specific binding of antibodies was blocked with 10% goat serum,
0.2% Triton X-100 in PBS for 30 min at room temperature. The
anti-MAP2 (1:1000, SIGMA) antibody was applied overnight at
4°C, Following three times washes with PBS, Alexa Fluor 488-
conjugated anti-mouse IgG (1:200, Invitrogen) was applied as a
secondary antibody. Immunoreactivity was monitored with a flu-
orescence microscope (Axiovert 200, ZEISS, Tokyo, Japan).

Cells were lysed in SDS lysis buffer containing 1% SDS, 20mM
Tris—HCl (pH 7.4), 5mM EDTA (pH 8.0), 10 mM NaF, 2mM Na3VOy,
0.5 mM phenylarsine oxide, and 1 mM phenylmethylsulfonyl fluo-
ride. The protein concentration was quantified using a BCA Protein
Assay Kit (PIERCE), and equivalent amounts of total protein were
assayed for each immunoblotting. Primary antibodies were used
at the following dilutions: anti-Akt (1:1000, Cell Signaling, MA,
USA), anti-pAkt (1:1000, Cell Signaling), anti-ERK (1:1000, Cell Sig-
naling), anti-pERK (1:1000, Cell Signaling), anti-pJNK (1:1000, Cell
Signaling), anti-JNK (1:1000, Cell Signaling), anti-B-actin (1:5000,
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Fig. 1. SA4503 prevents cultured cortical neurons from cell death caused by H,0, application. (A) SA4503 pretreatment inhibited the H,0,-induced neuronal cell death.
SA4503, a sig-1R agonist, was applied to DIV4 cultures at 0.1 WM. Twenty-four hours later, H,0, (final 50 uM) was added to induce cell death. After 12 h, cell survival was
determined by immunostaining with anti-MAP2 antibody. Bar =50 um. (B) SA4503 exerted survival effects in a dose-dependent manner. SA4503 pretreatment (24 h) was
performed at 0.01, 0.1 1, or 10 M. The cultures were then incubated with H, 0, for 12 h, followed by MTT assay. Data represent mean =+ SD (n=5, n indicates the number
of wells of a plate for each experimental condition). ***P<0.001, *P<0.05 vs. 0 1M SA4503 +H, 0, (one-way ANGVA). SA: SA4503. (C) BD1047, an antagonist of sigma-1/2
receptors, canceled the SA4503-dependent cell survival, BD1047 (1 M) was applied 20 min before adding SA4503 (0.1 £M). MTT assay. Data represent mean+SD {n=5,
n indicates the number of wells of a plate for each experimental condition). ***P<0.001, vs. 0 uM SA4503 +H,0;. ###P<0.001 vs. SA4503 + H,0; (one-way ANGVA). BD:

BD1047.
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SIGMA), anti-NR2A (1:500, SIGMA), anti-NR2B (1:500, SIGMA), tion, Tokyo, Japan). The n indicates the number of experiments in
anti-GluR1 (1:1000, CHEMICON, CA, USA), and anti-GluR2/3 (1:500, separated cultures.

CHEMICON) antibodies. The intensity of the immunoreactivity was Data shownin this study are presented as mean = standard devi-
quantified by using Lane & Spot Analyzer software (ATTO Corpora- ation (SD). Statistical significance was evaluated using a one-way
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Fig. 2. The MAPK pathway is involved in H, 0, -induced cell death and reduction in activation of MAPK is important for the protective effect of SA4503. (A) U0126 (a specific
inhibitor of MEK, an upstream of MAPK) and SA4503 exerted a survival effect. U0126 (10 ,.M) was applied 3 h before exposure to H,0,. SA4503 (0.1 LM} was pretreated for
24 h. MTT assay. Data represent mean =+ SD (n=6). ***P<0.001 vs. 0 .M SA4503 + H; 0, (one-way ANOVA). Co-application of U0126 with SA4503 did not show any additional
or synergistic effects as compared with solo drug addition. (B) Inhibitory effect of U0126 on activation of MAPK/ERK. The levels of pERK1/2 {phosphorylated ERK1/2) were
quantified (Western blotting). Data represent mean £ SD (n=4), ***P<0.001, **P<0.01 vs. 0 .M U0126. Normalization to a level of pERK1/2 in control (without U0126) was
performed. (C) SA4503 reduced activation of ERK1/2. SA4503 (0.1 uM) was applied for 0.5-3 h. The levels of pERK1/2 were quantified. Data represent meanSD (n=4).
Normalization to a level of pERK1/2 in control (without SA4503) was performed. ***P<0.001, *P<0.05 vs. 0 ..M SA4503 (one-way ANOVA). (D) SA4503 reduced the pERK1/2
ievels in a dose-dependent manner. SA4503 (0.01. 0.1, 1, or 10 juM) was applied for 3 h. Data represent mean = SD (n=6). ***P<0.001 vs. 0 LM SA4503 (one-way ANOVA). The
(E) time- or (F) dose-dependency of SA4503 on phosphorylated Akt (pAkt) was examined. SA4503 did not induce any change in the Akt activation. Data represent mean = SD
(n=4). The (G) time- or (H) dose-dependency of SA4503 on phosphorylation of JNK1/2 (pJNK1/2). SA4503 did not have any effect. Data represent mean:+SD (n=6).
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ANOVA followed by Tukey's test in SPSS ver11 (SPSS Japan, Tokyo,
Japan). Probability values less than 5% were considered statistically
significant.

We first examined the effect of pretreatment with SA4503
on cell death caused by H,0, application. SA4503 (0.1 uM) was
applied to cultured cortical neurons at 4 days in vitro (DIV4).
Twenty-four hours later, exposure to H,0, (50 wM) was carried
out to induce cell death. Following H,0, treatment for 12h, an
immunostaining with anti-MAP2 (microtubule-associated protein
2, neuronal marker) antibody was performed. As shown in Fig. 1A,
H,0, induced significant neuronal cell death compared with the
control (without SA4503 and H,0,). We found that SA4503 sig-
nificantly reduced the cell death caused by H;0, (Fig. 1A). We
previously determined that the ratio of MAP2-positive cells to
the total cells at DIV5 was about 80% in our cultures [14]. To
further investigate cell survival, the MTT assay was also con-
ducted. As illustrated, SA4503 decreased cell death by H,0; at
any dose of SA4503 (0.01-10 uM, Fig. 1B). The survival effect by
SA4503 reached a plateau at 0.1 WM (Fig. 1B). Therefore, the follow-
ing experiments for analyzing cell survival were performed with
0.1 M of SA4503. Next, we examined the possible involvement
of sigma-1/2 receptors in the SA4503 effect. Co-pretreatment with
SA4503 and BD1047 (1 uM, an antagonist of sigma-1/2 receptors)
failed to protect cortical neurons from cell death by H,0, (Fig. 1C),
suggesting that SA4503 has survival-promoting effect via sigma-
1/2 receptors.

To clarify the mechanisms underlying the SA4503-dependent
survival, we examined the change in activation of intracellu-
lar signaling. PI3K, phosphatidylinositol 3-kinase, and MAPK/ERK
pathways are essential for neuronal survival in the CNS [5,24].
On the other hand, we previously reported that over-activation
of ERK1/2 caused by H;0; is involved in cell death [20]. Thus, to
examine the activation of MAPK/ERK pathway to the downstream
effects of SA4503, we applied an inhibitor of the MAPK/ERK path-
way, UQ126, to the cortical cultures. U0126 (10 M, 3 h before H,0,
stimulation) significantly inhibited H;0,-dependent cell death
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(Fig. 2A), suggesting that the MAPK/ERK pathway is involved in cell
death by H;0,. No additional or synergistic effect by co-application
of U0126 and SA4503 as compared with solo SA4503 or U0126
application was observed (Fig. 2A), suggesting that reduction in
the activation of the MAPK/ERK pathway contributes to cell pro-
tection by SA4503. We confirmed that a decrease in activation
(phosphorylation) of p44/42 MAPK (ERK1/2) after U0126 expo-
sure (3 h) occurred in a dose-dependent manner, though the total
expression of ERK1/2 was not changed (Fig. 2B). Next, we examined
activation of ERK1/2 after SA4503 exposure. SA4503 treatment for
0.5-3 h reduced levels of pERK1/2 (Fig. 2C). The total ERK1/2 was
not changed by SA4503 (Fig. 2C). SA4503 depressed the pERK1/2
levels in a dose-dependent manner (Fig. 2D). We checked the
activation of Akt (a component of the PI3K pathway). When the
time- or dose-dependency of SA4503 on Akt activation was deter-
mined, the activation levels were not influenced by SA4503 (Fig. 2E
and F). Total Akt expression was intact after SA4503 application
(Fig. 2E and F), Furthermore, both total JNK1/2 (c-JunNH2-terminal
kinase1/2, an another member of MAPKs) and pJNK1/2, which
regulate apoptosis [9,31], were examined. After the time- or dose-
dependency of SA4503 was determined, it was revealed that total
JNK1/2 and pJNK1/2 were not changed by SA4503 (Fig. 2G and H).
These results suggest that SA4503 has a protective effect on cortical
neurons via repressing activation of the MAPK/ERK pathway.

We investigated whether ionotropic glutamate receptors are
involved in SA4503-dependent neuroprotection as contribution of
glutamate function to oxidative stress was reported [17]. Inter-
estingly, SA4503 dramatically decreased expression of GIuR1 in a
dose-dependent manner (Fig. 3A). Small decreases in the NR2A (not
NR2B), and GluR2/3 expression levels after SA4503 exposure were
also observed (Fig. 3A). The level of B-actin is shown as a control
(Fig. 3A). The time-course analysis of SA4503-induced reduction
of GluR1 expression was performed. Cultures were treated with
SA4503 for 0.5-3h, and down-regulation of GluR1 expression
occurred at all time points (Fig. 3B). B-actin levels were intact after
SA4503 application (Fig. 3B).
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Fig. 3. SA4503 treatment down-regulates the levels of ionotropic glutamate receptors. (A} Expressions of glutamate receptor subunits including NR2A, NR2B, GIuR1 and
GIuR2/3, were examined after SA4503 exposure. SA4503 (3h) was applied at the indicated concentration. SA4503 decreased expression of GluR1 significantly. The small
decreasing tendency in the NR2A and GluR2/3 expression levels was also observed. B-actin is shown as a control. (B) The time-course analysis of SA4503-induced reduction
of GluR1 expression. After immunoblotting was performed, quantification was carried out. Normalization to a level in control {(no SA4503 application) was performed,
Data represent mean £ SD (n=5), ***P<0.001 (one-way ANOVA). B-actin is a control. (C) CNQX (AMPA glutamate receptors antagonist) blocked H,0,-induced death. CNQX
(10 uM)was applied 20 min before H, 0, exposure. SA4503 (0.1 uM) was pretreated for 24 h, MTT assay. Datarepresent mean + SD (n=5), “**P<0.001 vs. 0 uM SA4503 + H, 0,
{one-way ANOVA), Neither of these drugs exerted any additional or synergistic effect as compared with solo treatment.
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Furthermore, to elucidate the possibility that a change in the
level of ionotropic glutamate receptors, such as GluR1 AMPA recep-
tors, is associated with SA4503-mediated survival promotion, we
tested the effect of CNQX, an antagonist for AMPA receptors. CNQX
application (20 min) prevented cortical neurons from cell death by
H,0,.As shown, no additional or synergistic effect of co-application
of CNQX and SA4503 as compared with solo drug treatment was
confirmed (Fig. 3C), implying that a decrease in AMPA receptor
activation is involved in the SA4503-dependent survival against
H,0,-mediated cell death.

In the present study, we found that SA4503, a sig-1R agonist and
a novel antidepressant candidate, blocked H,05-induced neuronal
cell death, SA4503 caused the down-regulation of the MAPK/ERK
pathway activation and reduced levels of ionotropic glutamate
receptors. UQ126, an inhibitor of the MAPK/ERK pathway, and
CNQX, an inhibitor of AMPA glutamate receptors, prevented
cultured cells from the H,0,-induced death. Remarkably, after co-
treatment with U0126 or CNQX, SA4503 exerted no additional or
synergistic survival effects as compared with solo application.

ERK1/2 (p44/p42MAPK) are two isoforms of ERK that belong to
the family of MAPKs, including the JNK1/2 and the p38 MAP kinase.
ERK activation controls various cell responses, including prolifer-
ation, survival, and synaptic maturation; indeed, we previously
showed that neurotrophin BDNF up-regulated synaptic proteins
via the MAPK/ERK pathway [10,14]. Paradoxically, depending on
the duration, the magnitude and its subcellular localization, aber-
rant ERK activation can promote cell death [3]. Persistent activation
of ERK contributes to glutamate-induced oxidative toxicity in cor-
tical neurons [28]. Consistently, we previously found that H,0,
induced over-activation of ERK1/2 [20]. Crossthwaite et al. showed
MAPK activation in cultured cortical neurons exposed to H,0;
(300 M), however, U0126 did not rescue but slightly enhanced the
cell death [4]. In our system, U0126 significantly inhibited H,0,-
induced cell death, and marked reduction of activated ERK1/2 levels
after SA4503 exposure was observed. In contrast, phosphoryla-
tion of JNK1/2, which is known as pro-apoptotic molecule [9,31],
was not changed by SA4503 exposure. In addition, no additional
or synergistic effect of co-application of U0126 and SA4503 on
neuroprotection as compared with solo drug application was con-
firmed. These results suggest that SA4503 exerts the survival effect
via repressing activation of the MAPK/ERK pathway. Importantly,
though the reduction in activation of ERK1/2 induced by SA4503
or by U0126 was significant, a complete abolishment of basal acti-
vated ERK1/2 was not achieved by each drug treatment, Activation
of MAPK/ERK signaling beyond the normal threshold may be toxic
to cells, while basal activity of this signaling is essential for neuronal
survival. Furthermore, there is a possibility that subcellular local-
ization of pERK1/2 is involved in multiple functions of this kinase
[3]. It may be valuable to study whether an unknown phosphatase
that prevents the activation of ERK1/2 or upstream molecules of
ERK1/2, is involved in SA4503-dependent inhibition of pERK1/2.

We previously reported that exposure to H,0; causes a series
of events including ERK1/2 over-activation and an increase in
intracellular Ca®* via voltage-gated Ca?* channels and ionotropic
glutamate receptors, ultimately resulting in cell death [20]. Under
H,0, stress, the ERK1/2 signal may work as a death mediator, as
U0126 blocks cell death. We recently found that the MAPK/ERK
pathway is also involved in maintenance of the expression of
ionotropic glutamate receptors [10]. Indeed, in the present study,
SA4503 induced the marked down-regulation of glutamate recep-
tors (especially, GluR1). Therefore, we investigated the possibility
that a decrease in AMPA receptor activation is required for the
SA4503-dependent survival. As expected, CNQX (AMPA receptors
antagonist) blocked H;0,-induced death, and any additional or
synergistic effect of co-application of CNQX and SA4503 was not
observed. It is possible that SA4503 protects neurons from oxida-

tive toxicity via decreasing activation of ERK1/2, which is a critical
signaling component for maintenance of GluR1 expression.

In summary, SA4503, a sig-1R agonist, stimulates survival-
promoting effects on cultured cortical neurons. Previously, we
found that antidepressants (imipramine, and fluvoxamine) poten-
tiate BDNF-induced intracellular signaling for release of glutamate
via stimulation of sig-1R [32]. Recently, up-regulation of BDNF pro-
tein in the rat hippocampus by chronic treatment with SA4503 has
been reported [8]. Collectively, these results, including our present
study, suggest that SA4503 plays various functions in the CNS. In
addition to the potential as a novel antidepressant agent, SA4503
may be valuable to study as a therapeutic agent in the treatment
of neurodegenerative diseases of the CNS, although further studies
concerning intracellular mechanisms are needed.
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Chromosome 22q13 region has been implicated in schizophrenia
in several linkage studies. Genes within this locus are therefore
promising genetic and biologic candidate genes for schizophre-
nia if they are expressed in the brain or predicted to have some
role in brain development. A recent study reported that
bromodomain-containing 1 gene (BRDI), located in 22ql13,
showed an association with schizophrenia in a Scottish popula-
tion. Except for being a putative regulator of transcription, the
precise function of BRDI is not clear; however, expression
analysis of BRDI mRNA revealed widespread expression in
mammalian brains. In our study, we explored the association
of BRD1 with schizophrenia in a Japanese population (626 cases
and 770 controls). In this association analysis, we first examined
10 directly genotyped single-nucleotide polymorphisms (SNPs)
and 20 imputed SNPs, Second, we compared the BRDI mRNA
levels between cases and controls using lymphoblastoid cell lines
(LCLs) derived from 29 cases and 30 controls. Although the SNP
(rs138880) that previously has been associated with schizophre-
nia showed the same trend in the Japanese population, no
significant association was detected between BRDI and schizo-
phrenia in our study. Similarly, no significant differences in
BRD] mRNA levels in LCLs were detected. Taken together, we
could not strongly show that common SNPs in the BRDI gene
account for a substantial proportion of the genetic risk for
schizophrenia in the Japanese population. © 2009 Wiley-Liss, Inc.

Key words: association analysis; imputation; gene expression
analysis; meta-analysis

INTRODUCTION

Schizophrenia is a severe, debilitating disorder characterized by
delusional beliefs, hallucinations, disordered speech, and deficits in
emotional and social behavior. It is strongly familial, and heritabil-
ity is around 80% based on twin studies [Sullivan et al., 2003].
However, the pattern of inheritance is complex, with most studies
suggesting an interaction of multiple genes. There are now several
positional candidate regions all over the genome that have been
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shown to be related to schizophrenia in genetic studies [Badner and
Gershon, 2002; Williams et al., 2003].

One promising region is chromosome 22q. Initial evidence for
linkage to chromosome 22q came from three markers spanning
~23cM in the 22q13.1 region in the Maryland family sample
[Pulver et al., 1994]. Additional interest in 22q13 came from a
genome scan of catatonic schizophrenia pedigrees, which showed
suggestive evidence for linkage (P= 1.8 x 107> non-parametric
logarithms of the odds [LOD] score 1.85) on 22q13 [Stober et al.,
2000]. Furthermore, a multicenter linkage study that evaluated 10
microsatellite markers spanning 22qin 779 schizophrenia pedigrees
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showed linkage of borderline significance to D2251169 at 22q13.32
in the total sample when intersample heterogeneity was taken into
account [Mowry et al., 2004].

A recent study [Severinsen et al., 2006] looked into this 22q13
region and reported that two single-nucleotide polymorphisms
(SNPs) (rs4468 and rs138880) located within bromodomain-
containing 1 gene (BRDI) were associated with schizophrenia in
a single-marker association analysis. This gene, expressed in mam-
malian brain tissue, encodes a protein of unknown function that
contains a bromodomain, a motif often found in transcriptional
coactivators. The motif represents an evolutionarily conserved
nucleotide sequence found in many chromatin-associated proteins
and in nearly all known nuclear histone acetyltransferases. It is
therefore thought that BRDI is related to transcriptional regulation
[Zeng and Zhou, 2002].

BRDI is an attractive candidate gene for schizophrenia for two
reasons. First, BRDI as a putative transcriptional cofactor might
have functional implications for susceptibility to schizophrenia.
Second, it also maps to the 22q13.33 locus, the region with evidence
for linkage to schizophrenia.

As mentioned, a single study has implicated genetic variants
within BRDI locus as contributing factor to schizophrenia in a
Scottish population [Severinsen et al., 2006]. To further investigate
this possible association, we selected SNPs within the BRDI locus
and carried out a case—control study in a Japanese population. In
terms of understanding the relationship between BRD1 and schizo-
phrenia, our study brings additional information from a genetic
point of view: a larger sample size, a different population, and better
coverage (in terms of SNPs selected for analysis).

MATERIALS AND METHODS
Subjects

All subjects were of Japanese descent and recruited from the main
island of Japan. For the association analysis, 626 patients with
schizophrenia and 770 healthy controls were used (Supplementary
Table I). For the expression analysis, 29 patients with schizophrenia
and 30 healthy controls were used (Supplementary Table II).
All patients were diagnosed according to the Diagnostic and
Statistical Manual of Mental Disorders, Fourth Edition, criteria
based on the consensus of at least two experienced psychiatrists
using an unstructured interview and review of medical records. All
healthy controls were psychiatrically screened using an unstruc-
tured interview to exclude subjects with any brain disorder or
psychotic disorder or who had first-degree relatives with psychotic
disorders. The present study was approved by the Ethics Commit-
tees of Nagoya University, Fujita Health University. All subjects
provided written informed consent after the study was described
to them.

Tagging SNP Selection, SNP Genotyping, and
Quality Control

The International Haplotype Mapping (HapMap) (www.hapmap.
org) SNP database and ABI (Applied Biosystems) SNP browser
were used to select tagging SNPs in the BRD1 locus. The screened
region was extended 5 kb upstream of the annotated transcription

start site and downstream at the end of the last BRD1 exon [Neale
and Sham, 2004]. The tagging SNP selection criteria were that
polymorphisms had a minor allele frequency >5% in the Japanese
population (release #21; phase II; July 2006). Then, we took
advantage of observed linkage disequilibrium [Barrett et al,
2005] in the BRD1 locus to exclude redundant SNPs from genotyp-
ing. In other words, if the correlation coefficient between two loci
(r*) was 0.9 or higher, then only one of the two loci was selected for
the association study [Barrett et al., 2005]. Based on our criteria, 10
SNPs were selected for the analysis. The promoter SNP rs138880,
which was one of the two SNPs associated with schizophrenia in the
previous study [Severinsen et al., 2006], was included in these 10
SNPs. The 3’ UTR SNP rs4468, the other SNP associated with
schizophrenia in the previous study, was also added to the tagging
SNPs despite a lack of information on frequency of this polymor-
phism in a Japanese population in the HapMap database. There-
fore, 11 SNPs made up the tagging set. All SNPs were genotyped by
TagMan assay (Applied Biosystems Japan Ltd, Tokyo, Japan). For
quality control, three strategies were employed. First, we checked
deviation from the Hardy—Weinberg equilibrium (HWE). Second,
we genotyped 20 randomly selected samples for each SNP in
duplicate in order to evaluate the genotype error rate. Third, we
confirmed whether the minor allele frequency for each SNP gen-
otyped in control samples was consistent with that in the Japanese
population in the HapMap database.

Imputation of Ungenotyped SNPs

Because tagging SNPs was selected based on r’, we included
imputation as an exploratory method to compute genotypes of
SNPs that were not selected for genotyping (untyped SNPs). The
advantage of imputing untyped SNPs is that the coverage of
common variants within the locus of interest can be enhanced,
boosting the statistical power [Marchini et al., 2007]. The MACH
program {(http://www.sph.umich.edu/csg/abecasissMACH/) was
used to calculate the genotypic prediction of 20 untyped SNPs
using directly typed SNP information (10 SNPs used in the screen-
ing scan) and the HapMap database (recombination map and
haplotype data for the Japanese/Chinese population, release
#23a; phase II; March 2008). The MACH program was recently
reported to have similar imputation accuracy rates to IMPUTE and
to outperform fastPHASE, PLINK, and Beagle [Pei etal.,, 2008]. The
targeted region for imputation was limited to the BRDI locus as
defined above.

Power Calculation

Power was calculated according to the methods described by Skol
et al. [2006]. In brief, for a predefined alpha level, in the disease
prevalence and inheritance model, statistical power of any given
sample is a function of sample size and effect size. In other words,
power is directly proportional to sample size on one side and minor
allele frequency and genotype relative risk on the other side.

Statistical Methods for Association Study

Deviation from the HWE was tested by chi-square analysis. All
single marker association analyses were done by calculating the
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P-values for each SNP marker, and the significance was determined
atthe 5% level using the chi-square test, as implemented in SPSSv13
(SPSS, Inc., Chicago, IL). All P-values were two-sided. Multimarker
analysis was carried out by log-likelihood ratio tests for assessing
haplotype-wise associations between schizophrenia and a combi-
nation of tagging SNPs with a permutation test for calculating
empirical significance levels for differences between haplotype
frequencies in case and control subsets.

Meta-Analysis

We performed a meta-analysis for rs138880, one of the two SNPs
associated with schizophrenia in the previous study [Severinsen
etal.,, 2006]. The other SNP, rs4468, was excluded because it was not
polymorphic in our sample. Thus far, only one study has been
published regarding an association analysis of the BRDI locus
[Severinsen et al., 2006]. We used data from Severinsen’s study
and our study. First, the Q statistic test was performed to assess the
possible heterogeneity in the combined studies. Second, a fixed
effects model meta-analysis was conducted. The significance of the
overall odds ratio (OR) was determined by the Z-test. The analysis
was carried out on Comprehensive Meta-Analysis software
(Version 2.2.046, Biostat, Englewood, NJ).

Lymphoblastoid Cell Lines (LCLs)

Peripheral blood was drawn into 7-ml plastic tubes containing
sodium heparin, and lymphocytes were separated by a standard
protocol. The cells were cultured in RPMI-1460 medium contain-
ing 20% fetal bovine serum, penicillin, and streptomycin, and
filtered supernatant of a B95-8 cell culture infected with Epstein—
Barr virus. Cyclosporine A was added until colonies were observed.
After colony formation, the cells were passaged three times per
week, without the addition of 10% fetal bovine serum and cyclo-
sporine A. The cells were frozen in liquid nitrogen until needed, at
which time they were thawed, passaged at least three times, and used
within 4 weeks. We paid special attention while establishing and
maintaining cell lines to exclude environmental confounders as
much as possible.

Real-Time Quantitative Polymerase Chain
Reaction (PCR) and Statistical Analysis

Total RNA of LCLs was extracted using RNeasy Plus Mini kit (50)
(Qiagen, Valencia, CA). RNA vyield and quality were assessed by
measuring absorbance at 260 and 280 nm. Integrity and overall
quality of the total RNA preparation were determined by native
agarose gel electrophoresis (inspection of the 285 and 18S bands).
Total RNA was used for cDNA synthesis by High-Capacity cDNA
Reverse Transcription Kits (Applied Biosystems Japan Ltd). Real-
time quantitative PCR using TaqgMan gene expression assays
(Applied Biosystems Japan Ltd) was performed with ABI PRISM
7900HT (Applied Biosystems Japan Ltd). Amplification efficiency
for each gene-specific primer pair was calculated based on the
dilution series method [Livak and Schmittgen, 2001]. In each
experiment, the r? value of the curve was more than 0.99, Measure-
ment of the cycle threshold was performed in triplicate. The relative

expression of BRDI was calculated by the modified AA cycle
threshold method as implemented in Relative Expression Software
Tool 2008 (REST 2008) [Pfaffl et al.,, 2002]. The normalization
factor was the geometric mean [Vandesompele et al., 2002] of the
following genes: tyrosine 3-monooxygenase/tryptophan 5-mono-
oxygenase activation protein, zeta polypeptide (YWHAZ), beta-2-
microglobulin (B2M), and ubiquitin C (UBC). These three genes
were shown to have high expression stability in leukocytes
{Vandesompele et al., 2002]. Bootstrapping techniques were used
to provide 95% confidence intervals (Cls) for expression ratios
without a normal or symmetrical distribution assumption.

RESULTS
Association Analysis

Regarding quality control, significant deviation from HWE was not
observed. The genotypes of the duplicated samples showed com-
plete concordance. Minor allele frequency for each tagging SNP in
control samples generally showed a high concordance with that in
HapMap database. Assuming a multiplicative model of inheritance
and a disease prevalence of 1%, calculations showed that our sample
had appropriate power (more than 80%) to detect gene-wide
significant associations with genotype relative risk values from
1.24 to 1.55 (minor allele frequency values from 0.05 to 0.45). 3/
UTR SNP rs4468, which was associated with schizophrenia in a
previous study, was not polymorphic in our Japanese sample, so we
excluded rs4468 from subsequent analyses. Regarding the remain-
ing 10 SNPs, no association was detected with schizophrenia in
allele-/genotype-wise analyses or in the haplotype-wise analysis
(two- to four-marker sliding window fashion; Table I). However, it
should be noted that the rs138880 (associated SNP in previous
article) showed the same trend in the Japanese population. In
addition, haplotype showing the most significant association
[Severinsen et al., 2006] was tested in the present study. We could
not show a significant difference in the frequency of this haplotype
between cases and controls (haplotype frequency in cases and
controls: 0.0010 and 0.0010, respectively, P=0.99).

Imputation of Ungenotyped SNPs

We used MACH to infer genotypes of 20 untyped SNPs. We
provided genotypes for our own data (10 SNPs) as input together
with haplotypes from the HapMap Japanese/Chinese population.
The imputation method using MACH did not support an associa-
tion between schizophrenia and the 20 SNPs in the BRDI locus
(Table II).

Meta-Analysis

The SNP rs138880 that previously has been associated with schizo-
phrenia showed the same trend in the Japanese population although
it did not reach significance. The ORs for rs138880 reported in the
Severinsen et al. [2006] and in this study were 1.73 and 1.14, respec-
tively (Supplementary Table III). The pooled OR derived from the
two studies (in total, 729 cases and 970 controls) was significant in
the fixed model (pooled OR = 1.25, 95% CI = 1.03~1.52, P=0.02;
Supplementary Table III). Homogeneity analysis for the OR
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revealed no significant evidence for heterogeneity of the OR
(Q=12.98, df =1, P=0.084).

Expression Analysis

The expression of BRDI mRNA was analyzed using LCLs from 29
cases and 30 controls. Cycle threshold values of BRDI and three
internal controls (B2M, UBC, and YWHAZ) are shown in Supple-
mentary Table IV. We could not detect any significant differences in
BRDI mRNA levels between cases and controls (P=0.46; Fig. 1).

DISCUSSION

The common disease~common variant hypothesis states that dis-
eases that were evolutionarily neutral (i.e., had little or no effect on
reproductive fitness), such as late-onset schizophrenia, during
human history may be significantly influenced by common variants
[Lander, 1996]. Therefore, if allelic variants at a disease suscepti-
bility locus are responsible for the predisposition to a common
complex disease, then allele-, genotype-, or haplotype-wise associ-
ation tests will detect such variants (or tagging SNPs that are in
linkage disequilibrium with the deleterious allele).

The first and only indication that the BRDI-related region
harbors a variation that might influence susceptibility to schizo-
phrenia was provided by Severinsen et al. [2006], who identified
two fairly strong association signals between two SNPs (rs4468 and
rs138880) and schizophrenia using a case—control sample from
Scotland. The sample in this study consisted of 103 patients with
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schizophrenia and 200 controls. Our study did not strongly support
an association between schizophrenia and the BRD1locus although
the only previously associated SNP included in our study
{rs138880) showed the same trend, and the meta-analysis of this
SNP using a fixed effects model was significant.

Psychiatric disorders are complex diseases that are characterized
by the contribution of multiple susceptibility genes and environ-
mental factors. Therefore, BRDI might be a population-specific
factor for schizophrenia. However, this conclusion should be made
only with the following considerations. First, it is possible that our
study was still underpowered to reliably detect common low-risk
variants. This may be related to etiological heterogeneity or inac-
curate diagnoses in schizophrenia, which would attenuate the
genetic relative risk. Second, only the hypothesis of an association
with common SNPs of BRD1 has been tested, both here and in the
previous study; therefore, future studies using resequencing meth-
ods to detect rare variants in the BRD1 locus will be needed for a
complete understanding of relationship between this genetic locus
and schizophrenia. Third, even though the Japanese population is
relatively homogeneous [Haga et al, 2002], small population
stratifications may have affected our findings. A recent analysis

with the use of approximately 140,000 SNPs in 7003 Japanese
individuals has shown that local regions within the main island of
Japan are genetically differentiated in spite of frequent human
migration within Japan in modern times [Yamaguchi-Kabata
et al., 2008]. However, we believe that the impact of population
stratification on our study is negligible, as our samples were
collected in a relatively narrow region in the middle of the main
island of Japan. Fourth, regarding the Japanese and the Caucasian
populations, comparative linkage disequilibrium analysis of the
HapMap data showed a different block structure around the BRDI
locus [Gabriel et al., 2002]. Compared with the Caucasian popula-
tion, linkage disequilibrium (LD) blocks in the Japanese population
are shorter, and the block structure is coarser, having lower r?
values. This might influence interpopulation transferability of
tagging SNPs in the BRDI locus and result in a failure to detect
an association with schizophrenia in the Japanese population.
Interestingly, selective sweep analysis has provided evidence of
recent positive selection on genes associated with schizophrenia,
and BRDI gene was reported to have been affected by positive
selection in Caucasian but not in Asian population [Crespi et al.,
2007]. This indicates that the positive selection specific to the
Caucasian population might produce the difference in LD structure
in BRDI locus.

We could not detect significant differencesin BRDI mRNA levels
between cases and controls in the expression analysis. These results
are consistent with the findings in the association study. However,
there were several limitations in the expression assays. Using non-
neuronal samples such as LCLs is based on the assumption that
heritable mechanisms associated with the risk of schizophrenia
have systemic effects and result in changes to gene expression in
various tissues. To validate the use of gene expression data ina more
accessible tissue as a surrogate for gene expression in the central
nervous system, Sullivan etal. {2006] evaluated the comparability of
transcriptional profiling of a variety of human tissues with Affy-
metrix UI33A microarray augmented with a custom microarray.
Their analyses suggested that careful use of peripheral gene expres-
sion may be a useful surrogate for gene expression in the central
nervous system.

In conclusion, we could not strongly show that common SNPs
in the BRDI gene account for a substantial proportion of the
genetic risk for schizophrenia in the Japanese population, although
small effects of population stratification or differences in LD
structure could not be ruled out. Considering the significance in
the meta-analysis for the only previously associated SNP included
in our study, further investigations are needed for conclusive
results,
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