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Fig. 5. (Continued).

al. (2002) showed the downregulation of MT-3 mRNA in
the SALS spinal cord but did not recognize the change only
in motor neurons (Jiang et al., 2005), which suggests the
localization and importance of MT-3 in astrocytes. The
mechanisms of induction of MTs in astrocytes remain to be
elucidated.

MTs are considered to prevent neuronal death in some
neurodegenerative diseases such as Alzheimer’s disease
(AD) and Parkinson’s disease in addition to ALS (Hand-
schin and Spiegelman, 2008). MT-3 was found to be a
protein that was dramatically diminished in the AD brain
(Uchida et al., 1991). The adenovirus encoding MT-3
cDNA was found to prevent the degeneration of motor
neurons following avulsion of a facial nerve (Sakamoto et
al., 2003) and brain damage following a stab wound (Ho-
zumi et al., 20086).

MT-3 is found to be induced by brain injury (Hozumi
et al., 1995), sleep deprivation (Cirelli and Tononi, 2000)
and eugenol (Irie et al., 2004), whereas MT-1/2 are
induced by various stimuli such as heavy metals, cyto-
kines and toxic agents (West et al., 2008). In this study,
we demonstrated that exercise is one physiological
method to induce MTs.

Exercise is reported to improve mental function in
adults at risk of dementia, which might affect cognitive
function (Burns et al., 2008). The study leads us to con-
sider that exercise may also have beneficial effects on
mental function via induction of MTs. The demonstration
that MTs are induced by exercise provides a new clue to
the development of treatments of neurodegenerative dis-
eases such as ALS, AD and Parkinson’s disease.
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ABSTRACT — We present herein transcriptional changes in mouse spinal cords in response to physi-
cal exercise on a treadmill using a DNA microarray. By 30-min exercise, the expression of 3 genes was
enhanced and expression of 29 genes reduced. By continuous 2-week exercise (30-min exercise per day),

the expression of 1 gene was enhanced and expression of 13 genes reduced.

Key words: Exercise, Treadmill, Spinal cord, DNA microarray, Amyotrophic lateral sclerosis

INTRODUCTION

Recent studies suggest that physical exercise has a
beneficial effect on the progression of amyotrophic lateral
sclerosis (ALS) (McCrate and Kaspar, 2008). In addition,
regular exercise can increase the lifespan of a transgen-
ic mouse model of familial ALS (FALS) (G93A SOD1)
and delay the onset (Kirkinezos ef al., 2003). ALS is a
progressive and fatal neurodegenerative disease, char-
acterized by selective motor neuron degeneration. The
majority of ALS cases are sporadic ALS (SALS), and
approximately 10% of ALS cases are FALS, 10-20% of
which are the result of mutations in the Cu/Zn superoxide
dismutase (SOD1) gene. Although the etiology of SALS
remains unclarified, several possible mechanisms of
motor neuron degeneration in SALS have been proposed,
including oxidative stress, heavy metal toxicity, the con-
formational disorder of proteins and dysfunction of neu-
rotrophic factors.

However, the mechanism by which exercise affects
motor neurons is poorly understood. Herein, we exam-
ined how acute or continuous physical exercise affects
gene expression in the spinal cords of normal mice on the
1st day and the 14th day.

MATERIALS AND METHODS

Animals and exercise

C57BL/6J male mice were purchased from Japan SLC,
Inc. (Shizuoka, Japan). Mice were housed in a temper-
ature-controlled (23 + 3°C) room with a 12-hr light/12-
hr dark cycle. Food and water were provided ad libitum
throughout this study. The treadmill running exercise
program was administered as described previously
(Kirkinezos et al., 2003). Briefly, the male mice in the
exercise groups ran on a treadmill machine (MK-680S,
Muromachi, Tokyo, Japan) at 13 m/min and 30 min/
day. The exercise program was carried out from 9 to 10
o’clock. A control group remained sedentary. The exer-
cise was started at 7 weeks of age. For transcriptional
change analysis following 30 min of exercise stimulation,
mice were anesthetized and sacrificed, and their spinal
cords removed 12 hr after exercise. On the other hand,
for transcriptional change analysis following 2 weeks of
30-min daily exercise, mice were prepared 24 hr after the
last exercise. The experimental designs and all procedures
were in accordance with the National Institute of Health
Guide for the Care and Use of Laboratory Animals and
the guidelines on the handling of experimental animals
issued by the Japanese Association for Laboratory Ani-
mal Science and the Animal Experimental Committee of
Gifu University. This study was approved by the Animal
Experimental Committee of Gifu University.
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Preparation of RNAs for DNA microarray
analysis

Total RNAs were isolated from each of 4 or 5 mice
spinal cords per exercised or sedentary group using the
RNeasy Lipid Tissue Mini Kit (Qiagen GmbH, Hilden,
Germany). Pooled total RNA (5 ug each, 4 or 5 mice per
group) was applied to OpArray™ Mouse V4.0 (Operon
Technologies, Alameda, CA, USA), in which 35,852
genes are registered. We used Low RNA Fluorescent
Linear Amp Kit PLUS (Agilent Technologies Inc., Santa
Clara, CA, USA) to synthesize double-stranded (ds)
c¢DNA from the total RNA and then synthesize cRNA
from the ds cDNA as a template. Total RNA was reverse-
transcribed with a T7 Promoter primer. After second-
strand synthesis, we used the ds cDNA as a template for
Cyanine (Cy) 3/Cy5-labeled cRNA synthesis. The OpAr-
ray slide was hybridized with 20-25 pg of each labeled
c¢RNA and washed with the OpArray Hybridization Buff-
er Kit (Operon). A fluorescent image of the OpArray
slide was then recorded with CRBIO (Hitachi Software
Engineering, Tokyo, Japan). The digitized image data
were processed with DNASIS Array software (Hitachi
Software Engineering). The ratios of intensity of Cy5 to
that of Cy3 were calculated. Information on each gene on
the slide was obtained from the National Center for Bio-
technology Information (NCBI) database.

RESULTS AND DISCUSSION

This study demonstrated that single 30-min or 2-week
exercise resulted in specific gene expression changes in
mouse spinal cords using microarrays. By 30-min exer-
cise, the expression of 3 genes was enhanced, and the
expression of 29 genes reduced (Table. 1). By continuous
2-week exercise, the expression of 1 gene was enhanced,
and the expression of 13 genes was reduced (Table. 2).
Gria3 is glutamate receptor called GluR3, whose anti-
sense peptide nucleic acid targeting GluR3 delayed dis-
ease onset and progression in the SOD1 G93A mouse
model of familial ALS (Rembach et al., 2004). The elim-
ination of St8sial coding GD3 synthase improved mem-
ory and reduced amyloid-beta plaque load in Alzheim-
er disease model mice (Bernardo ef al., 2008). Reticulon
family members including Rtnl coding reticulon]l modu-
lated BACE]1 activity and amyloid-beta peptide genera-
tion (He et al., 2004). This study will provide a valuable
clue on the molecular basis of exercise-induced neuropro-
tective effects in spinal cords.
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Abstract The mechanism underlying the motor fluctua-
tions that develop after long-term L-dopa therapy is not
fully known. It has been speculated that malabsorption of
L-dopa from the small intestine occurs. It was reported that
gastric retention in Parkinson’s disease (PD) patients with
motor fluctuations is increased as compared with that in PD
without fluctuations. Because L-dopa therapy may worsen
the symptoms of delayed gastric emptying (GE), it was not
clear whether the delayed GE of PD patients with motor
fluctuation was affected by r-dopa therapy. We assessed
GE in PD patients with and without motor fluctuations. We
investigated GE in 40 patients with PD under long-term
L-dopa therapy, 20 fluctuators with “delayed-on” and “no-
on” phenomena, 20 nonfluctuators, and 20 healthy volun-
teers. GE was examined by the '>C-acetate breath test ('*C-
ABT) [the half emptying time (HET), the peak time of the
B3e.g-dose-excess curve (Tmax)], With expirations col-
lected for 4 h after a test meal and analyzed for *CO,
using an infrared (IR) spectrophotometer. The Ty of GE
as assessed using the '*C-ABT was significantly delayed in
all PD patients as compared with controls (P = 0.002).
The HET was significantly delayed in all PD patients as
compared with controls (P < 0.001). The Ty, and HET
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were not significantly delayed in PD patients with motor
fluctuations as compared with PD patients without motor
fluctuations. These results demonstrated that GE is com-
monly delayed in PD patients with long-term vL-dopa
therapy. Delayed GE does not differ between PD patients
with and without motor fluctuations. This finding demon-
strated that the motor fluctuation in PD may not be

" influenced by GE.

Keywords Parkinson’s disease - Gastric emptying -
Motor fluctuations - L-Dopa therapy -
13C-acetate breath test

Introduction

Patients with Parkinson’s disease (PD) often complain of
gastrointestinal (GI) tract symptoms such as heartburn,
nausea, vomiting, and abdominal full sensation. Some
studies have reported on the dysfunction of the GI tract in
PD patients [3, 4, 17, 19, 21].

Approximately 50% of PD patients, when treated with
t-dopa for more than 5 years, experience motor fluctua-
tions such as the “wearing-off” phenomenon or the
“no-on” phenomenon [23]. The mechanism of these motor
fluctuations has not been fully elucidated, but the blood
concentration of r-dopa is decreased during off-periods
despite sustained drug administration [16]. It has recently
been reported that delayed gastric emptying (GE) may
influence the absorption of L-dopa [18]. Djaldetti reported
that delayed GE is common in PD patients and is more
marked in those with response fluctuations [3]. Because
L-dopa therapy itself may worsen the symptoms of delayed
GE [2, 16], their interpretation of the results of their study
is limited. It was not clear whether the delayed GE of PD
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patients with response fluctuation was affected by L-dopa
therapy.

Recently, the '>C-acetate breath test ('’C-ABT) has
been widely recognized as useful for evaluating GE
because it is less invasive than isotope or acetaminophen
methods [8]. Braden reported that the '*C-ABT was a
reliable and noninvasive tool for the analysis of GE rates of
liquid phases without radiation exposure [1]. In the present
study, we investigated GE in PD patients with and without
motor fluctuations using the '*C-ABT.

Methods
Patients

Our study population consisted of 40 patients [14 men
and 26 women; median age 67.0 years (range
42-86 years); disease  duration 6.0 years  (range
3.0-31.0 years)] with an initial diagnosis of PD on the
basis of the UK Parkinson’s Disease Society Brain Bank
Clinical diagnostic criteria {9, 13] and 20 healthy volun-
teers (control group) [10 men and 10 women; median age
69.0 years (range 63-73 years)]. The PD patients were
consecutively consulted at our hospital. Modified Hoehn
and Yahr stages 3-4 were seen, according to the Unified
Parkinson’s Disease Rating Scale [6, 12]. All PD patients

were being treated with antiparkinsonian medications

(long-term L-dopa therapy). No patient was treated with
drugs that might alter GE. None of the PD patients had
basic diseases such as liver dysfunction, renal failure,
cardiopulmonary disease, diabetes mellitus, GI disease or
history of gastric surgery.

The patients were divided into two groups: 20 patients
with motor fluctuations and 20 patients without motor
fluctuations. All PD patients with motor fluctuations
exhibited “delayed-on” and “no-on” phenomena.
“Delayed on” was manifested by latencies longer than
30 min from ingestion of L-dopa to turning “on” for almost
all daily doses. “No-on” phenomenon was manifested by
episodic total unresponsiveness to single dose of L-dopa.
Clinical characteristics (including age, gender, height,
weight, body mass index, duration of disease, duration of
therapy with L-dopa, daily dose of L-dopa, other drugs, and
GI symptoms) were not significantly different between the
PD groups with and without motor fluctuations.

The results of blood examinations were within normal
range. There were no differences between the PD groups
with and without motor fluctuations. In addition, there were
no differences between the PD groups in terms of pepsin-
ogen I, II, and serum gastrin levels, which might affect
gastric motility [25]. The positive ratio of anti-HP antibody
did not differ significantly between the PD groups.

Informed consent was obtained from each subject prior
to participation in this study. The study protocol was
approved by the Ethical Committee of Gifu University, and
was carried out in accordance with the 1975 Declaration of
Helsinki.

Gastric emptying examination

The GE examination was carried out using the *C-breath
test according to Ghoos [8] with slight modifications. PD
patients and healthy volunteers were tested after an over-
night fast of 12 h. All PD patients did not take the anti-
parkinsonism drug over 24 h. Early in the morning, PD
patients and healthy volunteers took the liquid test meal
(Racol: TM, 200 kcal/200 ml; Otsuka Pharmaceuticals
Co., Ltd., Tokyo, Japan) containing 100 mg B3C-sodium
acetate. Thereafter, an expiration breath sample was col-
lected every 10 min for 4 h and analyzed for 13C0, using
an IR spectrophotometer (UBiT-IR300; Otsuka Electronics
Co., Ltd., Tokyo, Japan). During the examination, all
subjects were in a sitting position.

The principle of *C-ABT is ingestion of a liquid test
meal containing '*C-acetate, gastric emptying, absorption
from the digestive tract, metabolism in the liver (produc-
tion of *CO;,), expiration from the lung, and increase of
'3CO, in expired breath.

Mathematical analysis

The data were used for mathematical curve fitting. A best-
fit curve of expired '*CO, was constructed for each subject.
The %-'*CO, cumulative excretion in the breath was
assessed using a nonlinear regression formula: y = m(1 —
e to fit the curve of the cumulative '*C recovery
[7, 10]. The %-'3C0O, excretion per hour was fitted to the
formula mkfe (1 — e~ = 1 [7, 10]. T is time and m, k,
and f are constants. The value of m represents the total
cumulative '3CO, recovery when the time is infinite. The
half emptying time (HET) was calculated using the for-
mula; HET = —1/k In(1 — e="#) [7, 10]. Tnax is the peak
time of the '*C-%-dose-excess curve (%-dose/h) based on a
time profile of the 3CO, excretion rate. The parameters
were estimated with Excel software (Microsoft Co., Ltd.,
Redmond, WA).

Statistical analysis

Categorical variables were compared using Fisher’s exact
probability test. Other variables were expressed as median
(range). Medians were compared using Mann-Whitney’s U
test, All analyses were carried out on StatView statistical
software, version 5.0 {Abacus Concepts, Inc., Berkeley,
CA). A P value less than 0.05 was considered significant.
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Results
Controls and PD patients (Figs. la, 2a, 3a)

The examinations were safely carried out in all PD patients
and controls. In all PD patients, the blood concentration of
L-dopa was below 25 ng/m! (below the detection level) at
start of examination. The Ty of GE using the *C-ABT
was significantly delayed in all PD patients (median 1.17 h,
range 0.50-2.17 h) as compared with the controls (median
0.83 h, range 0.67-1.00 h) (P = 0.002). The HET was
significantly delayed in all PD patients (median 2.09 h,
range 1.60-3.30 h) as compared with the controls (median
1.44 h, range 1.30-1.64 h) (P < 0.001).

PD patients with and without motor fluctuations
(Figs. 1b, 2a, 3a; Table 1)

Tmax Was not significantly delayed in PD patients with
motor fluctuations (median 1.17 h, range 0.50-2.17 h) as
compared with those without motor fluctuations (median
1.17 h, range 0.67-2.17 h). HET was not significantly

a
A%dose/h
40

——— Control (n=20)
(n=40)

— PD

0 60 ., 120 180 240 min,
b

A%dose/h —— PD with motor fluctuation  (n=20)
40 - - - PD without motor fluctuation (n=20)

30

20

10

0

0 60 120 180 240 min.

Fig. 1 Mean percentage 3C expired per hour obtained by '‘C-

acetate breath test in a control and PD patients, and b PD patients
with and without motor fluctuation
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Fig. 2 T, in a controls and PD patients, and b PD patients with and
without motor fluctuation

delayed in PD patients with motor fluctuations (median
2.09 h, range 1.73-3.30 h) as compared with those without
motor fluctuations (median 2.14 h, range 1.60-3.07 h).

Discussion

In the present study we have shown two important points.
First, GE was significantly delayed in PD patients as
compared with controls. Secondly, GE was not signifi-
cantly delayed in PD patients with motor fluctuations as
compared with those without motor fluctuations.

About one-halif of PD patients, when treated with L-dopa
for a relatively long period, experience motor fluctuations
such as “delayed-on” phenomenon or “no-on” phenome-
non [24]. The mechanisms of these motor fluctuations are
not fully known, but it has been speculated that
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Fig. 3 HET in a controls and PD patients, and b PD patients with and
without motor fluctuation

malabsorption of L-dopa from the small intestine occurs
[23]. In addition, PD patients sometimes complain of upper
GI symptoms such as heartburn, nausea, vomiting, and
abdominal full sensation [22]. It has been speculated that
the delayed GE of PD patients with motor fluctuations was
responsible for the low blood concentration of r-dopa.
Djaldetti reported that GE in PD patients with motor
fluctuations is increased as compared with those without
fluctuations [3]. However, their interpretation of the results
of their study is limited. Djaldetti divided the PD patients
into two groups: patients with and without fluctuating
symptoms [3]. However, these two groups differed in the
percentage of patients receiving L-dopa and disease dura-
tion. Because L-dopa therapy itself may worsen the
symptoms of delayed GE [2, 16], it was not clear whether
the delayed GE of PD patients with motor fluctuation was
affected by L-dopa therapy. There is evidence to suggest
that these complications in PD patients may be attributed to
peripheral, pharmacokinetic mechanisms, mainly delayed

Table 1 Clinical characteristics of PD patients with and without
motor fluctuation

PD without motor PD with motor P value
fluctuation fluctuation
(n = 20) (n = 20)
Age (years) 68.0 (55-80) 66.5 (42-86) 0.66
Gender 9/11 5/15 0.32*
(male/female)
BMI (kg m™%) 20.0 (16.8-26.7)  20.7 (17.7-27.1) 0.34
Duration (years) 5.4 (3-31) 6.0 (3-12) 0.78
Duration with 5.0 (3-30) 5.7 3-1D) 0.69

L-dopa (years)

L-dopa (mg) 400 (100-600) 425 (200-750)  0.55
GI symptoms 6 5 0.99*
CVrr 1.46 (0.83-4.01) 1.94 (0.67-5.14) 0.24
OH 11 10 0.99*

MIBG (H/M ratio) 1.50 (1.29-1.93)  1.44 (1.27-1.95) 0.87

Variables expressed as median (range). Medians were compared
using Mann-Whitney's U test. Categorical variables were compared
using Fisher’s exact probability test

PD Parkinson's disease, BMI body mass index, GI gastrointestinal
tract, CV coefficient of variation, OH orthostatic hypotension, MIBG
1-[123}-metaiodobenzylguanidine scintigraphy, H/M ratio heart/
mediastinum ratio

GE as a side-effect of L-dopa [5, 11, 14]. L-dopa itself or
after decarboxylation to dopamine may have an effect on
dopaminergic receptors present in the GI tract and partic-
ularly in the stomach {[20]. Dopaminergic agents also
activate the vomiting center in the medulla via the che-
moreceptor trigger zone, resulting in nausea, abdominal
bloating, and vomiting [5].

In this study, the PD patients were off drugs, including
L-dopa, and the blood concentration of L-dopa was below
the detection level at start of examination. PD patients were
divided into two groups: those with and those without
motor fluctuations. The two groups did not have signifi-
cantly different backgrounds, including with respect to the
daily dose of r-dopa and blood parameters of gastric
function such as pepsinogen I/II, serum gastrin, immuno-
globulin G (IgG) anti-Helicobacter pylori antibody, and
hemoglobin Alc (HbAlIc) [6]. Under these conditions,
there was not a difference in GE of PD patients with and
without motor fluctuations. Therefore, we speculate that
the cause of motor fluctuation is not delayed GE.

With respect to the pathological background of PD,
neuronal degeneration occurring in the dorsal nuclens of
the vagus, in addition to the nigrostriatal tract, may be
responsible for the degeneration of the gastrointestinal
myenteric plexuses. In study of the enteric nervous system
of PD, Wakabayashi reported Lewy bodies in the
Auerbach’s and Meissner’s plexuses of the lower esopha-
gus and stomach [26]. Cytoplasmic inclusions similar to
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Lewy bodies were present in the ganglion cells of the
colonic myenteric plexuses in PD patients [15]. These
observations might indicate that the primary disease pro-
cess itself plays a role in gastric movement disorder.

In conclusion, our study demonstrated that GE was
commonly delayed in PD patients and that delayed GE did
not differ between PD patients with and without motor
fluctuations. From a pharmacokinetic viewpoint, it will be
important to actually measure GE in PD patients in clinical
settings. Our results demonstrated that the motor fluctua-
tion of PD may not be caused by GE, but probably by
absorption of L-dopa or a dosage form of L-dopa.
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ARTICLEINFO ABSTRACT
Article history: Metallothioneins (MTs) are metal-binding proteins and have four isoforms. MT-Iil was, at
Accepted 16 July 2009 first, found in the brains of patients with Alzheimer’s disease. MT-III exists mainly in the
Available online 25 July 2009 central nervous system, and the main effects are thought to be anti-oxidative and regulate
zinc levels. In some previous reports, MT-III exhibited neuroprotective effects in various
Keywords: pathological situations, but its detailed effects are still unclear. In the present study, we
Metallothionein-II examined neuronal damage after a middle cerebral artery occlusion (MCAO) in MT-II
Middle cerebral artery occlusion knockout (KO) mice to elucidate the relationship between MT-III and cerebral infarction.
Oxidative stress There was no significant difference in cerebral infarction after 24-h permanent MCAO
Reperfusion between the wild-type and MT-IIl KO mice. On the other hand, after 2-h MCAO and 22-

h reperfusion, cerebral infarction in the MT-1Il KO mice was aggravated compared with the
wild-type mice. Furthermore, fatal rate of MT-1{l KO mice increased from 3 days after MCAO,
and neurological deficits at 5 and 7 days after MCAO of MT-Iil KO mice were worse than
those of wild-type. We examined terminal deoxynucleotidy! transferase-mediated duTP
nick-end labeling (TUNEL) staining and the immunostaining of an oxidative stress marker,
8-hydroxy-2'-deoxyguanosine (8-OHAG), at 24 h after transient MCAO. In the penumbra
lesion, the positive cell numbers in both staining assays were higher in the MT-Ill KO mice
than those of the wild-type mice. These findings indicate that neuronal damage was
aggravated by reperfusion injury in the MT-IIl KO mice compared with the wild-type mice,
suggesting that MT-1II plays anti-oxidative and neuroprotective roles in transient cerebral
ischemia.

© 2009 Elsevier B.V. All rights reserved.

* Corresponding author. Fax: +81 58 237 8596.
E-mail address: hidehara@gifu-pu.acjp (H. Hara).
Abbreviations: MT, metallothionein; GIF, growth inhibitory factor; CBF, cerebral blood flow; CNS, central nervous system; MCAO, middle
cerebral artery occlusion; TTC, 2,3,5-triphenyltetrazolium chloride; TUNEL, terminal deoxynucleotidy! transferase-mediated dUTP nick-
end labeling; 8-OHdG, 8-hydroxy-2'-deoxyguanosine

0006-8993/$ — see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.brainres.2009.07.050

- 383 -



BRAIN RCSCARCH 1292 (2009) 148-154 - 149

1. Introduction

Metallothioneins (MTs) are cysteine-rich and metal-binding
proteins. They have multiple functions such as regulation of
metal concentration, detoxification of heavy metal, and anti-
oxidation (West et al., 2008). It has been reported that MTs
have four isoforms known as MT-1, MT-II, MT-III, and MT-IV.
MT-III, one of the family, is especially expressed in the central
nervous system (CNS) (Hidalgo et al., 2001). MT-III expression
decreases in the brains of patients with Alzheimer's disease
and is known to be a growth inhibitory factor (GIF) (Erickson et
al.,, 1994). MT-III increases in a variety of CNS abnormalities
such as brain injuries due to stab wounds (Hozumi et al., 1995).
MT-IIl overexpression and KO mice are very resistant and
susceptible to the toxicity of kainic acid, respectively (Erickson
et al,, 1997). Furthermore, an adenoviral vector encoding MT-
Il cDNA prevents neuronal cell death after a brain injury
(Hozumi et al, 2006). These data indicate that MT-III may
exhibit neuroprotective effects in vivo. However, to our
knowledge, there are no reports regarding the effects on MT-
111 KO mice after cerebral ischemia.

Yanagitani et al. (1999) have reported that MT-IIl was
expressed in neuronal cell bodies in the rat CA1 to CA3 regions
of the hippocampus, dentate gyrus, cerebral cortex, olfactory
bulb, and Purkinje cells in the cerebellum. The authors also
reported that MT-III increased in the cerebrum after transient
global ischemia in the rat. Hence, MT-III may play a
neuroprotective role in transient cerebral ischemia.

In the present study, to examine the roles of MT-III against
cerebral ischemia in a murine MCAO model, we evaluated the
effects of MT-IIl on permanent and transient focal cerebral
ischemia using MT-III KO mice. Furthermore, we examined
terminal deoxynucleotidyl transferase-mediated dUTP nick-end
labeling (TUNEL) staining and the immunostaining of an
oxidative stress marker, 8-hydroxy-2'-deoxyguanosine (8-OHdG).

2. Result
2.1.  Physiological parameter

There were no significant differences in cerebral blood flow
(CBF), mean arterial blood pressure, heart rate, PaCO,, or Pa0,
between the wild-type and MT-IIl KO mice groups (Table 1).
Surface CBF was reduced to approximately 30% of the baseline
value immediately after MCAO in both groups (Table 1), and
increased to approximately 80% of the baseline value after
reperfusion in the transient ischemia model (data not shown).

2.2, Cerebral infarction in permanent ischemia model

In the permanent ischemic mice, an ischemic zone was
consistently identified in the cortex and subcortex of the left
cerebral hemisphere at 24 h after MCAO. According to the 2, 3,
5-triphenyltetrazolium chloride (TTC) staining results, there
was no clear difference between the wild-type and MT-1Il KO
mice (Fig. 1A). Measuring the infarction showed no significant
differences in both the infarct area and volume (Figs. 1B and
C). Moreover, there was no difference in neurological deficits

~Tablel - Physmloglcal parameters before and after MCAO

- in wild-type and MT-III KO mice."

MT-1II KO

Parameters Wwild-type
Mean blood pressure {mm Hg)
Before ischemia 69.32£4.8 71934
After ischemia 77326 78.0x3.7
pH
Before ischemia 7.35:0.04 7.29:0.09
After ischemia 7.22:0.06 7.20£0.10
PaCO,
Before ischemia 37.123.1 31.3z25
After ischemia 40.6x3.1 322zx26
Pa0,
Before ischemia 147.4£12.2 151.0210.6
After ischemia 169.4+9.5 174.5£15.1
Regional CBF {%) 31.7£3.2 311234

Blood pressure was monitored via the femoral artery. Arterial blood
samples were taken at 30 min before and 30 min after MCAO, and
pH, PCO; and PO, were measured. Regional CBF values were
measured by laser-Doppler flowmetry. There were no significant
differences between the wild-type and MT-HI KO mice groups. Data
are shown as mean+S.EM. (n=3).

(Fig. 1D). No wild-type mice had died at 24 h after MCAO, but
one MT-III KO mouse died {Fig. 1D).

2.3, Cerebral infarction in transient ischemia model

Contrary to the results of the MT-1II KO mice in the permanent
model, there was a significant difference between the wild-type
and MT-IIl KO mice in terms of neuronal damage after transient
MCAO, according to the TTC staining results {Fig. 2A). According
to the measurements of the infarction, the area and volume
were significantly aggravated in MT-III KO mice compared to
the wild-type mice (Figs. 2B and C). Neurological deficits tended
to be worse in the MT-III KO mice than in the wild-type mice,
but not significant (Fig. 2E).

In addition, we evaluated survival rate and neurological
score during 7 days after MCAO. Survival rate was significantly
less in MT-III KO mice than in wild-type mice (Fig. 2D). Fifty
percent of MT-HII KO mice could not survive for 3 days, and
only 30% mice survived at 7 days after MCAQ, On the other
hand, 80% wild-type mice survived at 7 days. Neurological
score was greater in MT-III KO mice than that in wild-type
mice (Fig. 2E). Especially at day 5 and day 7, MT-II KO mice
showed worse neurological score significantly.

2.4.  TUNEL staining in transient ischemia model

The morphological features of TUNEL stained cells (indicative
of the ischemic damage and apoptotic cell death induced by
2-h MCAO and 22-h reperfusion) are shown in Fig, 3B. In the
penumbra lesion, TUNEL-positive cells were fewer in number in
the wild-type mice group than those in the MT-III KO mice group
in both sections at 4 and 6 mm from olfactory bulb (Fig. 3C).

2.5. Immunostaining of an oxidative stress marker,
8-OHdG

The guanine base in DNA is oxidized by reactive oxygen
species (ROS) and changes to 8-OHdG. Thus, “8-OHdG-
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red areas represent infarction and no infarction (normal),
respectively. There was no difference in infarction after
MCAO between the wild-type and MT-III KO mice. (B) Infarct
area and (C) volume at 24 h after the permanent MCAO, There
were no significant differences between wild-type and MT-IIl
KO mice in both the infarct area and volume. n=8. (D)
Neurological scores at 24 h after the permanent MCAO. There
was no significant difference between the wild-type and
MT-III KO mice. n=8,

positive” means that neuronal cells are damaged by ROS. We
performed 8-OHAG immunostaining in the brains of reperfu-
sion mice {at 22 h after 2-h MCAO). The number of 8-OHdG-
positive cells in the penumbra lesion in the MT-III KO mice
was higher than the number in the wild-type mice at 4 mm
from olfactory bulb (Figs. 4B and C).

3. Discussion

In the present study, we investigated neuronal damage after
focal cerebral ischemia using MT-1II KO mice. In the perma-
nent model, the cerebral infarction in the MT-II1 KO mice was
the same as in the wild-type mice, but in the transient
ischemia model, that of MT-1II KO mice was more aggravated
than in the wild-type mice. Furthermore, the number of both
TUNEL and 8-OHdG-positive cells was higher in the MT-1Il KO
mice than in the wild-type mice.

Neuronal damage after ischemia was aggravated by
transient, but not permanent, MCAO. Although the underlying
mechanism is still unclear, the aggravation of the infarction
after transient, but not permanent, ischemia in the MT-IIl KO
mice may be due to deficient scavenging effects of radicals
increased by reperfusion. This is the first report about the
relationship between a deficiency of MT-III and cerebral
infarction. Uchida et al. (2002) have reported that MT-III
scavenges hydroxyl radicals in cultured neurons under
hydrogen peroxide-induced oxidative stress. Furthermore,
we have reported that MT-HI exhibited a neuroprotective
effect in brain stab wounds in vivo (Hozumi et al., 2006).

in the present study, survival rate of MT-IIl KO mice at
7 days was significantly less than that of wild-type. Yanagitani
et al.{1999) reported that the protein level of MT-III increased
at 3 days after cerebral ischemia, and peaked at 4 days. MT-1III
may protect neuronal cell damage not only in early phase of
ischemic insult, but in late phase. ’

One of the remarkable results of the present study is the
difference between permanent and transient ischemia. The
major difference between permanent and transient ischemia
is ischemia/reperfusion (I/R) injury. I/R injury is mainly
caused by ROS. Oxygen transported by reperfused cerebral
blood flow is changed to ROS by mitochondrial permeability
transition and xanthine oxidase (Warner et al., 2004). Excess
of ROS after transient ischemia causes lipid peroxidation,
protein oxidation, DNA damage, and neuronal cell death. On
the other hand, You et al. (2002) have reported that MT-III
was able to remove the superoxide anion, which was
generated from the xanthine/xanthine oxidase system in
vitro. In the present study, the number of 8-OHdG-positive
cells in the MT-1II KO mice was higher than that in the wild-
type mice. Taken together, MT-1Il may play a protective role
partly via anti-oxidation of DNA on the increased ROS after
transient MCAO.

In the present study, we performed TUNEL staining to
evaluate apoptotic cell death. Lei et al. (2004) have reported
that the number of TUNEL-positive cells at 24 h after the
transient MCAO in rats increased in the penumbra rather
than in the ischemic core. Moreover, Linnik et al. (1995) have
reported that apoptotic cell death occurs mainly in the
penumbra area rather than the core. Thus, we counted the
TUNEL-positive cells in the penumbra to evaluate the effect
of MT-1II on apoptosis induced by transient MCAO. In the
result, the number of TUNEL-positive cells in the MT-1II KO
mice was higher than that in the wild-type mice (Fig. 3).
Fragmentation of DNA is caused by various reasons such as
influx of calcium (Bano and Nicotera, 2007), toxic metals
(Linder, 2001}, or oxidative stress. MT-1II has a metal-binding
effect {(Palumaa et al., 2002). Therefore, the neuroprotective
effect of MT-1II may come from not only the anti-oxidative
effect but also the metal-binding effect. However, further
studies will be needed to clarify the neuroprotective mech-
anism of MT-IIL

In conclusion, MT-III KO mice demonstrated aggravated
neuronal damage after transient, but not permanent, focal
ischemia, suggesting that MT-HI may play a pivotal role in the
neuroprotection mechanism after reperfusion injury. The
effects of MT-III exerted not only in early phase of ischemia,
but in late phase.
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sections at 22-h after reperfusion (4 mm from the olfactory bulb) |(a) Wild-type mouse, (b) MT-III KO mouse]. The infarction area
was greater in the MT-III KO mice than in the wild-type mice. (B) At 22-h after reperfusion, the infarct area and (C) volume were
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mice after MCAO. From day 3, the MT-IIl KO mice died more than the wild-type mice. Logrank p<0.05, n=10. (E) Neurological
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{(Mann-Whitney U-test), n=10.

4, Experimental procedures

4.1.  Animals
The experimental designs and all procedures were in accor-
dance both with the U.S. National Institutes of Health Guide
for the Care and Use of Laboratory Animals and with the
Animal Care Guidelines issued by the Animal Experimental
Committee of Gifu Pharmaceutical University. Every effort was
made to minimize the number of animals used and their
suffering.

MT-III KO mice and 129/Sv mice were purchased from
Jackson Laboratory (Bar Harbor, ME, USA) and routinely bred in

the laboratory animal facility of Gifu Pharmaceutical Univer-
sity. MT-III KO mice were developed by Erickson et al. (1997)
and were of the 129/Sv strain genetic background. Age- and
sex-matched 129/Sv mice were used as wild-type controls. All
mice (10-15 weeks old) were housed in a room with a 12-
h light/dark cycle (light on at 8:00 a.m.) and had ad libitum
access to food and water.

4.2.  Focal cerebral ischemia model

Mice were anesthetized with isoflurane 2% to 3% (for induction)
and maintained with 1.0% to 1.5% isoflurane in 70% N,O and 30%
0, via a face mask (Soft Lander; Sin-ei Industry, Saitama, Japan).
Focal cerebral ischemia was induced [using an 8-0 nylon
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monofilament (Ethicon, Somerville, NJ, USA) coated with silicone
hardener mixture (Xantpren; Bayer Dental, Osaka, Japan)] via the
internal carotid artery, as described previously (Hara et al., 1996).
Briefly, the coated filament was introduced into the left internal
carotid artery through the common carotid artery, and then
advanced up to the origin of the anterior cerebral artery via the
internal carotid artery, so as to occlude the middle cerebral artery
and posterior communicating artery. At the same time, the left
common carotid artery was occluded. Anesthesia did not exceed
10 min. To examine the reperfusion injury, some mice were
reanesthetized with isoflurane, and the monofilament was
removed at 2 h after MCAO.

4.3,  Measurement of regional cerebral blood flow and
physiological parameters

In all animals during surgery and ischemia, the body
temperature was maintained between 37.0 and 37.5 °C with

the aid of a heating lamp and heating pad. In randomly
selected animals, the left femoral artery was cannulated, and
blood pressure was measured during the preparation, with
mean systemic arterial blood pressure (Power Laboratory; AD
Instrument, Nagoya, Japan) measured for 3-min periods
starting 10 min before and ending 30 min after MCAO. Arterial
blood samples taken 30 min before and 30 min after the
induction of ischemia were analyzed for pH and the partial
pressures of oxygen (Pa0,) and carbon dioxide (PaCO,) (i-STAT
3G; Abbott Point-of-Care Inc., East Windsor, NL, USA). Regional
cerebral blood flow (CBF) was determined by laser-Doppler
flowmetry (Omegaflow flo-N1; Omegawave Inc., Tokyo, Japan)
using a flexible 0.5-mm fiber-optic extension to the master
probe. The tip of the probe was fixed to the intact skull over the
ischemic cortex (2 mm posterior and 6 mm lateral to bregma).
Steady-state values obtained after occlusion were expressed
as a percentage of the baseline value (obtained at 30 min
before MCAO).
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4.4.  Evaluation of infarct size.and neurological deficits in
focal cerebral ischemia model

At 24 h after MCAO, the mice were given an overdose of
pentobarbital sodium, and then decapitated. The forebrain
was divided into five coronal 2-mm sections using a mouse
brain matrix (RBM-2000C; Activational Systems, Warren, M,
USA). These slices were immersed for 20 min in a 2% solution
of 2, 3, 5-triphenyltetrazolium chloride (TTC) (Sigma-Aldrich,
MO, USA) in normal saline at 37 °C, and then fixed in 10%
phosphate-buffered formalin at 4 °C. TTC reacts with intact
mitochondrial respiratory enzymes to generate a bright red
color that contrasts with the pale color of the infarction. The
caudal face of each slice was photographed. The area of the
infarction (unstained) in the left cerebral hemisphere was
traced and measured using Image ] (http://rsb.info.nih.gov/ij/
download/), and the infarction volume per brain {mm? was
calculated from the measured infarction area.

Mice were tested for neurological deficits at each 24 h after
MCAO. These were scored as described in our previous study
(Hara et al., 1996): 0, no observable neurological deficits (normal);
1, failure to extend the right forepaw (mild); 2, circling to the
contralateral side (moderate); 3, loss of walking orrighting reflex
(severe); and 4, dead.

4.5.  TUNEL staining and 8-OHdG immunostaining

In preparation for TUNEL staining and 8-OHdG immunostaining,
the mice were deeply anesthetized with pentobarbital sodium at
24 h after MCAO (at 22 h after the reperfusion), and then perfused
with 4% paraformaldehyde. Coronal sections (thickness: 20 pm)
were obtained from the frozen brains by serial sectioning.
Sections at 4 or 6 mm from olfactory bulb were chosen for
staining. The TUNEL assay was performed according to the
manufacturer’s instructions (Roche Molecular Biochemicals Inc,,
Mannheim, Germany). The number of TUNEL-positive cells in
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the ischemic penumbra was counted in randomly chosen
areas within a high-power field (x400). For 8-OHdG immunos-
taining, the sections were rinsed three times in PBS and
blocked with 1% mouse serum for 30 min. A monoclonal
antibody against 8-OHdG (anti-8-hydroxy-deoxyguanosine
monoclonal antibody; JAICA, Shizuoka, Japan) was applied to
sections overnight at 4 °C. Secondary antibody (M.O.M.
biotinylated anti-mouse) was applied for 10 min. The avidin/
biotinylated horseradish peroxidase complex (ABC Elite kit
Vector Laboratories, UK) was applied for 30 min, and the
sections were allowed to develop Chromagen in 3, 3-diamino-
benzidine plus nickel solution (Sigma-Aldrich) for 2 min. The
histologists (A.K. and J.H.) were blind as to the group to which
each mouse belonged.

4.6,  Statistical analysis
Data are presented as the means+ S.E.M. Statistical comparisons
were made using a one-way ANOVA followed by Dunnet test

and Mann-Whitney U-test, with p<0.05 being considered to
indicate statistical significance.
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Metallothioneins (MTs) are metal binding proteins and have four isoforms, MT-3, known as growth
inhibitory factor (GIF), exists mainly in the central nervous system. It regulates zinc levels and exhibits a
neuroprotective effect in the various types of brain diseases. However, the reports demonstrate that the
relation between MT-3 and psychiatric disorder is still unknown, In the present study, the authors carried
out behavioral tests on MT-3 knock-out {KO) mice. The duration of the MT-3 KO mice's social interactions
were significantly shorter than that of the wild-type (WT) mice. The acoustic startle response of the MT-3
KO mice showed diminished prepulse inhibition (PP1) at ali prepulse intensities. However, the locomotor
activity tests of the MT-3 KO mice displayed normal circadian rhythm, activity, and habituation to a
novel environment. In the novel object recognition test, the MT-3 KO mice exhibited normal memory.
These findings indicate that abnormalities of psychological behavior were observed in the MT-3 KO mice.
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Further experiments will be needed to clarify the involvement of MT-3 in higher brain function,

© 2009 Elsevier Ireland Ltd. All rights reserved.

Metallothioneins (MTs) are small and cysteine-rich proteins. They
bind metal ions such as zinc, and have functions in the regulation
of metal concentration and detoxification [21]. It has been reported
that MTs have four isoforms, MT-1 and MT-2 are expressed in all
tissues, and MT-3 and MT-4 are expressed in the central nervous
system (CNS) and keratinizing epithelia, respectively [10]. MT-1
and MT-2 are upregulated by various drugs, metals, or diseases
and show neuroprotective effects {20]. On the other hand, little
is known about MT-3's regulation and effect.

At first, MT-3 was found in the brains of Alzheimer's disease
(AD) patients and characterized as growth inhibitory factor (GIF).
MT-3 can inhibit the outgrowth of embryonic cortical neurons in
vitro [3]. In contrast, MT-3 expression decreases in the brains of
AD patients [5], and increases variety of CNS abnormality such
as cerebral ischemia [22] and brain injuries by stab wound [11].
Furthermore, an adenoviral vector encoding MT-3 cDNA prevents
neuronal cell death from damage caused by brain injury [13]. MT-3
inhibits neuron outgrowth in vitro, but it exhibits neuroprotec-

* Corresponding author. Tel.; +81 58 237 8596; fax: +81 58 237 8596.
E-mail address: hidehara@gifu-pu.ac.jp (H. Hara).
! These authors contributed equally to this work.

0304-3940/3 - see front matter © 2009 Elsevier Ireland Ltd. All rights reserved.
doi:10.1016/j.neulet.2009.09.051

tive effects in vivo. These detailed mechanisms are still not fully
understood. MT-3 may relate not only to acute brain damage, but
to chronic change and congenital abnormality.

In this report, the authors examined various behavioral tests
using MT-3 KO mice. Erickson et al. have reported that they used
the open field locomotor activity test, the Morris water maze, and
the passive avoidance task, revealing that MT-3 deficient mice
exhibited normal learning and memory [4]. In the present study,
the authors examined behavior during locomotor activity, social
interaction, and prepulse inhibition (PPl) tests. Reportedly, abnor-
mal behavior exhibited during these tests may correlate with
psychological disorders such as depression, schizophrenia, and
autism [9,19,8]. There have not been any reports about the rela-
tion between MT-3 and psychological disorders; thus, this is the
first report about this topic.

MT-3 KO mice and 129/Sv mice were purchased from Jackson
Laboratory (Bar Harbor, ME, USA) and routinely bred in the vivar-
ium of the Gifu Pharmaceutical University. MT-3 KO mice were
developed by Erickson et al. [4] and their genetic background was
of the 129/Sv strain. Age- and sex-matched 129/Sv mice were used
as WT controls. Between WT mice and MT-3 KO mice, there was no
change in their fertility, litter size, or litter survival [4]. Additionally,
the maternal behavior of female MT-3 KO mice is normal.
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Fig. 1. Locomotor activity test of WT and MT-3 KO mice. WT (n=8) and MT-3 KO(n =8) mice were placed in individual home cages, and their locomotion was assessed every
hour for 24 h. (A) Locomotor activity throughout the 24-hr period and (B) locomotor activity was analyzed separately during the day and night. There was no significant
difference between WT and MT-3 KO mice. (C) Detailed analysis of the first 120 min. There was no significant difference in habituation to a novel environment between the

two groups.

All mice (10-15 weeks old) were housed in a transparent plastic
cage (length 17.5 x width 24.5 x height 12.5 cm) with sawdust bed-
ding on the floor with a 12-h light/dark cycle (light on at 8:00a.m.}
and had ad libitum access to food and water. Five or six mice were
housed in the same cage separated by their sex and genotypes.
Mice were weaned at 4 weeks old, and from that point, handling
was conducted by the experimenter once a week. Behavioral tests
were performed using male mice between 9:00a.m. and 5:00 p.m.,
except for the 24-h home-cage locomotor activity test. We used
totally 23 WT mice and 25 KO mice got from 8 litters each. Each
mouse was subjected one or two behavioral tests consecutively
with adequate interval. All procedures relating to animal care and
treatment conformed to the Animal Care Guidelines of the Animal
Experiment Committee of Gifu Pharmaceutical University.

To measure locomotor activity in a novel environment, a mouse
was placed in a transparent plastic cage (length 17.5 x width
24.5 x height 12.5cm) with sawdust bedding on the floor. “Home
cage” in this draft means the same cage the mice usually spend time
in, i.e. the same size (length 17.5 x width 24.5 x height 12.5cm)
and same color. Locomotion was measured every hour for 1 day
using a digital counter with an infrared sensor (NS-ASS01; Neu-
roscience Inc,, Tokyo, Japan). Movement of the mice was detected
using the infrared ray sensor on the basis of released infrared rays
associated with the mice’s temperature, When objects (mice) emit-~
ting infrared rays moved under the sensor, the sensor detected the
action as locomotor counts. Animals were placed in the cages at
12:00 p.m. and left there for a 24-h period. The room light was on
from 8:00 a.m. to 8:00 p.m.

The social interaction test in a novel environment was per-
formed in a manner similar to a published method [17]. Two mice
of identical genotypes that had previously been housed in dif-
ferent cages were placed in a box together (length 17.5 x width
24.5 x height 12.5cm) and allowed to explore freely for 10 min.
Social behavior was monitored by means of a video camera (Eve-
rio: Victor, Yokohama, Japan). The number and mean duration of
contacts were measured at 10 min after the start of the test.

Acoustic startle responses were measured in a startie chamber
(SR-LAB; San Diego Instruments, San Diego, CA, USA) using stan-
dard methods described previously [12]. Mice were presented with
a series of four discrete trials: pulse-alone trials, prepulse-plus-

pulse trials, prepulse-alone trials, and trials in which no discrete
stimulus, other than the constant background noise, was presented.
A reduction in startle magnitude in the prepulse-plus-pulse trials
relative to that in the pulse-alone trials constitutes PPI. The pulse
stimulus employed was 120dB in intensity and 40 ms in duration.
Prepulses of various intensities were employed: 73, 76, and 82 dB.
The duration of the prepulse stimuli was 20 msec. The stimulus
onset asynchrony of the prepulse and pulse stimuli in the prepulse-
plus-pulse trial was 100 ms. A session began with the animals being
placed into a Plexiglass enclosure. They were acclimatized to the
apparatus for 5 min before the first trial began. The mice were pre-
sented with 6 blocks of discrete test trials. Each block consisted
of one trial of each of the following trial types: pulse-alone trials,
prepuise-plus-pulse trials with each of the three levels of prepulse,
prepulse-alone trials with each of the three levels of prepulse,
and no stimulus trials (i.e. background noise alone). The interval
between successive trials was variable, the mean being 30 s (range,
20-405s).
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Fig. 2. Social interaction test of WT and MT-3 KO mice in a novel environment. We
used 11 pairs of MT-3 KO mice and WT mice. Two genetically identical mice that
had been housed separately were placed in the same cage. Their social interaction
was then monitored for 10 min. Mean duration per contact of MT-3 KO mice was
significantly shorter than that of WT mice (p <0.05, t-test), n=11 pairs.
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