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MEDICAL
ALERT

MYOTONIC
DYSTROPHY

The bearer of this card has
MYOTONIC DYSTROPHY; a
neuromuscular condition that
may cause the following:

A

muscle weakness and
stiffness.

~extreme tiredness.

..speech difficulties.

. Adverse reaction to
commonly used anaes-
thetic agents.

CARE
CARD

E. Abnormal heart rhythm.
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* Myotonic Dystrophy Foundation
http://www.myotonic.com/go/mdf/

* International Myotonic Dystrophy Organization
http://www.myotonicdystrophy.org/index htm

3CHER
LI, XA DBHEETEIPN LB LD, AF
ELTRBTHZ, AMTHORVIBBLIE LY
7oo FEREBICEET Z2BBUIL S HTWEDS, TP &
CELESTWD, BID)IERFTDDDIZ8) 23D 5,
1) Harper PS : Myotonic dystrophy, WB Saunders,
London, 2001
2} Brook JD, McCurrach ME, Harley HG, et al:
Molecular basis of myotonic dystrophy @ expansion
of a trinucleotide (CTG) repeat at the 3 end of a
transcript encoding a protein kinase family
member. Cell 68 : 799-808, 1992
3) Liquori CL, Ricker K, Moseley ML, et al : Myotonic

4)

5)

8. HAEMIY R +OT 14—

dystrophy type 2 caused by a CCTG expansion in
intron 1 of ZNF9. Science 293 : 864-867, 2001

mMHEH 7w, kR BEE)  HHEEESAbn 74—
BELFBEDODTA ¥ Ty 7, B LikEH H
B, 2005

Myotonic Dystrophy ! The Facts: A Book for
Patients and Families, 3 Revised edition, Oxford
University Press, ISBN 0-19-852586-9 (X ik 4) ®
F#)

Wheeler TM, Lueck JD, Swanson MS, et al : Correc-
tion of C1C-1 splicing eliminates chloride channelo-
pathy and myotonia in mouse models of myotonic
dystrophy. J Clin Invest 117 : 3952-3957, 2007
Ranum LP, Cooper TA : RNA-Mediated Neuromus-
cular Disorders. Annu Rev Neurosci 29 @ 259-277,
2006

Kaliman P, Llagostera E : Myotonic dystrophy pro-
tein kinase (DMPK) and its role in the pathogenesis
of myotonic dystrophy 1. Cell Signal 20 : 19, 2008

INBAEL 41 BTIE 2000 913



Nucleic Acids Research Advance Access published August 31, 2009

of ﬁg
CLCN1

Kino "2, Chika Washizu®,

1

o
T
o
o
o

{ Sasagawa®?, Nobuyuki

Yoko Oma?,

Shoichi Ishiurg

MNukina' and

Nucleic Acids Research, 2009, 1-14
dot. 10.1093inarigkp68]

Hayato Onishi?, Yuriko Nez
2%

"Laboratory for Structural Neuropathofogy, RIKEN Brain Science Institute, 2-1, Hirosawa, Wako-shi,

Saitama, 351-0128 and Depar{r“

of Life Sciences, Graduate School of Arts and Sciences, the University

of Tokyo, 3- 8 1, Komaba, Meguro—ku, Tokyo, 153-8902, Japan

Received April 8, 2009; Revised July 30; 2008; Accepted August 3, 2009

ABSTRAGT

The expression and function of tho skelets! muscle
chioride channel CLONT/CIC-1 is regulaied by alter-
native splicing. Inclusion of the CLCNT exon. 7A
is. aberrantly elevated it myotonic dystrophy (D),
a .genetic disorder caused by e expansion of a
CTG or CCTC repest. Increased exon 7A inclusion
leadds to g reduction in CLCONT funciion, which can
ba causative of myctonia. Two RNA-binding protein
families—=musclellind-like (MBNL) and CUG-EP and
ETH-3-lilke focior (CELF} proteins—are thought to
mediote the eplicing misvegulation in DIV Heve, we
have identified multiple factors iheal regulaie ihe
alternative splicing of a mouse Cicnt mirzigune
The inciusion of exon TA was repressed by VIENL
proteins whils  promocied by an expanded Cié(‘
repont or  CELF4, but not by CUGC-BP, Mutation
analyses suggested that exon 7A and its flanking
region mediaie the efiect of WBNLT, whereds
anotlier distinet region in intron 8 mediales that of
CELF4. An exonic splicing enhancer escential for the
inclusion of exon 7A& was identified at the 5" end of
this “exon, which might be inhibiied by WMBRLT
Colleclively, these results provide a mechanistic
model for the regulation of Clent splicing, and
reveal novel regulatory propertics of MBRNL and
CELFE proigins.

INTRODUCTION

Myotonic dystrophy {dystrophia myotonica: DM type 1.
or DMl is a genetic disorder with mulfi-systemic
symptoms. such as myolonia. progressive muscle loss,
cataracts, cardiac conduction defects. msulin resistance
and cognilive: impairments (1), DML is caused by the

expansion of “a- CTG  winucleotide repeat” in  the
3’—unu'anslated region {UTR) of the DM protein kinase

DMPK) gene (2-4). Evidence suggests that the expanded

TTC repeuts. transcribed  from- o mutated allele canse
RNA: gain-of-function effects that affect the Function of
other. cellular - factors. This concept issapported - by
transgetiic. mice (HSA4MR expressing an'expanded CUG
repeat mserted  in- an  unrelated  gene (humcm skeletal
actin. - HSA) - that manifest. myotonia - and  abnormal
muscle -histology (5} Recently, a4 second locus of DM
has . been identified, and  CCTG  repeat expansion in
intron - of the ZNFY gene was tound (o be catsative of
DM type 2 (DM2: 6). Remarkably, in the nuclei of cells of
patients with. both DM and  DM2,; RNA inclusions
containing CUG and CCUG. repeats., *espccmei} have
been observed (6-%). In addition, abnormalities in RNA
metabolism have been found in' the cells of DM patients.
Splicing of certain genes is misregulated in DMT. These
genes include cardiac oponin T(eTNT) T2y, mnsulin

receplor (/R). chioride channel } (CLONT), fast skeletal
troponin. T (TNNT3). . sdarcoplasmic/endoplasmic
reticulum: Ca® ~ATPase {(SERCA}Y b and others (9-14),
The sphicing patterns of some of these genes are also
misregulated in’ DMZ patients and the HSA'™Y mouse
(12:15.16): "These results suggest :that certain. RNA:
binding proteins that regulate pre-mRNA  splicing
of -~ these  penes  are. abnormally influenced by . the
mutant transcripts .comaining - expanded  CUG/CCUG
repeats (L7)

‘Two. protein families——muscleblind-like (MBNL} and
CUG-BP and ETR-3:like facior (CELF) profeins—may
play ‘major roles. in the pathogenesis of DM MBNL
proteins “MBNL1 EXP, " MBNLZMBLL/MLP! and
MBNL3/MBXL/CHCR are oxthobgs of the Dzosaphtla
muscleblind protein. which is involved in the terminal dif-
ferentiation of photoreceptor and muscle cells in the fly
(18,191 All three MBNL proteins can colocalize with
RNA inclusions of-expanded CUG/CCUG ‘repeats in
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both DM and DM2 cells (20). MBNLI1 binds directly to
both CUG and CCUG repeat RNA in a length-dependent
manner in vitro (21,22). Therefore. these proteins are con-
sidered to be sequestered by the expanded RNA through
direct interactions, and their cellular functions can be dis-
rapted in both types of DM. Remarkably. knockout mice
of Mbnll manifest some DM-like symptoms, including
myotonia. abnormal muscle histology and cataracts (13).
More recently, Mbnl2? knockout mice were reported to
manifest myotonia (23). Importantly. cellular studies
have demonstrated that MBNL proteins can directly
regulate the alternative splicing of the ¢TNT and IR
genes, which are misrégulated in DM patients (24,25},
These results strongly support the hypothesis that loss of
function of MBNL proteins leads to the misregulation of
splicing in DM

CELF proteins are another protein family involved
in the pathogenesis of DM1 CELF proteins CUG-BP:
CUGBPL BRUNOL2. ETR-3/CUGBP2/NAPOR;
BRUNOL3. - CELF3/TNRC4/BRUNOLI, - CELF4
BRUNOL4, CELF5/BRUNOLS and CELF6/
BRUNOLG6 are multi-functional proteins that play regu-
latory roles in translation, RNA editing; mRNA stability.
as well as splicing (26--29). CUG-BP regulates the alterna-
tive splicing of ¢ TNT exon 5. /R exon Il and CLCN/
intron 2911y In DMT1 patients. the expression :of
CUG-BP protein is elevated because of protein stabiliza-
tion  induced by . PKC-mediated ' phosphorylation
(10:30:31): - Moreover - CUG-BP transgenic. mice can
reproduce some of the muscular abnormalities observed
in. DM or its congenital form; including aberrant splicing
and muscle histology (32,33}, CUG-BP acts antagon-
istically against MBNL proteins in the splicing regulation
of ¢INT and IR (2425} suggesting that altered CELE
activities. in addition to the Toss of MBNL function. can
induce aberrant splicing in DM However. the extent
to: “which “these " proteins - can -account for. splicing
abnormalities ‘and - the ‘pathogenesis: of DM remains
unclear

Myotoniais a characteristic symptom of both DM and
DM2 and has been linked with a Joss of function of
CLCNI chloride channel caused by aberrant splicing
of its presmRNA in DM patients ((11.12). The CECNI
protein is a. muscle-enriched voltage-gated chloride
channel and is important for stabilizing the resting poten-
tial of muscle membrane (34). More than 50 mutations of
CLCNI have been found in myotfonia congenita. another
genetic disorder with myotonia; directly linking defects of
CLCNI with the pathogenesis of myotonia (35). In DM
patients, the abnormal inclusion of alternative exons 6B
andfor 7A and retention of intron 2 of CLCNI have been
observed (11 12). These aberrant-splicing patierns can
Jead to CLCNI transcripts containing premature termind-
tion codons, resulting in.an enhanced degradation .of
transcripts through the mechanism of nonsense-mediated
mRNA decay (NMDj, or the production of truncated
proteins: having -4 - dominant-negative _ effect ' (12,36).
Consistently, 'the levels of CLCNI mRNA and protein
are considerably lower in  the muscle of DM  patients
(11,12). Thus. the misregulated spheing of CLCNI m

DMT1 leads to a reduction in CLCNI activity. which can
be causative of myotonia.

In mouse models expressing an expanded CUG repeat
(HSALR,) or lacking Mbnll. the inclusion of exon 7A in
mouse Clen/ increased. as i human CLCN/ of DM
patients (12.13). 1t is important to note that the intro-
duction of exogenous MBNLI into HSA™® mice by
viral administration reversed the misregulation of
Clen! splicing as well as the myotonic phenotype (37).
Furthermore, antisense oligonucleotide {AON}-induced
exon 7A skipping resulted in the upregulation of Clenl
mRNA and protein levels and eliminated myotonia in
both “HSA™ and Mbnll knockout mice (38). This
suggests - that the misregulation of Clen/ splicing alone
can explain the pathogenesis of myotonia in these mouse
models. Therefore. MBNL proteins play an essential role
in the splicing regulation of Clen/ and are probably
involved in the pathogenesis of myotonia in DM
Although the loss of function of MBNL was reproduced
in these two mouse models, another pathogenic pathway
involving - CELF  protetns might have been under-
represented in o these models; -which 'did. not show
elevated CUG-BP protein levels (13,16.39); Therefore. it
1§ important to ask whether CELF profeins are involved in
the regulation of CLCN [/ Clenl splicing: Indeed; CUG-BP
binds directly to an element in intron:2 and promotes the
retention of .this: intron:. (11).  Furthermore. CUG:-BP
transgenic mice exhibit increased inclusion of Clen/ exon
TA;, ‘even-though the manifestation. of myotonia is not
clear (33). Thus, it is important to characterize the roles
of MBNL and CELF proteins in the regulation of Clen/
splicing to understand the mechanisnt of myotonia in DM
Although increased exon 7A inclusion 1s the most frequent
abnormality of CLONI/Clen] splicing in DM (12). the
mechanism of its regulation is'still unclear

We ‘established a Clen/ minigene assay systent and
wdentified - multiple ©¢is= and - ranssacting factors: that
regulate the ‘alternative splicing of Clenl exon 7A. The
essential role of MBINL proteins in the normal splicing
pattern of Clen/ was verified. Our results also highlight
some CELFE proteins ds antagonistic: regulators: against
MBNL proteins.

MATERIALS AND METHODS
c¢DINA clones and constructs

MBNLT and MBNL?2 were amplified by polymerase chain
reaction (PCR) from:a human: skeletal muscle ¢cDNA
Iibrary (BD Marathon-Ready human ¢cDNA. Clontechj;
MBNL3 was amplified from a human liver cDNA library
Because the amplified MBNL3 cDINA clories contained an
extra exon compared: to a previous MBNL 3 sequence. this
exon was deleted by PCR-mediated mutagenesis. CELF
proteins ETR-3, CELE3; €ELF4. CELES and CELF6
were amplified from ¢DNA libraries. of -either: brain or
skeletal muscle of human origin. CUG-BP was amplified
from pSRD/CUG-BP (40). Forward primers for the
amplification of these: cDNAs contained BamHI. Belll.
or BEcoRI sites. whereds the réverse primers contained
either Sall or Xhol sites to add these restriction sites to




the PCR products. Fragments of these ¢cDNAs were
mserted into the BamHI-Xhol or EcoRI-Xhol site of
pSecDK. a mammalian expression vector with a myc-tag
that was modified from pSecTagA (Invitrogen) to delete
the Igx chain leader sequence. Constructs encoding GST-
MBNL 1y, has been described previously (22). The Clenl
minigene fragment covering exons 6 to 7 was amplified
from mouse genomic DNA by PCR using the primer
pair Clent-Fw and Clenl-Rv, into which a restriction
site for BamHI or Sall was added. Similarly, the corre-
sponding fragment of human CLCN/ was amplified using
primers: CLCNIi-Fw. and CLCNI-Rv. The minigene
fragments were ligated into pGEM-T Easy - vector
(Promega). The minigene fragments in pGEM-T Easy
were- cleaved by BamHT and Sall and then subcloned
into: the Bglil-Sall" site “of pEGFP-Cl(Clontech). A
series  of- deletion mutants “of Clen] was  generated by
PCR-mediated mutagenesis. To construct heterologous
minigenes,  we ingserted. alternative: exons - with™ flanking
regions such as Cler - 451720 inte the Belll-Sall sites
of pEGFP-Tpm2-ex1-2.. vector . (see  Supplementary
‘Materials and Methods’ section). Primer sequences are
listed in. Supplementary Table ST Detailed information
on the sequences and construction of mutant minigenes
is available upon request 'DMI and DM480 contain a
fragment of the 37 region of DMPK with'a CTG18 and
interrupted C'TG480 repeats, respectively (Supplementary
Figure 54},

R-miR. & vector modified from: pcDNATM6.2-GW
EmGEP-miR Invitrogen), was uulized for RNA interfer-
ence” (RINA1) experiments.. R-miR contains - a- cDNA
fragment: of monomeric -REP (mRFP) in place  of
EmGFP and an Esp31 recognition site mntroduced down-
stream of mREP  DNA fragments. corresponding o a
portion of - an artificial mictoRNA  (Supplementary
Table 82} were designed using BLOCK-T ~RNA
Designier  (Invilrogen website) Jand anserted imto (the
Esp3l site of R-miR:

The FANTOMS3 clone plasmids = encoding murine
Mbnl3 (E430034C16), Cugbpl (44324121 08). Cugbp2.
Etr-3 (953009808} and Celf4 (C130060B05) used for
testing RNAI efficiency 10 Neuro2a cells were provided
by Dr Hayvashizaki (41). Murine Mbnll and Mbnl2
were amplified from a mouse brain ¢DNA hbrary, The
N-terminal regions of Mbnll. Mbnl2 and Mbnl3 and the
full-lengih open reading frames of Cugbpl. Cugbp2 and
Celf4 were amplified with primers containing restriction
sites,’ digested by 'the restriction enzvmes, and inserted
into’ the: BglIlSall site of ‘the pEGFP-CI vector All
constructs were confirmed by sequencing,

Cellular splicing assay

Cells transfected with ‘plasmids for the expression of 4
protein: anda  minigene were . harvested 48 h ' post-
transfection. . Typically; cells -were: cultured “in+ 12-well
plates and . transfected with 0.5ug plasmids for protein
expression (or cognate empty: vector} and 0.0l g
plasmids for the expression of ‘4 minigene: Total RNA
was - extracted and o purified using either ' the  acidic
guanidine: phenol chioroform method or RNeasy Mini
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kit (Qiagen) including DNase treatment. Typically,
1.0ug total RNA was reverse-transcribed using the
ThermoScript RT-PCR System (Invitrogen) or Revertra
Ace ~o- (TOYOBO) with a } { mixture of oligo dT and
random hexamer as primers. Minigene fragments were
amplified by PCR using a fluorescein isothiocyanate
(FITC)-labeled forward primer for the 3 region of the
EGFP sequence (FITC-GFP-Fw) and a gene-specific
reverse primer (Clenl-Rv for Clen] or CLCNI-Rv for
CLCNI Supplementary Table S1). For Tpm2-based
minigenes, primers FITC-GFP-Fw and Tpm2-ex2-
splicing-Rv2 were used for amplification. PCR products
were resolved by 2.0--2.3% ugarose gel electrophoresis. By
sampling at multiple cycles. the cycle numbers of PCR
were adjusted such that the amplification was within the
logarithmic phase. The fluorescence of PCR products was
captured. and visualized. by LASI000 or. LAS3000
{(FUJIFTLM]). The intensity of band signals was quantified
using Multigauge software (FUJIFILM). The ratic of
exon 7A inclusion in Clen] and CLCNI was calculated
as (7A inclusion}/(7A inclusion + 7A skipping) x 100,

Guantitative PCl

Gene-specific primers were designed using Primer Express
software (Applied  BioSystems) and “are listed in
Supplementary Table $3. These primiér sets were mixed
with ¢cDNA samples and Power SYBR Green PCR
Master Mix (Applied BioSystems). Real-time amplifica-
tion- and quantification. were' performed using an
ABIT700- (Applied BioSystems) following the manufac-
turer’s protocol.

Gel «hift analysis

GST and - GST-MBNLL were  purified  as described
previcusly (22). Oligo DNA templates corresponding fo
Clenl(473=318) (CTGCCCAGGCACGGTCTIGCAACA
GAGAAGCACGACGGGCGAGGCAGCECTATAGT
GAGTCGTATTACCCC)Y Clen H{GAA)Y (CTGTTCTTC
TICTTCCTGCAACAGAGAAGCACGACGGGCGA
COCAGCCCTATAGTGAGTCOGTATTACCCO), "aad
Clenl(a304c) (CTGCCCAGGCACGGGCTGCAACAG
AGAAGCACGACGGGCGAGGCAGCLCTATAGTG
AGTCGTATTACCCC) were purchased from Invitrogen
and annealed with another DNA fragment for the T7
promoter - (GGGGTAATACGACTCACTATAGGG),
Using this partid]l duplex as a femplate, we transcribed
RNA using T7 RNA polymerase (MEGAscript T7 kit;
Ambion). The RNA was purified by phenok-cliloroform
extraction followed by ethanol precipitation. The purified
RINA was treated with alkaline phosphatase, then Iabeled
by T4 polynucleotide kinase in the presence of v-"PiATP
The labeled RNA was purified using a Nucaway spin
column {Ambion). The procedures and reaction mixilire
used in the gel shift analysis are described in our previous
report: (22},

Ribonucleoprotein immunoprecipitation

Ribonucleoprotein immunoprecipitation (RIP) was per-
formed as - described' previously (42); with minor
modifications.” The -amount of co-precipitated minigene
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RNA was quantified by SYBR green-based Quantitative
PCR (qPCR) using the primers listed in Supplementary
Table S3. The procedure is described in the Supple-
mentary ‘Materials and Methods’ section.

RESULTS

MBNL and CELF proteins regulate the inclusion of
Clenl exon 7A

To examine whether the MBNL and CELF family
proteins can regulate the splicing of Clenl, we created a
minigene covering exons & to 7 of the mouse Clenl gene
(Figure TA). It 1s important to note that because the inclu-
sion of exon 7A does not produce a premature termina-
tion codon in ‘the context of “our Clenl minigene, the
spliced products containing exon 7A are not substrates
of 'NMD. Thus. the minigene would provide more
faithful splicing ‘ patterns compared to the endogenous
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Figure 1. Splicing - regulation:-of 'MBNL and CELFE proteins. (A)
Stnucture: of chlonde ‘channel ‘minigenes. Both - human €LCNICIC:]
and: mouse Clen /. minigenes  were: subcloned. between: the BglIl and
Sall'sites of pEGEP-C1. Black boxes represent exons of the minigenes.
Arrows mdicate the position: of primers used i the: splicing: assays.
Exon 6B is a human-specific exonand s absent in Cleal.: (B)
Splicing . regulation of - Clenl: by “MBNL - and ~CELF .proteins,
Representative results: of cellular splicing. assays using the Clei/
minigene i COS-"-cells: The upper bands ‘correspond to.a: splice
product  containing: exon 7A. whereas lower bands cortespond to-a
splice product Tacking exon 7A. Bar chart shows quantified results of
exon 7A inclusion {(mean £ SD = 3}, Statistical significance’ was
analyzed by’ analysis: of  varianice’ (ANOVA]} ‘and: Dunnett’s’ multiple
comparisons. - All. MBNL ‘proteins and CELFE proteins except for
CUG:BP ‘and ETR-3 -showed sgnificant ‘differcnces 7P < 0:0001)
compared to the empty: vector. (€} CUG-BP and ETR-3 increased an
unspliced product of the Cleirf minigene. Structures of PCR products
are indicated.

Clen] We utilized non-muscle cell lines to minimize the
effect of muscle-dependent backgrounds and focus on the
direct effects of transgenes. When the Clen/ minigene was
transfected into COS-7 cells, 45% of the spliced products
contained exon 7A (Figure 1B). Next we expressed myc-
tagged MBNL or CELF proteins with the Clen/ minigene
and examined the patterns of Clen/ splicing. The
expressions of MBNL and CELF proteins were confirmed
by Western blot analysis using an anti-myc antibody
(Supplementary Figure S6A). All three MBNL proteins
strongly repressed exon 7A inclusion (Figure 1B). In
contrast. CELE3. CELF4, CELF5 and CELF6 proteins
significantly promoted the inclusion of 7A (Figure 1B).
Remarkably, CUG-BP. and ETR-3 did not alter the
ratio of exon 7A inchusion (Figure [B). These two
proteins increased the unspliced product and reduced the
spliced products with or without exon 74 (Figure 1C).

CELF4 and expanded CUG repeats act antagonistically
against MBNLT in the splicing regulation of Clcn/

We investigated whether CELT proteins can antagonize
the effect of  MBNEID  Among CELF proteins that
promoted exon 7A inclusion in Cleni. CELF4 was used
for the following analyses because this protein is expressed
in muscle (26,43). CELFE4 and {wo other muscle-expressed
CELF proteins, CUG-BP and ETR-3, were co-transfected
with MBNLI., as well'as the Clen] minigene. As shown in
Figure 2A. CELF4 increased the ratio of exon 7A in a
dose-dependent manner (lanes 7 and 8}, whereas CUG-
BP or ETR-3 did not (lanes 3--6). When MBNL1 was
titrated 'in the presence of CELF4: a decrease in exon
7A inclusion was observed. depending on the dosage of
MBNLU (Figure 2A.lanes 9 11). These results demon-
strate’ that MBNLI and: CELF4, but not CUG-BP or
ETR-3, can regulate Clenl exon 7A splicing inan antag-
onistic manner

We also examined DMPK constructs harboring either
CTGI8 (DMI8) or interrupted CTG480. (DM480) in the
3-UTR: When these constructs were expressed with the
Clenl minigene. DM480 increased exon. 7A inclusion.
whereas DMI18 showed little effect (Figure 2B lef().
These constructs were next expressed. in:the presence of
MBNLI. As shown previously. MBNL1 alone strongly
repressed the inclusion of exdn 7A, DMA4&0 reversed the
repression of exon 7A ‘inclusion by MBNLI, whereas
DMIS did not (Figure 2B, right). Thus. expanded CUG
repeals can antagonize the effect of MBNLIL on Clen/
splicing.

Finally, we performed knockdown experiments using
vector-based RNAJ to examine whether the regulation of
Clenl splicing is-dependent on. the dose of endogenous
MBNLI1 “or CUG-BP: The RNAi vector used here
expresses an artificial microRNA that 1s exactly comple-
mentary (o a region of 1ts target gene. leading to degrada-
tion of the target- mRNA. For RNAi experiments,
we utilized ‘Weuro2a and HeLa cells rather than COS-7
because of the availability of cDNA sequence information
essential for the design of microRNA., First. the over-
expression of MBNL{ 1n NeuroZ2a cells strongly repressed
the inclusion of exon 7A as'in COS-7 cells (M, Figure 2€).
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Figure 2 MBNLEL s antagonized: by CELF4 and expand CUG

repeats. (AY-Antagonistic effects "o ' CELF4 against MBNLT inothe
splicing regulation of Clent Clen I voinigene was cottransfected with
MBNLI or MBNLL plus) CELE" protein: into COS-7 cells:: Upper
panel: lane: L the pattern of empty: vector-transfected cells: Janes 208,
a constant amount ol MBNL {=encoding vectorand increasing amournts
of one of the CELF- c,ﬂ(,Odh.]L vectors were co-trausfected ativatios of
10 (lune Pilanes 305 and 7yand 13 (fanes 4; 6 and §) Lower
panel:-similarly 1. CEEF4tencoding  vector jand MBNLE-cmcoding
vector, were cmnxiu,[ed at ratios of L0 ame 9y 10 1 (lane [10) and
o3 (lane nlvo The totalb amount of transfected plasmids  was held
constant by ‘adjusting the amounts ‘of ‘empty vector. (B} Effecis of an
expanded CUG repeat on the chloride channel splicing: Cleii/ minigene
was transfected with -an - expression: vector of 'DMPK - harboring a
normal (DMI8)- or expanded. (DM480): CTG  repeat (left panel).
Either normal. or expanded  DMPIC vector "was co-transfected with
MBNL I} and the Clen/ - nunigene; and - the splicing . patterns. were
analyzed - iright paneln () Results of * Clon) splicing assays 'in
Neuro2a cells.: MBNLI-mediated  repression’ of exon /7AL iaclusion
i NeuroZaccells fleft) 23T and UM indicate “empty - vector and
MBNLI respectivelye: Note that the basal inelusion of ‘exon 7A in
NeuroZa cells was: higher than thatin COS-7 cells. Cleni-splicing reg-
ulation: was atlected by RNAi of Mbnll but nor Cugbpl in Neuro2a
cells (right). Barichart shows the quantified resuits of exon ' 7A inclusion
(rean =S o dyAccording to - ANOVA and Dunnett’s - test:
miMbnli-146 nduced: & statistically significant increase of exon A
compared. to miLuc-200 (£ < 0.0001 ), whereas miCugbp1-359 did not

(P 0.36):
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An RNAI vector miMbnll-146 was effective in reducing
both Mbnll and Mbnl2 and mcreased the inclusion of
Clenl exon 7A compared to a control vector miLuc-200
(Figure 2C and Supplementary Figure S1). Another RNAI
vector. muMbnl1-236, also increased exon 7A inclusion
(data not shown). We also used Hela cells for RNAI
experiments and found that the knockdown of MBNL]
resulted in an increase in exon 7A inclusion (Supple-
mentary Figure 52). Therefore. the splicing of Clen]
exon 7A is regulated by MBNL in a dose-dependent
manner In contrast. an effective RNAI vecior targeting
endogenous Cugbpl, miCugbpi-559, did not alter exon
7A splicing (Figure 2C and Supplementary Figure S1).
We were not able 1o confirm the knockdown of
endogenous Etr-3/Cugbp2 and Celf4 because of very low
or undetectable-endogenous expression in the cell lines
used in this study (data not shown): thus. the RNAI of
Etr-3 and Celf4 was not tested in the splicing analysis.

Lzvolverent of the exon 74 sequence in the splicing

regalation by MENLI

To understand the mechanism by which MBNLI represses
the inclusion “of 'Clenf exon 7A, we (ried” (o define the
regions” of ‘the Clenl mimgene that are résponsive to
MBNLI For this. purpose, we examined a series of
Clenldeletion tutants lacking a region in either introns
6 or TA (Al ‘A9. Figure:3A): As shown in Figure 3B,
deletions: in intron 6 altered 'the basal: splicing: pattern.
For example. the Al mutant exhibited increased inclusion
of exon 7A. suggesting the presence of an element in the
deleted region that represses'exon 7A inclusion: However.
this mutant and the other inlron 6 mutants (AZ2AS) were
strongly repressed by MBNL1 (Figure 3B. upper panel).
Simularly, the series of intron-7A mutants did not lose
responsiveness: (o MBNL] (A6-A9. - Figure 3B). Thus.
large  portions . of - these - mfronic regions - could™ bhe
excluded from the region critical’ for responsiveness (o
MBNL1 :

Next we examined another series of deletion mutan(s
(Figure 4A. lefi). When minigene 6-7A4 was expressed
with the empty vector. both ‘spliced :and unspliced
products were observed (Figure 4A) Co-u:pression with
MBNL1 resulted in the repression of splicing (Figure 4A7):
In the case of 7A-7. the expression of MBNL1 did not
-ause - a - significant change compared 1o that of the
empty vector (Figure 4A). To examine whether the
responsiveness of 6-7A was dependent on the sequence
of exon 7A, we analvzed the 6/7 mutant. in which the
sequence of exon 7A was virtually replaced with that of
exon 7 Interestmg!} this lephkcement completely. abol-
ished the responsiveness to MBNLI (Figure 44, right
panels). The observed loss of response in the 6;7 mutant
was not due to inefficient basal splicing of exon 7. because
replacement of the first 12 nt of exon 7.in the 6/7 mutant
with'an exonicssplicing - enhincer  (ESE) markedly
increased: the spliced products but did not improve the
responsiveness: 16 MBNLI (Supplementary Figure S3),
Thus. exon 7A should contain ‘at least part of the
MBNL I-responsive region. In addition. intron 6 ‘alone
was- insufficient for response to MBNLI ' To further



