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Despite poor [FN-y production by CD8 T cells, we did not
observe low T-bet induction in purified CD8 T cells when stimu-
lated by PMA/ionomycin or by anti-CD3/anti-CD28 mAb (Fig.
7C). We then tested the expression of EOMES, a paralog of T-bet
and a transcription factor required for CD8 effector function (50,
51). Although induction was negligible, there was a trend toward
lower baseline expression of EOMES (0.23 and 0.69 for patients 1
and 2, respectively).

Expression of the E3 ubiquitin ligases that contribute to T cell
anergy

Several lines of evidence indicate that E3 ubiquitin ligases (Grail,
Cbl-b, and Itch) play important roles in the induction and mainte-
nance of T cell tolerance (52-55). T cell stimulation without co-
stimulation leads to up-regulation of these ligases (56). High ex-
pression of these E3 ubiquitin ligases is related to the absence of
the expression of the effector-specific transcription factors (56, 57).
There has been little research on the ligases in human systems.
Because anti-CD3 stimulation did not induce appreciable up-reg-
ulation of the ligases, we examined the mRNA level of these mol-
ecules at baseline and after PMA/ionophore stimulation using a
sensitive real-time PCR assay.

As shown in Fig. 8, baseline expression of the E3 ubiquitin
ligases, with the exception of Grail, was detected in the controls
and patients. The mRNA levels of Cbl-b and AIP4/lich in the
steady state were significantly elevated in patient 2 (2.5 and 4.3)
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compared with controls (1.0 = 0.4 and 1.0 = 0.6, n = 4} and
patient 1 (1.0 and 1.3).

PMA/ionophore induced up-regulation of Cbl-b and Itch, but
not Grail, in normal subjects, whereas the induction of Cbl-b and
Itch mRNA above the baseline level was negligible in patient 2
(Fig. 8).

Of particular note was a paradoxical down-regulation of Itch, a
regulator of NF-kB activation, upon PMA/ionophore stimulation,
which was reproducibly observed only in patient 1.

RANKL induction was augmented in patient 2 with
autoimmunity

Patient 1 had an autoimmune manifestation and immunodefi-
ciency, whereas patient 2 had mild psoriasis-like cutaneous lesions
and mild skin infections. We therefore attempted to uncover dif-
ferences in T cell functions between two patients.

To explore the dissimilarities in their immune functions, we
assessed mRNA expression levels in negatively selected, >97%
pure CD4 T cells by comprehensive mRNA expression analysis
using a GeneChip before and after stimulation through CD3/CD28.

The expression of most mRNAs from CD4 T cells poststimu-
lation showed a remarkably high correlation between patients 1
and 2. However, we identified >100 genes that were differently
expressed between the patients, and sought to identify the gene(s)
that may explain the phenotypic difference from these genes.
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FIGURE 8. A, Expression levels of E3 ubiquitin ligases. Cbl-b and Itch
mRNA levels were measured by real-time RT-PCR, as indicated in Fig. 5.
Purified CD4 T cells from healthy controls (HC; n = 4) and patients (1 and
2) were activated with PMA/ionomycin or incubated in the medium only
for 4 h. mRNA levels for Cbl-b and Itch were quantified in duplicate with
18S rRNA as a reference, and baseline expression in HC was adjusted to
1.0. Error bars indicate SD for HC and SEM for patients. Expression of
Grail (RNF128) was not detectable before or after stimulation in this assay
(data not shown). B, Level of RANKL mRNA expression. CD4 T cells
from HC (n = 7) and patients (I and 2) were stimulated with anti-CD3/
anti-CD28 mAb, and RANKL mRNA expression was measured. Expres-
sion was quantified with 18S RNA as a reference, and the mean expression
level of HC was adjusted to 1.0. [], HC; B, patient 1; W, patient 2. Error
bars indicate SD for controls and SEM for patients. P/I: PMA/ionomycin.

Among them, TNFSFI1 (RANKL) showed >2-fold higher ex-
pression in patient | after stimulation. In addition, RANKL ex-
pression was >50% higher in patient 1 than in the controls.

Because RANKL was identified as a candidate key molecule
involved in the pathogenesis of RA (58, 59), we quantified
RANKL mRNA in CD3/CD28-stimulated CD4 T cells by real-
time PCR. The result shown in Fig. 8B demonstrates that com-
pared with healthy controls, RANKL induction was higher in pa-
tient I, but lower in patient 2.

Discussion

In this study, we describe broad defects in T cell function in two
siblings with a novel deficiency of human ICOS. Most of the ab-
normalities presented in this study have not been reported in hu-
mans, and some have not been reported in the murine model of
ICOS deficiency.

The marked decline in two T cell subpopulations, meémory CD4
T cells and CTLA-4"CD45RO™ Tregs, can be explained, at least
in- part, by a recent observation that the ICOS-ICOS-L interaction
plays an important role’ in the expansion and survival of these
effector T cells (23, 60).

With: regard to CD4 memory T cells, we observed significant
reductions in the numbers of both TCMs and TEMs in the steady
state,’ which were not observed in the previously reported cases of
human ICOS "deficiency (31-33).- A reduction in the number of
TEMs, but not of TCMs; was demonstrated in-ICOS knockout
mice by Burmeister et al: (23). TEMs were decreased up to 4-fold
in the steady state; the decrease was more pronounced in older
mice. TEMs and TCMs display significant and intermediate ICOS
expression, respectively (23). Through detailed research on expan-
sion, differentiation, and survival of effector T cells in the absence
of ICOS; they suggested that ICOS controls the pool size of ef-
fector T cells. These data suggest that both memory subsets may

require ICOS for proliferation and survival in humans. Therefore,
a decline in total memory cells may be observed in ICOS-deficient
mice over a longer observation period and/or after recurrent infec-
tions. Alternatively, it is equally plausible that the ICOS-ICOS-L
interaction plays a pivotal role in commitment to memory T cells.

CTLA-4*CD45RO'ICOS™CD4"CD25% Tregs, commonly
observed in adults, were virtually absent in our ICOS-deficient
patients. The reduction was seemingly counterbalanced by an in-
creased number of CTLA-47CD45RO™ Tregs. Although the con-
tribution of ICOS to the expansion and maintenance of Tregs as a
whole has been previously reported (23, 41), our observation ad-
dresses the role of ICOS in the maintenance of an IL-10-producing
memory subset of Tregs, but not TGF-B-producing CTLA-
47 CD45ROTICOS ™ naive Tregs. Supporting this is the observa-
tion that in mice, ICOS™ Tregs display a strict propensity to un-
dergo rapid apoptosis in culture unless signaled by ICOS-L (23).

The decrease in the number of CTLA-4" Tregs may be alter-
natively explained by defective induction of a gene that regulates
Treg development. A recent study in mice has demonstrated that
ROR-yt controls the development of IL-10-producing Tregs that
coexpress ICOS in addition to CCL20 (61). This finding may sug-
gest that the decrease in CTLA-4"CD45RO*FoxP3™" Tregs is a
consequence of reduced induction of ROR-yt/RORC, as observed
in the present study.

Another notable T cell defect in our patients was the impaired
capacity of their T cells to mount Thl, Th2, and Th17 responses.
Reduced cytokine production was observed not only when the pa-
tients’ CD4 T cells were activated by costimulatory signals, but
also when they were stimulated by PMA/ionomycin.

Although the ICOS-ICOS-L interaction was important in vivo in
the generation and/or maintenance of effector memory and central
memory cells, the absence of an ICOS signal through ICOS-L did
not seem to contribute to the T cell effector defects observed in our
ex vivo experiments. First, ICOS-L expression was not induced in
purified T cells upon CD3/CD28 costimulation (supplemental Fig.
34).% In addition, blocking potential ICOS-ICOS-L interaction in
the controls did not result in decreased cytokine production or in
decreased up-regulation of MAF and RORC (supplemental Fig. 3,
Band 0

Additional experiments indicated that there was an abnormality
at the level of transcriptional regulation of Thl, Th2, and Th17
polarization, and decreased induction of the master regulators T-
bet, GATA-3, MAF, and RORC in the patients. Previous research
on mice has shown that ICOS regulates MAF expréession and
GATA-3 induction (62), and our present study points to an addi-
tional role of ICOS in the complete induction of T-bet and RORC.

One major factor contributing: to: the poor effector- T cell re-
sponses in the patients could be the decrease in total memory CD4
T cells: This is particularly likely in the case of IL-4 and IL-17
production, because the memory T cells had only mild defect in
producing IL-4'and IL-17. Although the CD4+CD45RO™ T cells
in the patients displayed a significantly reduced ability to produce
IFN-v, the decreased response may be explained by pronounced
reduction in TEMs in the patients. To determine whether the mem-
ory T cell compartment in our patients is functionally defective or
intact on a per cell basis; we would need further analysis of various
parameters of the T cell effector functions in naive T cells, TCMs,
and TEMs.

Nurieva et al. (56) demonstrated that murine ICOS™/~ CD4 T
cells showed defective induction of T-bet, GATA-3; and EOMES
in'the absence of CD28 costimulation because of up-regulation of
E3 ubiquitin ligases: Grail, Cbl-b, and Itch. It is uncertain whether
the augmented baseline expression of E3 ubiquitin ligases is rel-
evant to the observed effector T cell dysfunction, because this was
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confirmed only in patient 2. It is rather unlikely that the different
expression of the E3 ubiquitin ligases contributed to the T cell
defects in the patients because augmented induction of these li-
gases was not detected in the patients.

In contrast to the global impairment in cytokine synthesis, IL-2
production was only marginally affected. Supporting this observa-
tion, induction of transcription factors for IL-2 (c-Jun/c-Fos) was
normal in the patients (data not shown). Similarly, induction of
IL-21 and TGF-$ was also unaffected in the CD4 T cells of the
patients, although their induction was modest under costimulatory
conditions (data not shown). It should be noted that production of
IL-22, a Th17 cytokine fundamental for the development of pso-
riasis, showed normal induction, and that both the patients had
psoriatic cutaneous lesions (63). Although whether IL-17A and
1L-22 are produced by the same Th17 subset is still unclear (64,
65), our data suggest an IL-22-producing CD4 T cell subset is not
functionally impaired in the patients.

Previous studies in mice have shown that ICOS is necessary for
optimal CD8 T cell responses (34). ICOS can directly stimulate
CDS8 T cells (35); and ICOS-Ig-treated mice displayed diminished
IFN-v production by CD8 T cells. Our study has demonstrated that
CD8 memory cells are reduced in ICOS deficiency, and that CD8
T cells in the absence of ICOS can mount a very low IFN-y re-
sponse, for the first time in humans. ICOS is induced on terminally
differentiated CD28 " CDS effector T cells (11), and thus, may play
a role in maintaining the CD8 subset. Therefore, a decrease in the
number of IFN-y-producing CD8 T cells could be ascribed to the
reduction in CD45RO™ memory CD8 T cells or in CD28 CD8 T
cells (data not shown) in our ICOS-deficient patients. IFN-vy pro-
duction is regulated by T-bet and EOMES cooperatively or redun-
dantly in CD8 T cells (50, 51). T-bet induction was normal when
stimulated with PMA/ionomycin or anti-CD3/anti-CD28, whereas
a baseline expression of EOMES was decreased in CD8 T cells in
the patients. Although this may explain the impaired production in
part, further research on the CD8 T cells stimulated with various
common vy-chain cytokines would be necessary to assess whether
the transcriptional regulation of CD8 effector functions is impaired
in the absence of ICOS.

In addition to the reduced numbers of effector T cells, which
either potentiate or inhibit T cell responses, the present study dem-
onstrates for the first time an aberrant induction of negative co-
stimulatory molecules on activated T cells in ICOS-deficient pa-
tients, CTLA-4 and BTLA are induced upon activation and
transmit an inhibitory signal to T cells to regulate the balance
between T cell activation, tolerance, and immunopathology (3-5).
Costimulatory and coinhibitory molecules are normally induced in
the absence of ICOS in mice and humans (23, 31). In our patients,
however, induction of CTLA-4 and BTLA following CD3/CD28
signaling was impaired. Although the molecular basis of the de-
fective expression is still not known, this may be ascribed to the
decreased memory T cell subset in the patients. At all events, our
findings imply that an inhibitory signal to suppress activated T
cells could not be appropriately induced in the patients.

Collectively, these data highlight the positive contribution of
ICOS to the maintenance of, or commitment to, effector T cells and
a subset of Tregs, and the induction of negative costimulatory re-
ceptors on activated T cells. The immunodeficiency in our ICOS-
deficient patients, although mild, can be understood by the defects
in their effector T cell functions as well as in T cell-dependent B
cell help, but a reasonable explanation is still required for the de-
velopment of autoimmunity, RA, IBD, IP, and psoriasis in ICOS-
deficient patients.

Most studies have depicted ICOS as a positive costimulator in
the immune reaction. For example, research in ICOS-deficient
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mice suggests that [COS is critically involved in autoimmune de-
velopment and allogeneic reactions (21, 25-29). There are, how-
ever, some results indicating that abrogation of the ICOS-ICOS-L
interaction aggravates the disease process. For example, in some
initial studies on [COS-null mice, experimental autoimmune en-
cephalomyelitis was unexpectedly exacerbated and allergen-de-
pendent airway sensitivity was augmented (14, 66, 67). What is the
role of ICOS in autoimmune development?

Burmeister et al. (23) reported that ICOS supports the expansion
and survival of Thl or Th2 responder cells, Th17 cells, and
FoxP3™" regulatory effector cells. They hypothesized that the ab-
sence of ICOS function in a particular mouse model would result
in a phenotype reflecting a deficiency of the dominant effector T
cell type. Thus, blockade of the ICOS-ICOS-L interaction could
mainly affect Treg subsets and lead to the development of auto-
immune disorders.

Our observations in human ICOS deficiency may fit the concept
of ICOS as an agonist molecule. In our ICOS-deficient patients,
defects in T cell function leading to termination of the activated T
cell response may have been dominant.

Another question remains, as we observed a wide range of au-
toimmune diseases in patient 1, but not in patient 2. Although
phenotypic variation in siblings with the same mutation is not un-
common in human genetic disorders, there might have been some
contributing factor(s).

First, our analysis showed paradoxical down-regulation of Itch
expression after PMA/ionophore stimulation in patient I. Because
Itch induction is important in the control of NF-«B activation (55),
an activation signal in the absence of CD28 costimulation may
have led to continuous inflammation in patient 1.

Second, although the T cell immune functions and stimulation-
induced mRNA expression pattern of CD4 T cells were strikingly
similar between the siblings, we found that the T cells of patient [
showed exaggerated induction of RANKL expression and poorer
production of IFN-y. Previous studies demonstrated that T cells,
which contribute to the development of RA and IBD, were char-
acterized by poor IFN-vy production, production of inflammatory
cytokines including IL-17A and TNF, and RANKL expression
(59). Although IL-17A induction was not increased, the aug-
mented RANKL expression and poor IFN-vy production in T cells
may have contributed to the autoimmune disease progression.
Characterization of RANKL-expressing IL-17A-negative T cells
requires further investigation.

Third, we surmised that a major infectious episode may have
upset the subtle balance between effector T cells and Tregs in our
patients. In fact, patient 1 developed a series of autoimmune dis-
orders after a severe bacterial infection.

Finally, the reason for the apparent discrepancy in T cell func-
tions between the ICOS-deficient patients presented in this study
and the ICOS deficiency described in previous reports (31-33) is
elusive. One possibility that explains the difference in cytokine
production in our patients and ICOS deficiency in previous reports
could be different stimulation condition (dose of mAb and incu-
bation period). However, it is unlikely because effective cytokine
synthesis from the T cells was not observed in our patients even
with an increased dose of anti-CD28 mAb and with longer time
periods (supplemental Fig. 4).* This indicates the presence of other
intrinsic factor(s).

Another possibility is the difference in the mutation site of the
ICOS gene. Our patients harbored a homozygous single-base de-
letion at codon 285 located in the extracellular domain, whereas
other ICOS deficiencies have homozygous deletion in exons 2 and
3 of the ICOS gene (33). In addition to defective ICOS expression,
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this mutation may result in the expression of a 120-aa ICOS pro-
tein that affects immune function, for example, by binding to
ICOS-L on B cells, monocytes, or a subset of T cells. Despite
extensive investigation, however, we have been unable to demon-
strate the expression of a truncated ICOS protein in our patients’
lymphocytes.

In summary, the present study on T cell functions in two novel

ICOS-deficient patients has shown that the interaction between
ICOS and ICOS-L is critical for the development and maintenance
of multiple types of effector cells and Tregs, and that the defects
are at least in part due to diminished memory T cells and/or im-
paired induction of master regulators. Collectively, the results of
our study highlight a major role of ICOS as a coordinator of T cell
immune responses and T cell maintenance.
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Ex Vivo-Expanded Donor CD4" Lymphocyte Infusion Against Relapsing
Neuroblastoma: A Transient Graft-Versus-Tumor Effect

Hisao Yoshida, mp,' Shigenori Kusuki, mp," Yoshiko Hashii, mp, rhp,’ Hideaki Ohta, mp, php,"*
Tomohiro Morio, mp, php,? and Keiichi Ozono, mp, php’

High-risk neuroblastoma has a poor prognosis despite multi-
modal treatment including high-dose chemotherapy. A 7-year-old
male with neuroblastoma received ex vivo-expanded donor CD4* T
lymphocyte infusion (CD4* DLI) after recurrence in the bone
marrow following allogeneic hematopoietic stem cell transplanta-
tion from his HLA-identical mother. The disease transiently
responded to CD4" DLI with reduction of tumor cells and a

Key words: CD4* donor lymphocyte infusion; graft-versus-tumor effect; neuroblastoma

decrease of serum neuron-specific enolase. The response was
associated with development of continued high fever and an
increase of cytotoxic T lymphocytes in peripheral blood. This case
suggests a possibility of a graft-versus-tumor effect against neuro-
blastoma. Pediatr Blood Cancer 2009;52:895-897.

© 2009 Wiley-Liss, Inc.

INTRODUCTION

Allogeneic hematopoietic stem cell transplantation (allo-HSCT)
can exert an immune graft-versus-tumor (GVT) effect mediated by
donor lymphocytes, which plays a therapeutic role in the treatment
of hematologic malignancies. The GVT effect was directly
confirmed by the observation that donor lymphocyte infusion
(DLI) can successfully induce remission of chronic myelogenous
leukemia, which relapse after allo-HSCT [1]. Several small studies
have also suggested GVT effects following allo-HSCT in patients
with solid tamors [2-6]. Although allo-HSCT has been applied in
a considerable number of patients with neuroblastoma (NBL) [6],
there ‘are few reports describing a GVT - effect against this
malignancy. Here; we. describe. a patient” with: relapsing NBL
showing transient tumor regression after ex vivo-expanded donor
CD4* lymphocyte infusion (CD4" DLI):

CASE REPORT

" A 4-year-old male was diagnosed with stage 4 NBL (Interna-
tional NBL Staging System: INSS) who- developed as a retroper-
itoneal mass with metastases to the bone marrow (BM); cervical
lymph nodes and bone (orbit). Pathological studies showed. poorly
differentiated NBL (International. NBL. Pathology: Classification:
INPC) with Shimada’s unfavorable: histology without amplified
N-myc: expression.. He was- initially treated  with: combination
chemotherapy consisting of cyclophosphamide; vincristine, pirar-
ubicin . (THP-adriamycin), - cisplatin,  and ' etoposide. He: then
received high-dose chemotherapy (HDC) consisting of thio-TEPA
and melphalan’ with autologous peripheral blood stem cell trans-

© 2009 Wiley-Liss, Inc.

DOI 10.1002/pbc.21949

Published online 3 February 2009 in Wiley InterScience
(www.interscience.wiley.com)

plantation (auto-PBSCT), followed by surgical removal of primary
tumor [7,8].

The disease recurred in the BM, right mandible, bilateral
cervical lymph nodes, and right iliac and inguinal lymph nodes at
6 years of age, 13 months after HDC with auto-PBSCT. Following
combination chemotherapy consisting of topotecan, cyclophospha-
mide, and cisplatin, he received an’ allogeneic bone marrow
transplantation (allo-BMT) from his' HLA-identical mother. The
conditioning ‘' regimen consisted ‘of busulfan” (16 mg/kg) and
fludarabine (180 ‘mg/m?) preceded by topotécan (30" mg/m?).
Prophylaxis for graft-versus-host disease (GVHD) was short-term
methotrexate and tacrolimus. Engraftment was prompt and no acute
GVHD:' was observed." He was also treated with radiotherapy to
lymph nodes of the neck and pelvis after allo-BMT, which led to
successful renewed remission. However, he developed a recurrence
in’ BM with elevation of serum: neuron-specific enolase (NSE)
1 month after completion of radiotherapy, for which he received two
courses of conventional DLI [1=5 x 10%kg CD3* T-lymphocytes]
from his mother (Fig. 1). However, tumor cells in BM increased and
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Fig. 1. Clinical course and changes in serum NSE. NSE, neuron-

specific enolase; BM, bone marrow. DLI indicates donor lymphocyte
infusion: 1st dose, 1x 10%kg and 2nd dose, 5 x 10%kg CD3* T
lymphocytes. CD4* DLI indicates ex vivo-expanded donor CD4t
lymphocyte infusion: Ist and 2nd dose, 1 x 107/kg; and 3rd dose,
5 % 107/kg. The purity of CD4-single positive cells was 93.4%, 95.6%,
and 90.9%, respectively. The majority of contaminating cells were
CD4*CD8*, Temozolomide was administered at 150 mg/m?” daily for
five consecutive days for each cycle.

associated with increased serum NSE but without development of
GVHD. We therefore infused ex vivo-expanded donor CD4* T
lymphocytes (CD4™ DLI) with the aim of accelerating allogeneic
immunoreaction without eliciting GVHD.

Mononuclear cells were isolated from his mother. CD4* T
lymphocytes were purified by CD4 monoclonal antibody (mAb)-
coated magnetic beads and cultured for 1 week in the presence of
recombinant IL-2 (350 IU/ml; Proleukin, Chiron BV, Amsterdam,
The Netherlands) in a flask with immobilized anti-CD3 mAb, OKT3
(5 ug/ml; Jansen-Kyowa, Tokyo, Japan) [9]. This trial and culture
procedure were approved by the Institutional Review Boards of
Tokyo Medical and Dental University; and Osaka University
Hospital. Written informed consent was obtained from the parents
of the patient. The patient, then 7 years of age; was treated with
CD4" DLI following administration of temozolomide (Fig: 1).
Shortly after the first CD4* DLI (1 x 107/kg) with 93.4% purity of
CD4-single positive cells, he developed high fever of 40°C without
other GVHD signs such as skin rash, jaundice, or diarrhea. High
fever continued for 2 weeks with reduction of serum NSE levels
from 325.5 to 29.2 ng/ml. Iliac BM aspiration showed a decrease
in the ratio of the tumor cells (CD56YCD457 cells) from 37.4%
to 5.2% (Fig. 2A,B). Twelve days after CD4* DLI, CD8* T
lymphocytes with IFN-y- production. predominated in peripheral
blood (Fig. 2C,D). However, serum NSE increased after the second
CD4* DLI Despite the third CD4™ DLI at an increased dose of
5 x 107/kg, the disease continued to progress. He then received
temozolomide but without response and died 7 months after
the second relapse.

DISCUSSION

The prognosis of high-risk NBL, characterized by an' older
age, metastases, N-myc amplification, and unfavorable histologic
findings, remains poor [10,11]. More than half of these high-risk
patients relapse despite strategies involving HDC followed by auto-

Pediatr Blood Cancer DOI 10.1002/pbc
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Fig. 2. Flow cytometric analysis. Tumor cells (CDS6YCD45 ) iniliac
bone marrow before (A) and 12 days after (B) the first CD4" donor
lymphocyte infusion (DLI). Proportion of CD4" or CD8* T
lymphocytes (C) and CD3* T lymphocytes producing cytoplasmic
IFN-y (D) in peripheral blood mononuclear cells after CD4" DLI

HSCT, which: indicates a need for novel strategies to eradicate
residual disease: Allo-HSCT has been already used for adult patients
with solid tumors [4,6], in particular renal cell carcinoma [2,5] and
breast cancer [3,5]: Recent trials using allo-HSCT, mostly following
non-myeloablative preconditioning; showed a response rate of up to
57% against renal cell carcinoma [2,3,5].

A dramatic reduction of timor cells was observed in our patient
following CD4 DLI. The clinical response with the development of
high fever immediately after CD4™ DLI combined with an increase
of TFN-y-producing' CD8' T lymphocytes, that is, cytotoxic.T
tymphocytes  (CTLs), suggests a GVT effect. Moreover,: we
observed no increase of NK cells in peripheral blood nor increase
of expression of HLA-A24 (the patient’s and the donor’s HLA-A
type) on residual tumor cells (data not shown). Taken together,
the immunoreaction against NBL cells was presumably caused
by CTLs, not by NK cells. CD8* T lymphocytes (CTLs) were
increased following CD4* DLL Expanded and activated CD4*
helper T:: lymphocytes ~might have produced - cytokines - that
stimulated - CTL - differentiation and enhanced the ability - of
antigen-presenting cells to-stimulate CTL differentiation through
a CD40-CD40L interaction [12].

An’ immunological” response due- to lymphocytes might be
attributable in our case to scattered tumor cells in BM, which were
abundant in bloodstream, as is more frequently seen in leukemia.
Although the administration of temozolomide shortly before CD4t
DLImight have affected the clinical response, there was noresponse



during the second course of temozolomide during the final course of
the disease, which suggests that the first course was not associated
with a reduction of tumor cells.

In 1994 Matthay et al. {13] reported no advantage of allo-HSCT
over auto-HSCT in patients with NBL and few reports suggest a
GVT effect against NBL. Inoue et al. [14] reported a case showing
the disappearance of NBL within 3 years after allo-HSCT from
an HLA haploidentical donor. Although a considerable number of
patients with NBL has been treated with allo-HSCT [6], detailed
analysis has not been performed regarding its efficacy. Dykes et al.
[15] have recently used CD3" T-cell depleted allo-PBSCT from
HLA-haploidentical donor to patients with NBL.

The response in our patient suggests a transient GVT effect
against NBL cells. Immunotherapy with allogeneic lymphocytes
might open new avenues for overcoming the dismal prognosis of
high-risk NBL.
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